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Abstract

Fine-tuning all parameters of large language
models (LLMs) requires significant computa-
tional resources and is time-consuming. Re-
cent parameter-efficient tuning methods such
as Adapter tuning, Prefix tuning, and LoRA
allow updating a small subset of parameters
in large language models. However, they can
only save approximately 30% of the training
memory requirements because gradient compu-
tation and backpropagation are still necessary
for these methods. This paper proposes a novel
parameter-efficient tuning method for LLMs
without calculating their gradients. Leverag-
ing the discernible similarities between the
parameter-efficient modules of the same task
learned by both large and small language mod-
els, we put forward a strategy for transferring
the parameter-efficient modules derived ini-
tially from small language models to much
larger ones. To ensure a smooth and effec-
tive adaptation process, we introduce a Bridge
model to guarantee dimensional consistency
while stimulating a dynamic interaction be-
tween the models. We demonstrate the effec-
tiveness of our method using the T5 and GPT-2
series of language models on the SuperGLUE
benchmark. Our method achieves compara-
ble performance to fine-tuning and parameter-
efficient tuning on large language models with-
out needing gradient-based optimization. Addi-
tionally, our method achieves up to 5.7× mem-
ory reduction compared to parameter-efficient
tuning.

1 Introduction

Large language models such as GPT3 (Brown et al.,
2020), GPT4 (OpenAI, 2023), T5-XXL (Raffel
et al., 2020), and LLaMA (Touvron et al., 2023)
have demonstrated remarkable capabilities in var-
ious natural language processing tasks. However,
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Figure 1: (a) Comparison of the GPU memory usage
during training for fine-tuning, Adapter tuning, LoRA,
Prefix tuning, and our method on the RTE task. (b) The
cosine similarity of the parameter-efficient modules on
the GPT-2 series of language models over the RTE task.

the sheer number of parameters in these models
poses challenges for fine-tuning on common hard-
ware. Parameter-efficient tuning methods (e.g.,
Adapter tuning, Prefix tuning, or LoRA) typically
involve adding a small number of parameters to
the language model and only fine-tuning the added
subset of parameters, achieving comparable perfor-
mance to full fine-tuning. Adapter tuning learns
the task-specific information (Houlsby et al., 2019;
Mahabadi et al., 2021b,a) by inserting small task-
specific modules within layers of the Transformer.
Prefix tuning (Li and Liang, 2021; Liu et al., 2021b)
prepends task-specific trainable prompt tokens to
the hidden states within every intermediate Trans-
former layer. LoRA (Hu et al., 2021) merges the
low-rank and trainable matrices with the frozen
weights at each layer of the Transformer. In Figure
1(a), we show the comparison of the GPU memory
usage during training for fine-tuning, Adapter tun-
ing, LoRA, and Prefix tuning on the Recognizing
Textual Entailment (RTE) (Bar-Haim et al., 2014)
task. These parameter-efficient tuning methods
can save approximately 30% of the GPU memory
requirements but still rely on gradient-based opti-
mization, resulting in increased memory demands
for LLMs.
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To address the above limitations, we propose a
novel parameter-efficient tuning method for LLMs
without calculating their gradients. Intuitively, both
large and small language models (SLMs) can learn
similar task-specific characteristics when applied
to downstream tasks. We conduct experiments
using existing parameter-efficient tuning methods
on the RTE task in the SuperGLUE benchmark
(Wang et al., 2019) to validate this hypothesis. As
depicted in Figure 1(b), we calculate the similar-
ity between the parameter-efficient tuning mod-
ules derived from GPT2-XL and GPT2-base or
GPT2-medium1. Specifically, we apply the LoRA
method on GPT2-XL and GPT2-medium to ob-
tain the parameter-efficient modules of the two lan-
guage models and calculate the cosine similarity
of the two parameter-efficient modules. We find
that the cosine similarity can reach up to 75%. Our
observations indicate that these modules exhibit
comparable task-specific characteristics throughout
the learning process for specific downstream tasks.
Inspired by these findings, if we can successfully
transfer the task-specific characteristics learned by
the small language model to the large language
model, we can enrich the task-specific capabilities
into the LLMs without needing gradient-based op-
timization.

