VISTS: An Adaptive, Retrieval-Augmented Language Model for
Visualization-oriented Dialog

Henrik Voigt!, Nuno Carvalhais?, Monique Meuschke?,
Markus Reichstein?, Sina Zarrie*, Kai Lawonn!
"University of Jena 2MPI Biogeochemistry *University of Magdeburg “Bielefeld University
'first.last@uni-jena.de, >first.last.bgc-jena.mpg.de
3last@isg.cs.uni-magdeburg.de, *first.last@uni-bielefeld.de

create a flow map of wind
direction over northern europe

Plotting flow map for dataset
northern_european_cities.csv.

show me the temperature over
time for all cities in the dataset
in the year 2014

You got it! | have made the
changes to your plot as
requested.

Dot

temperature

Febtuary March April

Wind Direction: 334.61° (NNE) , Wind Speed: 8.04 s [

May

city
— Bergen
Berfin

— Copenhagen

Stockhoim
— Tallinn
Trondheim

October

June July August
date

‘September November  December

Figure 1: VISTS5 makes it easy for researchers and professionals to explore their data using natural language.
Users articulate their visualization preferences in a chat window, displayed in the left column. The panel lists the
responses of the dialog agent, containing both text and custom Vega-Lite visualization code. The right column
contains two visualization tools that can be controlled from the chat. At the top, a geographical map displays
geo-related plots, such as flow visualizations of wind directions. Below is a display area for Vega-Lite visualizations

that are generated based on user queries to the dataset.

Abstract

The advent of large language models has
brought about new ways of interacting with
data intuitively via natural language. In re-
cent years, a variety of visualization systems
have explored the use of natural language
to create and modify visualizations through
visualization-oriented dialog. However, the ma-
jority of these systems rely on tailored dialog
agents to analyze domain-specific data and op-
erate domain-specific visualization tools and
libraries. This is a major challenge when trying
to transfer functionalities between dialog in-
terfaces of different visualization applications.
To address this issue, we propose VISTS, a
visualization-oriented dialog system that fo-
cuses on easy adaptability to an application do-
main as well as easy transferability of language-
controllable visualization library functions be-

70

tween applications. Its architecture is based
on a retrieval-augmented T5 language model
that leverages few-shot learning capabilities to
enable a rapid adaptation of the system.

1 Introduction

The field of visualization has witnessed a surge of
interest in integrating dialogue interfaces into visu-
alization applications, leading to the development
of various visualization-oriented natural language
interfaces (V-NLI) (Narechania et al., 2020; Luo
et al., 2021b; Liu et al., 2021; Kim et al., 2021).
The goal of these systems is to generate visualiza-
tions from natural language queries and modify
them accordingly in interaction with the user. How-
ever, visualization applications exist in various do-
main contexts, which require specific vocabulary
to be parsed and mapped to custom functionalities.

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 70-81
December 6-10, 2023 ©2023 Association for Computational Linguistics



For example, a visualization application that helps
researchers analyze climate data will handle differ-
ent user intent and different, domain-specific visu-
alization libraries than an application in a medical
context (Srinivasan et al., 2021; Gao et al., 2015).
Certain types of visualization techniques, such as
bar charts, line charts, or scatter plots, are very
general, so they can be used in almost any domain.
Others, such as flow maps for the visualization
of wind vectors, are not and their access via the
natural language interface must be integrated with
great effort. Transferring a set of solutions, such
as successfully mapping user queries to visualiza-
tion library functions, from one V-NLI to another
without writing new code is still a challenging task.
It would be ideal if created functionality could be
transferred between V-NLI applications by simply
showing the system how to use a particular library
with a few examples.

In this paper, we introduce VISTS, a V-NLI that
helps users perform text-related visualization tasks
while being adaptive to the visualization libraries
of the application domain. The system implements
a retrieval-augmented language model trained on
a mixture of visualization-specific text generation
tasks and a large collection of general text-to-text
translation tasks. Its retrieval augmentation allows
modular extension with domain-specific user com-
mands and portability of functionality between ap-
plications. Moreover, the language model meets
the requirements of small model size, fast trainabil-
ity, and fast inference on commodity hardware. We
illustrate the adaptation to the specifics of a domain
using the example of climate data exploration.

Our contributions can be summarized as follows:

o Efficient Multi-Task Architecture. Introduc-
tion of an efficient and generic multi-task ar-
chitecture for text-related visualization tasks.