In this paper, we first utilize existing parameter-
efficient tuning methods in a small language model
to learn the task characteristics of downstream
tasks. Intuitively, we can directly apply the
parameter-efficient module obtained from the small
language model to the large language model. How-
ever, this would face crucial issues of dimension
mismatch and limited interaction with the large
language model. To address the issue of dimen-
sion mismatch, we employ a projection module
to align the dimensions of the parameter-efficient
modules between SLMs and LLMs. Furthermore,
to enrich the interaction between the parameter-
efficient module and the large language model, we
introduce a Bridge model that can retain the knowl-
edge of the large language model while interacting
with the parameter-efficient module, obtaining a
parameter-efficient module with dimensions match-
ing the large language model. Finally, we seam-
lessly plug the acquired parameter-efficient module
into the large language model for inference. We
conduct comprehensive experiments on T5 series

1GPT2-base contains 117M parameters, GPT2-medium
contains 345M parameters, and GPT2-XL contains 1542M
parameters.

(Raffel et al., 2020) and GPT2 series (Radford et al.,
2019) of language models to assess the effective-
ness of our method using the SuperGLUE bench-
mark, a widely recognized evaluation benchmark
for natural language understanding. The results
demonstrate that our method performs on par with
fine-tuning and parameter-efficient tuning on large
language models without needing gradient-based
optimization. Additionally, our proposed method
achieves up to 5.7× memory reduction compared to
parameter-efficient tuning. Our findings highlight
the potential of bridging small and large language
models, thereby efficiently leveraging expansive
large language models. In summary, our key con-
tributions can be listed as follows:

• Our analysis reveals a substantial task similar-
ity when applying parameter-efficient tuning
methods to SLMs and LLMs for downstream
tasks.

• We propose a gradient-free method to adapt
the parameter-efficient modules learned in a
small language model to a large language
model.

• Extensive experiments on SuperGLUE bench-
mark under both T5 series and GPT-2 series
of language models verify the effectiveness of
our proposed method and achieve up to 5.7×
memory reduction compared to parameter-
efficient tuning.

2 Method

The proposed method utilizes parameter-efficient
tuning modules to effectively bridge small and
large language models, enriching the task-specific
capabilities into the large language model with-
out needing gradient-based optimization. As de-
picted in Figure 2, the method consists of training
and inference. We first employ parameter-efficient
tuning methods during the training stage to learn
task-specific characteristics in the small language
model. Then, we fine-tune the Bridge model and
the acquired parameter-efficient module to enhance
the knowledge of the parameter-efficient module.
Finally, we directly plug the parameter-efficient
module into the large language model during the
inference stage for efficient predictions.
Plug-in and Bridge Model Fine-tuning: We first
utilize existing parameter-efficient tuning methods
such as Adapter (Houlsby et al., 2019), LoRA (Hu
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Figure 2: (a) In the training stage, we use parameter-efficient tuning methods to learn task-specific characteristics in
a smaller model and fine-tune the Bridge model with the acquired parameter-efficient modules. (b) In the inference
stage, we directly plug the parameter-efficient modules into the large language model for efficient predictions.

et al., 2021), or Prefix tuning (Li and Liang, 2021)
in a small language model to learn the task char-
acteristics of downstream tasks. However, directly
applying the parameter-efficient modules obtained
from the small language model to the large lan-
guage model would face two issues: dimension
mismatch and limited interaction with the large lan-
guage model. To address the issue of dimension
mismatch, we employ a linear projection module
Wplug as the Plug-in model to align the dimen-
sions of the parameter-efficient module with the
large language model. Furthermore, considering
that small language models usually have fewer lay-
ers than large language models, we address the
layer mismatch by duplicating the layers of the
parameter-efficient modules. This duplication en-
ables us to achieve layer alignment with the large
language model.

Intuitively, successfully adapting the parameter-
efficient modules to the large language models re-
quires a substantial interaction between them and
the large language models. To enrich the inter-
action, we introduce a Bridge model that can re-
tain the knowledge of the large language model
while interacting with the parameter-efficient mod-
ule. We employ the pruning method from Ladder-
side-tuning (Sung et al., 2022) to obtain such a
Bridge model, which involves pruning each layer
of the large language model f . We use linear pro-
jections to downsample the intermediate activa-

tions, including word embeddings, from the large
language model f to a lower-dimensional Bridge
model g, with a reduction factor of r, where r can
be 8, 16, 32, 64, etc. To retain crucial informa-
tion from the large language model, we leverage
Fisher information (Liu et al., 2021a; Sung et al.,
2021) to prune the parameters of the large language
model and obtain the initial Bridge model g. Fisher
information could effectively evaluate the impor-
tance of parameters in the large language model.
Given the W ∈ Rdb×dl of the backbone network
that maps the dl-dim vectors to the db-dim space,
we calculate the importance of each weight vector
through

W =
1

|D|

|D|∑

i=1

(∇W log p(yi|xi))2,

where (xi, yi) are samples from data D. Then, we
keep the rows and columns of the W , which have
the db

r and dl
r importance scores. Through itera-

tions of this process in each layer of the Trans-
former, we obtain a set of weight matrices WB ∈
R

db
r
× dl

r that have undergone pruning 1/r times
from the backbone network, and we utilize them to
initialize the Bridge model.

Subsequently, in order to make the parameter-
efficient modules (e.g., Adapter, LoRA, or Prefix
tuning) learned in the small language model in-
teract with the Bridge model, we apply the linear
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Algorithm 1 Adaptation of Parameter-efficient Modules for Large Language Model

Require: Large language model M , a small language model S, the training set D = {(x1, y1), · ·
·, (xn, yn)}, linear projection modules Wplug and Wdown, and parameter-efficient tuning methods
(PEFT) (e.g., Adapter tuning, Prefix tuning, and LoRA)

1: Apply the PEFT on S and fine-tuning S on D to obtain parameter-efficient modules
2: Employ the Wplug to align the dimensions of the parameter-efficient modules with M
3: Prune the parameters of the M and get a Bridge model g
4: Apply the linear projection module Wdown on parameter-efficient modules
5: for each instance (x1, y1) in D do
6: Fine-tune the parameter-efficient modules together with the Bridge model g
7: end for
8: Plug the parameter-efficient modules and the linear projection modules Wplug into the M

projection module Wdown on parameter-efficient
modules and fine-tune the parameter-efficient mod-
ules together with the Bridge model g. This fine-
tuning process enables us to achieve two objectives:
obtaining parameter-efficient modules that match
the dimensions of the large language model and
enriching these modules with knowledge from the
large language model.
Inference: Once the training of the parameter-
efficient modules and the Bridge model g is com-
plete, we integrate the trained parameter-efficient
modules, enriched with knowledge from the large
language model, into the large language model.
This integration empowers the large language
model to leverage the task-specific knowledge cap-
tured by the parameter-efficient modules during the
inference process without requiring gradient-based
optimization. The complete algorithm is depicted
in Algorithm 1.

3 Experiments

3.1 Experimental Settings

We conduct extensive experiments on eight natural
language understanding tasks from the SuperGLUE
benchmark, including BoolQ (Clark et al., 2019),
CB (De Marneffe et al., 2019), COPA (Roemmele
et al., 2011), MultiRC (Khashabi et al., 2018),
RTE (Bar-Haim et al., 2014), WiC (Pilehvar and
Camacho-Collados, 2019), WSC (Levesque et al.,
2012), and ReCoRD (Zhang et al., 2018). For
each task, we report the accuracy or F1-score. In
our experiments, we evaluate the effectiveness of
our method using both the GPT2 series (Radford
et al., 2019) of autoregressive language models and
the T5 series (Raffel et al., 2020) of sequence-to-
sequence language models. In the GPT2 series of
models, we designate the GPT2-base as the small

model and the GPT2-XL as the large model. For
the T5 series of models, we classify the T5-base
and T5-large as small language models, while the
T5-3B and T5-XXL are considered large language
models for our experiments. To obtain the Bridge
model, we set the reduction factor r = 16. In
Table 2, we provide the model parameters of the
small language models, large language models, and
Bridge models. It is worth noting that the model
parameters of the Bridge models are significantly
smaller than those of the large language models.
The training process of our proposed method is
conducted on an NVIDIA A100 GPU with 80GB
of memory.