Retrieval-Augmented Dialogue System.
The presentation of a dialog system that uses
an information retrieval component to ground
the dialog in knowledge retrieval from exter-
nal resources. This allows a smaller model
size while exploiting knowledge from exter-
nal databases.

Modular Extensibility via Few-Shot
Paradigm. Leveraging the few-shot capabili-
ties of the language model to enable modular
extensibility and portability of user intents

71

between applications, as well as integration
of new custom intents in minutes.

For a demo video of the VISTS system please visit
https://youtu.be/bsgaV7hjlGs.

2 Related Work

Natural language interfaces for data visualization
have recently emerged as a powerful combination
of visualization and NLP techniques. In their
comprehensive survey, Shen et al. (2021) provide
an overview of how natural language interaction
can be integrated into the visualization pipeline
of Card (1999). Voigt et al. (2021, 2022) elaborate
on the different visualization tasks that can be
facilitated by natural language interactions. The
resulting V-NLI pipeline is shown in Figure 2.
The following is a sequential listing of the steps in
the V-NLI pipeline paired with recent work in each
step.

Query Interpretation. Interpreting the query is
about identifying the subset of the data the user
wants to see and the actions the user wants to per-
form on the data. Setlur et al. (2016) introduced
Eviza, which leverages a probabilistic grammar
defining a rule-based interaction schema on how to
react to specific types of queries. Flowsense (Yu
and Silva, 2019), another rule-based semantic pars-
ing approach, matches special utterances and maps
them to visualizations in a data flow architecture.
Other works focus on resolving linguistic ambi-
guity and vagueness in expressions using senti-
ment analysis and word co-occurrence (Hearst
et al., 2019; Setlur et al., 2019). Recent systems
have introduced neural sequence-to-sequence ap-
proaches that translate queries directly into visual-
izations (Luo et al., 2021b). Maddigan and Susn-
jak (2023) have conducted an investigation on di-
verse prompt designs for ChatGPT (Ouyang et al.,
2022), OpenAl Codex (Chen et al., 2021), and
GPT-3 (Brown et al., 2020), demonstrating the re-
markable capability of these LLMs in producing
high-fidelity visualizations from natural language
input. Our work takes a different approach, consid-
ering that training and inferring such large models
can be expensive and hardware-intensive, making
them unsuitable for computationally constrained
use cases. Instead, we concentrate on open access,
extensibility, and modularity, offering an alterna-
tive perspective.


https://youtu.be/bsgaV7hjlGs

O

—
@ —

Data
Transformation

.

Visual View

Mapping

L

Visual
Structures
Transformation

L

V-NLI Application Why
[[] Presen it
— [ pisc:
Visualizati = ( [ Enjoy
] Isualization [ — | D Prod
Views Text =
> D ‘ \ How
ctiol
; User
Multimodal
Response ' Task What
=) o
Doutp it

Figure 2: V-NLI Pipeline. Given a user query, the data is first transformed, then mapped to visual structures, and
then displayed in a view. The user, on the other hand, uses the interface by accessing different stages of the pipeline
via language to solve a visualization task action by action.

Data Transformation. Transforming the data ac-
cording to the action specified by the user is the
next step in the V-NLI pipeline (e.g. by aggre-
gation, filtering, binning, or grouping). A set
of approaches identifies transformation functions
from visualization libraries through phrase match-
ing (Gao et al., 2015; Hoque et al., 2017; Sun et al.,
2010; Srinivasan and Stasko, 2017; Dhamdhere
et al., 2017), others make use of a common data
interface such as SQL (Zhong et al., 2017; Wang
et al., 2019; Scholak et al., 2021; Xie et al., 2022;
Qi et al., 2022).

Visual Mapping. In V-NLI systems, the mapping
from data to visual representation is usually seen in
one of two flavors: 1) the data transformation (e.g.
selection of table, column, conditions) and the gen-
eration of the visualization specification (e.g. chart
type, color) are integrated, as in ncnet (Luo et al.,
2021b), or 2) the data transformation and visualiza-
tion specification are separated, with an appropriate
visualization for the resulting data being suggested
after the query is executed (Wongsuphasawat et al.,
2015, 2016; Zhu et al., 2020; Luo et al., 2018).
Quda (Fu et al., 2020) and ADVISor (Liu et al.,
2021) use neural intent classification methods that
are more flexible for integrating custom visualiza-
tion library functions, but still have the problem
of being difficult to extend and adapt to new user
intents without retraining.