Our objective is to demonstrate that the
parameter-efficient modules learned on the small
language models can be effectively adapted to the
large language models, achieving comparable per-
formance to full fine-tuning and parameter-efficient
tuning without needing gradient-based optimiza-
tion. We list the baselines as follows:

Fine-tuning: The vanilla Transformer fine-
tuning.

Adapter tuning: Inserting a small task-specific
module between the self-attention module (and the
MLP module) and the subsequent residual con-
nection at each Transformer layer (Houlsby et al.,
2019).

Prefix tuning: Adding trainable continuous
prompt vectors to the Key and Value components of
the attention layer at each layer of the Transformer
model (Li and Liang, 2021).

LoRA: Merging the low-rank and trainable ma-
trices with the frozen weights at each layer of the
Transformer (Hu et al., 2021).

Adapter tuning Plug-in: By applying the
Adapter tuning method to small language models,
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Method #Params
BoolQ
Acc.

CB
Acc./F1

COPA
Acc.

MultiRC
EM/F1a

RTE
Acc.

WiC
Acc.

WSC
Acc.

ReCoRD
Acc./F1

GPT2-base FT (Radford et al., 2019) 100% 71.2 78.6/55.8 64.4 65.8/17.4 67.8 65.5 63 72.1/71.4
GPT2-base Adapter - 71.5 79.3/56.3 65.8 65.2/18.2 67.5 65.7 62.9 72.8/71.9
GPT2-base Prefix tuning - 70.6 80.3/58.2 65.1 64.7/16.9 67.3 64.9 63.1 71.4/70.5
GPT2-base LoRA - 71.4 79.6/57.8 65.7 66.2/18.6 67.2 65.3 62.5 71.8/70.9
GPT2-XL FT (Radford et al., 2019) 100% 82.4 87.4/90.6 76.5 76.4/37.6 79.6 74.9 81.8 84.4/83.8
GPT2-XL Adapter 1.98% 81.8 86.9/90.8 76.2 75.4/36.2 78.9 74.2 81.5 84.2/83.1
GPT2-XL Prefix tuning 1.76% 81.0 86.7/89.9 74.9 76.7/36.9 79.2 74.3 81.4 83.2/83.1
GPT2-XL LoRA 1.55% 82.1 87.1/90.3 76.2 76.2/37.1 79.4 75.1 81.1 84.4/83.3
GPT2-XL Adapter Plug-in 0% 81.6 86.7/90.4 75.6 75.8/36.7 78.7 74.3 80.8 83.7/82.5
GPT2-XL Prefix tuning Plug-in 0% 81.2 86.3/89.4 75.1 76.1/36.4 78.5 73.8 80.1 83.5/82.6
GPT2-XL LoRA Plug-in 0% 81.5 86.2/89.3 75.3 75.6/36.8 78.3 74.1 80.3 83.9/82.8

Table 1: Results on the SuperGLUE benchmark. The Adapter Plug-in, Prefix tuning Plug-in, and LoRA Plug-in are
the parameter-efficient modules learned in the small language models adapted to the large language models. 0%
means we do not update any parameter within the large language models.

we obtain parameter-efficient modules that can be
adapted to large language models.

Prefix tuning Plug-in: By applying the Prefix
tuning method to small language models, we obtain
parameter-efficient modules that can be adapted to
large language models.

LoRA Plug-in: By applying the LoRA method
to small language models, we obtain parameter-
efficient modules that can be adapted to large lan-
guage models.

Models SLMs LLMs BMs
GPT2-base and GPT2-XL 117M 1542M 96M
T5-base and T5-3B 220M 2800M 175M
T5-large and T5-XXL 770M 11000M 688M

Table 2: Comparison of the model parameters on the
small language models (SLMs), large language models
(LLMs), and the Bridge models (BMs). To obtain the
Bridge model, we set the reduction factor r = 16.