View Transformation. In current systems, manip-
ulation of visual elements in the view is primarily
enabled through other channels of multimodal in-
teraction, such as touch and gesture (Kim et al.,
2021; Srinivasan et al., 2020b), as exemplified by
InChorus (Srinivasan et al., 2020a). Orko (Srini-
vasan and Stasko, 2017) combines written or spo-
ken text input with touch gestures to manipulate
view properties, as does Valletto (Kassel and Rohs,
2018).

72

3 VISTS System

The VISTS system is composed of a language
model (Section 3.1), a dialog management
component (Section 3.2) that controls the mem-
ory and API calls to the various visualization
libraries used, and a user interface (Section 3.3).
The system architecture and the query exe-
cution process are shown in Figure 3. The
open-source code of the system is available
at https://github.com/clause-bielefeld
/VISTS5.git.

3.1 Language Model

The model architecture closely aligns with T5-base
and features 12 encoder and decoder blocks with
a token embedding dimension of 768 (Raffel
et al., 2020). We employ an input context width
of 2048 tokens to match the length of the input
prompt. Natural language queries are tokenized
using the SentencePiece tokenizer from Kudo and
Richardson (2018) based on a 32,000 subword
vocabulary. In total, this results in a size of 220
million parameters. The model is quantized and
deployed in an ONNX runtime, which leads to a
small memory footprint of only 225 MB (ONNX
Runtime developers, 2018). We initialize with
pre-trained FLAN-T5-base (Chung et al., 2022)
model weights, which are obtained from the
huggingface model hub (Wolf et al., 2020).

Datasets. We fine-tune the language model using
the following datasets:

* nvbench. nvbench is the largest dataset avail-
able for the NL2VIS task (Luo et al., 2021a).
In nvbench, text queries are translated into
Vega-Lite JSON specifications. The dataset
contains a large number of 25,750 examples
from 750 data tables in 105 domains.


https://github.com/clause-bielefeld
/VIST5.git

-
@ @ 3 4 ) (6)
i > Prompt > action: create_vegalite Dialog —
Q _’[ Retneval) [ Assemblyj > (aros: "maricr:vpar, ... ) [Management ’ F
Query T T Action Tl — ‘:] D
@ % { } = — ET" V-NLI Application
Few-Shot Dialog Vega-Lite Data -
€ Examples History ~Spec  Frame Action Space

J

Figure 3: VISTS system architecture. An example query interpretation includes the following steps: /) The query
is tokenized and embedded into a neural embedding vector. 2) The retrieval component returns examples relevant to
the query from long-term memory. 3) If similar examples are found, they are included in the prompt along with the
visualization state, table state and dialog history. 4) The prompt is fed into the model, which predicts an action and
arguments for that action. 5) The action is validated by the dialog management component and then executed. 6)
The output of the action is passed on to the frontend, where it leads to an update of the visualization.

e NIv2. The natural instructions dataset is used
for few-shot instruction fine-tuning (Wang
et al., 2022). The model is trained in such a
way that it first sees three similar input/output
examples in the prompt before generating a
response to the current query. This training
objective was explicitly chosen to train the T5
model on cases where few-shot examples are
available in addition to an input. The goal is to
train it to derive a solution (e.g., how to call a
particular function) based on given examples
and then apply it to the input.

Domain-Specific Dialogs. The VISTS sys-
tem is equipped with an online annotation
tool to capture domain-specific utterances and
commands during runtime. We employed it
to collect 300 dialog turns from researchers
exploring the system. This very small dataset
contains contextual queries from the domain
of climate science. It is used as a showcase to
demonstrate how the annotation tool can be
used to adapt the model to a specific domain.

From the above datasets, we use nvbench and the
domain-specific dialogs in their entirety. From
NIv2, we take a random sample of 50k. We then
use an NVIDIA A6000 GPU to fine-tune the lan-
guage model for four hours (one epoch).

3.2 Dialog Management

To manage the dialog, we use two additional com-
ponents. The first is the agent’s short-term memory,
which stores the status of the visualization and the
currently selected data table as well as the most
recent dialog history. The second is a long-term
memory, which is a vector database of domain-
specific few-shot examples.