3.2 Main Results
3.2.1 Experiments on GPT-2 Series of Models
Table 1 shows the performance of our proposed
method using the GPT2 series of models (Radford
et al., 2019). In Table 1, we present the results
obtained with GPT2-base as the small language
model and GPT2-XL as the large language model.
The Adapter Plug-in, Prefix tuning Plug-in, and
LoRA Plug-in are the parameter-efficient modules
learned in the GPT2-base model adapted to the
GPT2-XL model. As can be seen, in compari-
son to directly conducting vanilla fine-tuning on
the large language model, our method achieves
comparable results. Furthermore, compared to

parameter-efficient tuning methods applied to the
large language model, our method demonstrates
comparable performance without the need to fine-
tune any parameters of the large language model.
Specifically, it exhibits a slight improvement com-
pared to the prefix-tuning method on the BoolQ
and COPA tasks, demonstrating the effectiveness
of our method.

3.2.2 Experiments on T5 Series of Models

Table 3 and Table 4 display the performance of
our proposed method using the T5 series of mod-
els (Raffel et al., 2020). In Table 3, we present
the results obtained with T5-base as the small lan-
guage model and T5-3B as the large language
model. The Adapter Plug-in, Prefix tuning Plug-in,
and LoRA Plug-in are parameter-efficient modules
of our method used to adapt T5-3B. Our method
achieves comparable results on all eight Super-
GLUE tasks without the need to fine-tune any pa-
rameters of the T5-3B, demonstrating the effective-
ness of our method. Particularly in BoolQ, CB,
RTE, and ReCoRD, our method performs at a level
similar to full fine-tuning. Similarly, Table 4 shows
the results using T5-large as the small language
model and T5-XXL as the large language model,
with the same Plug-ins employed to adapt T5-XXL.
Our method achieves comparable results on all
eight SuperGLUE tasks without the need to fine-
tune any parameters of the T5-XXL. Furthermore,
compared to parameter-efficient tuning methods
applied to the large language model, our method
demonstrates comparable performance without the
need to fine-tune any parameters of the large lan-
guage model. Especially when compared to the
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Method #Params
BoolQ
Acc.

CB
Acc./F1

COPA
Acc.

MultiRC
EM/F1a

RTE
Acc.

WiC
Acc.

WSC
Acc.

ReCoRD
Acc./F1

T5-base FT (Raffel et al., 2020) 100% 81.4 81.4/91.0 71.2 79.7/43.1 81.5 68.3 80.8 75.0/74.2
T5-base Adapter - 81.5 82.6/93.5 71.5 79.3/43.2 81.2 68.8 80.3 75.2/74.6
T5-base Prefix tuning - 81.1 81.9/93.2 70.1 79,2/42.1 80.8 67.9 79.9 74.6/73.5
T5-base LoRA - 81.7 82.1/94.3 70.4 79.5/42.6 81.2 69.1 80.5 74.8/74.1
T5-3B FT (Raffel et al., 2020) 100% 89.9 90.3/94.4 92 86.8/58.3 90.7 72.1 90.4 91.2/90.4
T5-3B Adapter 2.73% 89.7 90.1/93.2 91.5 86.9/59.1 91.1 71.3 90.5 91.1/90.3
T5-3B Prefix tuning 2.12% 89.4 89.0/93.4 91.1 86.4/57.1 90.5 70.9 89.1 90.6/89.2
T5-3B LoRA 2.45% 90.4 90.8/95.0 92.1 86.2/57.6 91.0 71.8 90.6 91.3/91.1
T5-3B Adapter Plug-in 0% 89.5 89.6/94.7 91.7 86.5/58.2 90.8 70.9 90.2 91.6/90.7
T5-3B Prefix tuning Plug-in 0% 89.1 89.4/93.8 91.2 86.1/57.4 90.4 70.7 89.5 90.3/89.9
T5-3B LoRA Plug-in 0% 89.6 90.0/94.9 91.8 86.9/58.5 90.1 71.0 89.8 90.9/90.1

Table 3: Results on the SuperGLUE benchmark. The Adapter Plug-in, Prefix tuning Plug-in, and LoRA Plug-in
are the parameter-efficient modules learned in the small language models adapted to the large language models.
The full fine-tuning performance of T5-base and T5-3B models is based on the research conducted by Raffel et al.
(2020). 0% means we do not update any parameter within the large language models.

Method #Params
BoolQ
Acc.

CB
Acc./F1

COPA
Acc.

MultiRC
EM/F1a

RTE
Acc.

WiC
Acc.