73

3.2.1 Short Term Memory

The visualization state in our application consists
of the composition of the currently displayed Vega-
Lite chart. This is a JSON object that contains all
the properties of the visualization such as mark and
channel encodings as well as data transformations
like filters or aggregations. The Vega-Lite JSON
object is flattened and converted to a normalized
JSON string (Wes McKinney, 2010). The rable
state consists of a Pandas dataframe (pandas de-
velopment team, 2020), which is serialized as the
header, followed by the first three rows. The dialog
history is stored as a sequence of query/response
pairs.

3.2.2 Long Term Memory

The main task of the long-term memory is to adapt
the application to the context of use, e.g., domain-
specific utterances, libraries, and functions that are
used during the analysis of climate data. This is
realized by storing a list of application-specific
few-shot examples. A few-shot example is an
input-output pair that contains an example user
input and the desired action, as well as the argu-
ments that the model should use to execute that
action. An example to call a function of a do-
main specific library looks like this: INPUT: show
me a heat map of temperature, OUTPUT:
action: create_heat_map; args: "column"”:
"temperature”. During runtime, a Sentence-
Transformer (Reimers and Gurevych, 2019) is used
to encode the input query into a neural embedding
vector. Then, the cosine similarities between the
encoded query vector and all stored encoded few-
shot example vectors are computed. All examples
that exceed a similarity threshold « are kept. We
set « to a similarity value of 0.8. This ensures that



only very relevant examples are returned. Of the
retrieved examples, the top 3 are then passed into
the prompt. If no example exceeds the threshold,
no example is returned and the model must respond
to the input without further assistance based on the
knowledge contained in its weights.

3.2.3 API Orchestration

To manage the different visualization libraries used,
all functionalities (= function names and their argu-
ments in JSON format) are listed in an action space.
The interpretation of a request from perception to
final response is as follows: Upon receiving a user
request, relevant examples are first retrieved from
long-term memory. The prompt is then assembled
from these (potentially) retrieved few-shot exam-
ples, the current visualization state as a Vega-Lite
JSON string, the fable state, and the user input (see
Appendix A for details). Based on this prompt,
the model generates an action and the correspond-
ing arguments. After generation, the control loop
checks to see if the generated action exists in the
action space, and if it does, the function is called
and executed with the specified arguments. The
output of this function is then sent to the frontend,
where it causes a change in the targeted visualiza-
tion display.

3.3 User Interface

The user interface is built in HTML, CSS, and
JavaScript (see Figure 1). The backend, which
serves the website and hosts the language model
for inference, is based on fastAPI (tiangolo, 2023).
Visualization Display. The visualization area con-
sists of a geographic map onto which the climate
data is projected. To create the map the visualiza-
tion library leaflet (leaflet, 2023) is used. Below the
map, a display for Vega-Lite visualizations (Satya-
narayan et al., 2018) is provided. The visualization
is dynamically updated with new visualization spec-
ifications generated by the language model based
on user requests.

Chat Window. On the left side, there is a chat
window that contains the dialog history of the con-
versation. It allows the user to submit requests to
the system and view the exact system responses
including the generated Vega-Lite specs.

Online Annotation Tool. After receiving a re-
sponse, the user can interactively edit the created
Vega-Lite specification if desired. If a customized
Vega-Lite specification is to be used as a training
example in the future, it can also be immediately

74

submitted back to the system in this manner.
Data Display. The Vega-Lite display can be
switched to a data display. It shows an overview of
the selected data set with the column headers of the
data frame, their data types, and the first 1k rows
of the data set.

4 Features

The focus of the system is to provide visualiza-
tions in response to user queries to help users solve
application-specific visualization tasks as defined
by Brehmer and Munzner (2013). In the VISTS5
system, this involves three main tasks: 1) trans-
lating a natural language query into a visualiza-
tion specification, 2) engaging in a domain-specific
analytical conversation by exchanging contextual
queries to gain insight into the data, and 3) cus-
tomizing a visualization specification to meet user
needs. To measure the response quality of the sys-
tem in these tasks, we conducted a user study with
24 participants. It revealed that the system pro-
vided high-quality responses to diverse visualiza-
tion requests, and that the vast majority of few-shot
requests were also successful. Of particular note is
that the users felt really engaged with the system,
as evidenced by the high average number of user
turns per dialog of 11.6. A detailed description of
the study can be found in Appendix B.

4.1 Natural Language Query to Visualization

The Natural Language Query to Visualization
(NL2VIS) task is the most prominent task sup-
ported by the system (Luo et al., 2021a). Given a
query, the system responds with a Vega-Lite speci-
fication that it believes is the best one to help users
answer their question. To demonstrate, consider
the query: "Show me Seattle’s temperature
in 2018 as a line chart”. The query is en-
tered into the dialog interface and sent to the back-
end. Since the model was trained on this task,
there are no few-shot examples stored in long-
term memory for it. As a result, no examples are
added to the prompt. The prompt is then fed to
the model. The model recognizes the NL2VIS
request and generates a create_vegalite ac-
tion with the appropriate arguments "mark":
"line", "encoding_x_field": "date"”,
"encoding_x_type": "temporal”, . The
generated specification is then converted from a
normalized JSON string back to a JSON object,
passed to the front end, and displayed to the user.



4.2 Analytical Conversations

Analytic conversations, consisting of a back-and-
forth of contextual queries and responses, are crit-
ical because, in data exploration, no one knows
where insights will be found until they see the
data. Often, interest in certain aspects of the data
is highly situational, leading to contextual queries.
For example, a user might first query the temper-
ature in Seattle, as in the previous example. Af-
ter viewing the output, the user is interested in
comparing this temperature curve to the city of
New York, which is on the other side of the conti-
nent. In this context, given the initial visualization,
the user might simply ask, "Okay, now add the
temperature in New York to the plot. This
request implies to the model that /) the user wants
to keep the temperature in Seattle in the plot, 2)
the user wants to add the temperature in New York
to the plot, 3) the year of focus is 2018, and 4) it
might be better to color the curves for the two cities
differently, otherwise it will be difficult for the user
to compare the two. Extending a language inter-
face from single-turn interactions, such as NL2VIS
queries, to contextual queries greatly increases its
flexibility, since practical use is always contextual.
Visualization Customization. Since the Vega-
Lite specifications are available to the model in the
prompt, users can also customize data-only visual-
izations by adding titles, labels, changing colors, or
swapping axes on the fly. After completing their ex-
ploration, users may want to share a plot with their
colleagues to discuss an interesting trend in the
temperature curves for New York and Seattle that
they observed during the exploration. To accom-
plish this, a user could give the instruction: "Add
a title to the chart that reads Seattle
vs. New York Temperature 2018". The model
will update the plot, and once received, the user
can share the visualization with a colleague.

Domain-Specific Visualizations. The analysis of
climate data depends heavily on the interpretation
of the measurements in the context of the geograph-
ical location of a weather station. Only when the
characteristics of the environment in terms of alti-
tude, vegetation, and urbanization can be consid-
ered together with the data, reliable conclusions
can be drawn. To this end, we integrate three geo-
specific plot types to expand the range of options
available to climatologists working with VISTS.
For example, we enable marker plots of weather
stations on the leaflet map, giving the user an

75

overview of where weather stations are located.
A second function is the generation of heat maps,
which can be specified by naming the column in
the dataset from which a heat map is to be gener-
ated. An example would be "Show me a heat
map of precipitation”. This is an instruction
that the model has never seen during training, but it
can be solved by seeing a few examples. The third
geospatial map we have integrated following this
paradigm is flow maps to visualize wind directions.
Custom Functionalities. Custom functionalities
are functions that are provided by the application
but usually have to be integrated into the language
interface by hand, otherwise, they are inacces-
sible without training data. Using the few-shot
paradigm, we integrate a function to export plots
and share them with colleagues. Furthermore, it
is possible to change the map type between satel-
lite/dark/street/hybrid, depending on the interest of
the exploration scenario. Finally, it is also possible
to ask the model to update the weather dataset with
fresh data points from the Open Meteo Weather
API (open meteo, 2023). When exploring climate
data on maps, it is particularly helpful to use large
screens. A drawback for the language interface,
in this case, is that typing-based chat is very im-
practical, as it is annoying to switch back and forth
between the keyboard and the screen. We, there-
fore, decided to include a number of voice loco-
motion interactions in the form of few-shot exam-
ples. We use a text-to-speech service based on
the VOSK library (Shmyrev and other contribu-
tors, 2022). Interactions include zoom in/out, move
left/right/up/down, and navigating to a specific lo-
cation by naming it as in "Navigate to the city
of London, please.”. The map adjusts seam-
lessly and exploration can continue hands-free.