WSC
Acc.

ReCoRD
Acc./F1

T5-large FT (Raffel et al., 2020) 100% 85.4 91.6/94.8 83.4 83.3/50.7 87.8 69.3 86.3 86.8/85.9
T5-large Adapter - 85.3 90.9/93.7 83.2 83.1/50.1 87.3 69.8 86.7 86.2/85.1
T5-large Prefix tuning - 84.9 91.4/95.3 82.9 82.7/49.6 87.5 68.9 85.5 86.1/84.9
T5-large LoRA - 85.1 90.9/94.3 84.2 83.6/51.2 87.3 70.2 85.9 86.7/85.7
T5-XXL FT (Raffel et al., 2020) 100% 91.2 93.9/96.8 94.8 88.1/63.3 92.5 76.9 93.8 94.1/93.4
T5-XXL Adapter 6.42% 90.8 93.6/95.9 93.7 87.9/63.0 92.8 75.7 93.5 92.8/91.7
T5-XXL Prefix tuning 6.22% 89.3 93.5/94.4 92.7 86.9/63.1 92.3 74.9 92.8 93.1/91.8
T5-XXL LoRA 6.15% 91.5 93.4//95.8 93.6 87.8/63.5 92.7 75.7 93.6 93.7/92.8
T5-XXL Adapter Plug-in 0% 90.4 93.1/95.6 94.1 87.2/62.8 92.3 75.2 93.2 93.4/92.2
T5-XXL Prefix tuning Plug-in 0% 89.9 93.2/94.6 92.3 86.3/62.1 91.8 74.7 92.4 93.5/92.5
T5-XXL LoRA Plug-in 0% 90.5 92.4//95.7 93.2 86.9/62.5 92.1 74.9 92.9 93.8/92.7

Table 4: Results on the SuperGLUE benchmark. The Adapter Plug-in, Prefix tuning Plug-in, and LoRA Plug-in are
the parameter-efficient modules learned in the small language models adapted to the large language models. The
full fine-tuning performance of T5-large and T5-XXL models is based on the research conducted by Raffel et al.
(2020). 0% means we do not update any parameter within the large language models.

prefix-tuning method, our proposed method shows
a slight improvement in the CB, COPA, and WSC
tasks when applied to the T5-3B model. Similarly,
when applied to the T5-XXL model, our method
slightly improves the BoolQ, CB, and ReCoRD
tasks.

It is evident that as the parameter size of pre-
trained language models grows, existing parameter-
efficient tuning methods necessitate the addition of
more parameters to the large language model. In
contrast, our method does not entail any parameter
augmentation but instead optimally harnesses the
capabilities of the large language model through
a plug-in approach. These findings indicate that
our method can effectively utilize the knowledge
of large language models without updating the pa-

rameters of large language models, which suggests
the potential for application to even larger language
models.

3.2.3 Importance of the Reduction Factor r

Considering the impact of the reduction factor r
on the amount of knowledge retained in the Bridge
model, we conduct experiments to analyze its im-
portance. For verification, we select CB, RTE,
and WiC in the SuperGLUE benchmark. As indi-
cated in Table 5, we observe a gradual decrease in
model performance as r increases. This is because
a higher value of r reduces the retained knowl-
edge from the large language model to the Bridge
model. According to Table 5, we can observe that
when the model parameters of the Bridge model
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Dataset r=2 r=4 r=8 r=16 r=32 r=64
CB 91.2 90.6 90.2 90.0 88.2 85.4
RTE 90.8 90.5 90.5 90.1 89.1 84.3
WiC 71.3 71.5 71.1 71.0 69.7 67.4

Table 5: The accuracy on CB, RTE, and WiC with dif-
ferent reduction factors r. We perform the verification
on T5-3B using the LoRA Plug-in approach.

are significantly smaller than that of the small lan-
guage model, our method exhibits a noticeable per-
formance decline during the entire inference pro-
cess. However, when the model parameters of the
Bridge model are comparable to that of the small
language model, our method maintains the perfor-
mance of the model without substantial degrada-
tion. To strike a balance between model perfor-
mance and the parameter of the Bridge model, we
believe that selecting r = 16 is a suitable choice.