5 Conclusion

In this work, we have proposed VISTS5, a system
that demonstrates the adaptation of a V-NLI to an
application domain using online annotation and
few-shot learning techniques. The system performs
a retrieval-augmented dialog by using the external
knowledge contained in few-shot examples to gen-
erate responses to user input. This makes it fast,
modular, and easily adaptable to a user-defined
domain. Unlike large language models, VIST5
focuses on small model size, fast trainability, and
fast inference on commodity hardware to meet the
needs of applications with privacy concerns or lim-



ited computational resources. We hope that the
system will inspire the community to further im-
prove the architecture and create more applications
and datasets for visualization-oriented dialogue to
promote the combination of NLP and visualization
techniques.

Limitations

Compared to very large models such as GPT-4,
PalLM2, or ChatGPT, VISTS’s capabilities are lim-
ited to a much smaller set of tasks. The model is not
a general dialog agent like, e.g., ChatGPT and only
works on tasks for which it has been trained, or if
it is provided with sufficient few-shot examples by
the retrieval mechanism. We see this limitation as
a clear trade-off that the application developer has
to make between the size of the model that can be
used in their application and the model properties
that are needed for the current application.

A second limitation we see is the collision of
similar few-shot examples when the number of
tasks to be integrated via the few-shot paradigm
becomes very large. This can lead to the retrieval
mechanism not always returning the optimal exam-
ples and thus providing the model with incorrect
starting points that reduce the response quality. A
possible compromise here could be to fine-tune the
sentence transformer model on the large set of few-
shot examples to ensure that the optimal examples
are always retrieved.

A third limitation we see is the limitation of the
model to generate complete visualization specifi-
cations only from the Vega-Lite visualization li-
brary. Adding functionality from other visualiza-
tion libraries such as D3.js or Observable Plot is
possible via the few-shot paradigm, but the longer
the visualization specifications to be generated, the
more error-prone the few-shot approach becomes
for small models such as T5-base (e.g., large Vega-
Lite specifications can contain more than a hundred
properties). We see three approaches as promising
directions for the future: 1) visualization specifica-
tions for general plots, e.g. bar charts, are speci-
fied in a library-independent way and can then be
parsed from the general specification into the re-
spective library, 2) methods for integrating code
documentation of specific libraries into the prompt
and making it usable so that even small language
models can benefit from it need to be explored, 3)
for large plot specifications of specific visualization
libraries, training data needs to be generated either

76

by humans or (depending on quality requirements)
by larger models, e.g. GPT-4.

Ethics Statement

The nvbench and NIv2 datasets, as well as the
T5 and FLAN-T5 models, are available for re-
search and non-commercial use. We explicitly
state that the intended use of our model is to as-
sist researchers and domain experts in their data
exploration procedures by allowing them to eas-
ily generate visualizations from natural language
descriptions. The reliability of the generated vi-
sualizations and their one-to-one correspondence
with the underlying data set must always be verified
by the user of the VISTS system. The language
model generates visualizations based on the input
query and the information contained in the prompt,
within its capabilities. During generation, misin-
terpretations or misapplied data transformations
may occur, leading to incorrect results. Therefore,
we encourage users not to take the results gener-
ated by the model for granted, but to verify the
generation process by always double-checking the
specifications provided in the chat window for the
generated visualizations and making sure that they
make sense in the current context given the query
and dataset at hand.

Acknowledgments

This work was supported by the Carl Zeiss Foun-
dation in the context of the "A Virtual Workshop
for Digitization in the Sciences" and "Interactive
Inference" projects.

References

Robert Amar, James Eagan, and John Stasko. 2005.
Low-level components of analytic activity in infor-
mation visualization. In IEEE Symposium on Infor-
mation Visualization, 2005. INFOVIS 2005., pages
111-117. IEEE.

Matthew Brehmer and Tamara Munzner. 2013. A multi-
level typology of abstract visualization tasks. /EEE
transactions on visualization and computer graphics,
19(12):2376-2385.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.



Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. Multiwoz—a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Mackinlay Card. 1999. Readings in information visual-
ization: using vision to think. Morgan Kaufmann.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Kedar Dhamdhere, Kevin S McCurley, Ralfi Nahmias,
Mukund Sundararajan, and Qiqi Yan. 2017. Analyza:
Exploring data with conversation. In Proceedings
of the 22nd International Conference on Intelligent
User Interfaces, pages 493-504.

Siwei Fu, Kai Xiong, Xiaodong Ge, Siliang Tang,
Wei Chen, and Yingcai Wu. 2020. Quda: natural
language queries for visual data analytics. arXiv
preprint arXiv:2005.03257.

Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu,
and Karrie G Karahalios. 2015. Datatone: Managing
ambiguity in natural language interfaces for data vi-
sualization. In Proceedings of the 28th annual acm
symposium on user interface software & technology,
pages 489-500.

Marti Hearst, Melanie Tory, and Vidya Setlur. 2019. To-
ward interface defaults for vague modifiers in natural
language interfaces for visual analysis. In 2019 IEEE
Visualization Conference (VIS), pages 21-25. IEEE.

Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac
Dykeman. 2017. Applying pragmatics principles for
interaction with visual analytics. IEEE transactions
on visualization and computer graphics, 24(1):309—
318.

Jan-Frederik Kassel and Michael Rohs. 2018. Valletto:
A multimodal interface for ubiquitous visual analyt-
ics. In Extended Abstracts of the 2018 CHI Confer-

ence on Human Factors in Computing Systems, pages
1-6.

Young-Ho Kim, Bongshin Lee, Arjun Srinivasan, and
Eun Kyoung Choe. 2021. Data@ hand: Fostering
visual exploration of personal data on smartphones
leveraging speech and touch interaction. In Proceed-
ings of the 2021 CHI Conference on Human Factors
in Computing Systems, pages 1-17.

77

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

leaflet. 2023. Leaflet/leaflet.

Can Liu, Yun Han, Ruike Jiang, and Xiaoru Yuan. 2021.
Advisor: Automatic visualization answer for natural-
language question on tabular data. In 2021 IEEE 14th
Pacific Visualization Symposium (PacificVis), pages
11-20. IEEE.

Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018.
Deepeye: Towards automatic data visualization. In
2018 IEEE 34th international conference on data
engineering (ICDE), pages 101-112. IEEE.

Yuyu Luo, Jiawei Tang, and Guoliang Li. 2021a.
nvbench: A large-scale synthesized dataset for cross-
domain natural language to visualization task. arXiv
preprint arXiv:2112.12926.

Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang,
Chengliang Chai, and Xuedi Qin. 2021b. Natural lan-
guage to visualization by neural machine translation.
IEEE Transactions on Visualization and Computer
Graphics, 28(1):217-226.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Gen-
erating data visualisations via natural language us-
ing chatgpt, codex and gpt-3 large language models.
arXiv preprint arXiv:2302.02094.

Arpit Narechania, Arjun Srinivasan, and John Stasko.
2020. Nl4dv: A toolkit for generating analytic speci-
fications for data visualization from natural language
queries. IEEE Transactions on Visualization and
Computer Graphics, 27(2):369-379.

ONNX Runtime developers. 2018. ONNX Runtime.
https://onnxruntime.ai.

open meteo. 2023. open-meteo/open-meteo.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

The pandas development team. 2020.
dev/pandas: Pandas.

pandas-

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and
Zhouhan Lin. 2022. Rasat: Integrating relational
structures into pretrained seq2seq model for text-to-
sql. arXiv preprint arXiv:2205.06983.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.


https://github.com/Leaflet/Leaflet
https://onnxruntime.ai
https://onnxruntime.ai
https://github.com/open-meteo/open-meteo
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
CoRR, abs/1908.10084.

Arvind Satyanarayan, Dominik Moritz, Kanit Wong-
suphasawat, and Jeffrey Heer. 2018. Vega-lite: A
grammar of interactive graphics. IEEE Transactions
on Visualization and Computer Graphics, 23:341—
350.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093.

Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich
Gossweiler, and Angel X Chang. 2016. Eviza: A
natural language interface for visual analysis. In
Proceedings of the 29th annual symposium on user
interface software and technology, pages 365-377.

Vidya Setlur, Melanie Tory, and Alex Djalali. 2019. In-
ferencing underspecified natural language utterances
in visual analysis. In Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces,
pages 40-51.

Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang,
Xuming Hu, Xiongshuai Zhang, Zhiwei Tai, and Jian-
min Wang. 2021. Towards natural language inter-
faces for data visualization: A survey. arXiv preprint
arXiv:2109.03506.

Nickolay V. Shmyrev and other contributors. 2022.
Vosk Speech Recognition Toolkit: Offline speech
recognition API for An- droid, iOS, Raspberry Pi
and servers with Python, Java, C and Node. https:
//github.com/alphacep/vosk-api.