3.2.4 Memory Usage
Our method not only achieves comparable perfor-
mance to full fine-tuning and parameter-efficient
tuning methods without updating any parameters
of the large language models but also significantly
achieves an impressive reduction in memory us-
age. As shown in Table 6 and Table 7, we compare
the memory usage between our proposed method
and the baseline models. When using the GPT2-XL
model, we conduct experiments with a batch size of
8 and a sequence length 512. Our method evidently
achieves up to 7.1× memory savings compared to
vanilla fine-tuning. Similarly, when utilizing the
T5-3B model with a batch size of 1 and a sequence
length 512, our method achieves up to 5.1× mem-
ory savings compared to vanilla fine-tuning.

In particular, we compare the existing parameter-
efficient tuning methods, and in GPT2-XL, we can
see that our proposed method can achieve signif-
icant memory savings. For example, comparing
the three parameter-efficient tuning methods of
Adapter-tuning, Prefix tuning, and LoRA, our pro-
posed method can achieve 5.3×, 5.6×, and 5.7×
memory reduction, respectively. Our method also
achieves 2.9× more memory savings compared
to Ladder-side Tuning. In T5-3B, our proposed
method can achieve 3.6×, 3.5×, and 3.6× memory
reduction, respectively, compared to the Adapter-
tuning, Prefix tuning, and LoRA. Similarly, our
method also achieves 1.3× more memory savings
compared to Ladder-side Tuning. This demon-
strates that our method can be more effectively

applied to existing large language models without
compromising performance. Furthermore, our pro-
posed method does not slow down the inference
speed of the model. By utilizing the plug-in ap-
proach, we can directly leverage the knowledge of
the large language model during inference without
compromising the speed.

Models MU MR
GPT2-XL FT 73746 1.0×
GPT2-XL Adapter 57903 1.3×
GPT2-XL Prefix tuning 56051 1.3×
GPT2-XL LoRA 54593 1.4×
Ladder-side Tuning 17652 4.2×
GPT2-XL Adapter Plug-in 11203 6.6×
GPT2-XL Prefix tuning Plug-in 10745 6.9×
GPT2-XL LoRA Plug-in 10443 7.1×

Table 6: Memory Usage (MU) and Memory Reduction
(MR) compared to vanilla fine-tuning of our proposed
method on a single NVIDIA A100 GPU with 80GB of
memory. Batch sizes are 8 and sequence lengths are
512.

Models MU MR
T5-3B FT 77465 1.0 ×
T5-3B Adapter 54324 1.4×
T5-3B Prefix tuning 53324 1.5×
T5-3B LoRA 52134 1.5×
Ladder-side Tuning 20385 3.8×
T5-3B Adapter Plug-in 15432 5.0×
T5-3B Prefix tuning Plug-in 15643 5.0×
T5-3B LoRA Plug-in 15323 5.1×

Table 7: Memory Usage (MU) and Memory Reduction
(MR) compared to vanilla fine-tuning of our proposed
method on a single NVIDIA A100 GPU with 80GB of
memory. Batch sizes are 1 and sequence lengths are
512.

3.3 Utilize Bridge Model Directly?
A natural question arises: Why not learn the
parameter-efficient modules directly on the Bridge
model instead of using a smaller language model
and then applying the learned efficient modules
to the larger language model? Intuitively, given
the learned parameter-efficient modules with the
Bridge model, we need a projection model to
project the dimensions to match the large language
model. However, the projection model can only
be well learned with another interaction model.
In this section, we train the Bridge model by di-
rectly initializing the parameter-efficient and lin-
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Method COPA RTE WiC WSC
Adapter Plug-in (BM) 90.3 89.9 69.4 89.3
LoRA Plug-in (BM) 90.7 89.8 70.1 89.4
Adapter Plug-in (SLM) 91.7 90.8 70.9 90.2
LoRA Plug-in (SLM) 91.8 90.1 71.0 89.8

Table 8: The Accuracy on COPA, RTE, WiC, and WSC
tasks with T5-3B. BM means the Bridge model obtained
with T5-3B. SLM means the small language model T5-
base.

ear projection modules and investigate whether a
Bridge model is enough to learn the projection
module. In Table 8, we conduct experiments using
the T5-3B model on the COPA, RTE, WiC, and
WSC tasks. By plugging the parameter-efficient
modules learned from the Bridge model and the
small language model into the T5-3B model, re-
spectively, and comparing their performance, we
find that directly using the Bridge model consis-
tently performs worse than utilizing the small lan-
guage model enriched by a Bridge model across all
tasks. The results indicate that the Bridge model
cannot be utilized alone.

4 Related Work

Fine-tuning and Parameter-efficient Tuning:
Large language models leverage parameterized
Transformers as a foundational framework and
train them on extensive unsupervised language cor-
pora (Brown et al., 2020; OpenAI, 2023; Touvron
et al., 2023; Raffel et al., 2020). Subsequently,
specific task objectives are introduced for down-
stream tasks to perform full fine-tuning on the pre-
trained language models (Jin et al., 2022, 2023;
Muennighoff et al., 2022). As the primary method
for optimizing pre-trained language models, full
fine-tuning involves initializing the model with pre-
trained weights, updating all model parameters, and
storing a separate fully optimized model for each
downstream task. However, as the model parame-
ter grows, conducting full fine-tuning on existing
computational devices becomes increasingly chal-
lenging. In light of this, researchers have started
exploring efficient methods for effectively harness-
ing the power of large language models.

As an efficient alternative, parameter-efficient
tuning is a promising way of stimulating large lan-
guage models. Compared to vanilla fine-tuning,
parameter-efficient tuning methods only tune a
small portion of the model parameters while keep-
ing the rest frozen. Adapter tuning methods,

such as those proposed by Houlsby et al. (2019)
and Mahabadi et al. (2021b,a), aim to learn task-
specific information by incorporating small-scale
task-specific modules into the layers of the Trans-
former. Prefix tuning methods, as introduced by Li
and Liang (2021) and discussed in the work by Liu
et al. (2021b), also introduce additional parameters
within the Transformer layers. LoRA, proposed
by Hu et al. (2021), merges low-rank and trainable
matrices with the frozen weights at each layer of
the Transformer. BitFit (Ben Zaken et al., 2022)
is a simple yet effective method that optimizes
the bias terms within a model while keeping the
other parameters frozen. However, these existing
parameter-efficient tuning methods typically rely
on gradient-based optimization and still involve
substantial memory usage. Our proposed method,
on the other hand, enables substantial memory sav-
ings while maintaining comparable performance.
Gradient-free Optimization: Recently, Sung et al.
(2022) introduced a method that eliminates the
need for gradient updates by directly applying
a pruned model to downstream tasks, while the
method does not fully exploit the knowledge of the
large language model. Xiao et al. (2023) propose
an efficient transfer learning framework that can
adapt large language models to downstream tasks
without access to full model parameters, while the
method through compute-intensive distillation tech-
niques may be cost-prohibitive for larger models.
In contrast, our proposed method enables further
utilization of the knowledge contained in the large
language model and enables significant memory
savings through a simple operation while preserv-
ing the performance of large language models.

5 Conclusion

This paper proposes a novel parameter-efficient
tuning method for large language models with-
out calculating their gradients. We first learn
the parameter-efficient tuning module for small
language models. Then, the learned parameter-
efficient tuning module is adapted into large lan-
guage models with a bridge model that handles the
dimensionality mismatch and enables interaction
between the parameter-efficient tuning module and
the large language model. Extensive experiments
on the SuperGLUE benchmark demonstrate that
our method achieves comparable performance to
vanilla fine-tuning and parameter-efficient tuning
on large language models without needing gradient-
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based optimization. We believe that our method
offers a potential direction to utilize large language
models efficiently and economically.

Limitations

For large language models for which weights can-
not be obtained, the proposed methods cannot be
directly applied, and there may be certain limi-
tations when applying the proposed methods to
language models with different architectures. Con-
tinuous exploration and research will be conducted
to determine how to apply the proposed methods
to different architecture language models, aiming
to improve their compatibility and effectiveness
across different architectures and language model
characteristics.

The proposed method still updates the parame-
ters of PEFT modules based on the gradient on a
small language model, and the whole process is a
pipeline process, which requires practical training
in the early stage before it can be applied to the
large model.
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