Arjun Srinivasan, Bongshin Lee, Nathalie Henry Riche,
Steven M Drucker, and Ken Hinckley. 2020a. Incho-
rus: Designing consistent multimodal interactions
for data visualization on tablet devices. In Proceed-
ings of the 2020 CHI conference on human factors in
computing systems, pages 1-13.

Arjun Srinivasan, Bongshin Lee, and John Stasko.
2020b. Interweaving multimodal interaction with
flexible unit visualizations for data exploration. /IEEE
Transactions on Visualization and Computer Graph-

ics, 27(8):3519-3533.

Arjun Srinivasan, Nikhila Nyapathy, Bongshin Lee,
Steven M Drucker, and John Stasko. 2021. Collect-
ing and characterizing natural language utterances
for specifying data visualizations. In Proceedings
of the 2021 CHI Conference on Human Factors in
Computing Systems, pages 1-10.

Arjun Srinivasan and John Stasko. 2017. Orko: Facili-
tating multimodal interaction for visual exploration
and analysis of networks. IEEE transactions on visu-
alization and computer graphics, 24(1):511-521.

78

Yiwen Sun, Jason Leigh, Andrew Johnson, and Sangy-
oon Lee. 2010. Articulate: A semi-automated model
for translating natural language queries into meaning-
ful visualizations. In Smart Graphics: 10th Interna-
tional Symposium on Smart Graphics, Banff, Canada,
June 24-26, 2010 Proceedings 10, pages 184—195.
Springer.

tiangolo. 2023. tiangolo/fastapi.

Henrik Voigt, Ozge Alagcam, Monique Meuschke, Kai
Lawonn, and Sina Zarrie3. 2022. The why and the
how: A survey on natural language interaction in
visualization. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 348-374.

Henrik Voigt, Monique Meuschke, Kai Lawonn, and
Sina Zarrief3. 2021. Challenges in designing natu-
ral language interfaces for complex visual models.
In Proceedings of the First Workshop on Bridging
Human—Computer Interaction and Natural Language
Processing, pages 66—73.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. arXiv preprint arXiv:1911.04942.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Super-naturalinstructions:generalization via declara-
tive instructions on 1600+ tasks. In EMNLP.

Wes McKinney. 2010. Data Structures for Statistical
Computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 56 — 61.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Kanit Wongsuphasawat, Dominik Moritz, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2015. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. /[EEE
transactions on visualization and computer graphics,

22(1):649-658.

Kanit Wongsuphasawat, Dominik Moritz, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2016. Towards a general-purpose query language
for visualization recommendation. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics,
pages 1-6.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,


http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://github.com/alphacep/vosk-api
https://github.com/alphacep/vosk-api
https://github.com/tiangolo/fastapi
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a

et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Bowen Yu and Cldudio T Silva. 2019. Flowsense: A
natural language interface for visual data exploration
within a dataflow system. IEEE transactions on visu-
alization and computer graphics, 26(1):1-11.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Sujia Zhu, Guodao Sun, Qi Jiang, Meng Zha, and
Ronghua Liang. 2020. A survey on automatic in-
fographics and visualization recommendations. Vis.
Informatics, 4:24-40.

79



A Prompt Design

The prompt is assembled as a sequence of the visu-
alization state and the table state. Below that we
put the dialog history, followed by a new line sig-
naling the new input guery. After the input query,
relevant examples from long-term memory are dis-
played. A visual summary of the prompt design
can be seen in Figure 4.

Visualization State:

"mark": "bar", "encoding_x_field": "city",
"encoding_y_aggregate": "mean", "encoding_y_field":
"encoding_y_type": "quantitative"

"encoding_x_type": "nominal",
"temperature",

Table State:

table_name : northern_european_cities

col : date (object) | temperature (float6u) | radiation (floatéu) ...
row_0 : 2003-02-16 | -3.5 | 4.34 ...

Conversation History:

INPUT: Hello

OUTPUT: action: text_response; args: "text": "Hi, how can I help?"

INPUT: show me a bar chart of the mean temperature per city

OUTPUT: action: create_vegalite; args: "mark": "bar", "encoding_x_field": "city",

NEW INPUT: change the map type to hybrid please

Here are some examples:
INPUT: change the leaflet map type to street
OUTPUT: action: change_map; args: "type": "street"
P

INPUT: change map type to satellite
OUTPUT: action: change_map; args: "type":
P

INPUT: turn the leaflet map theme to dark
OUTPUT: action: change_map; args: "type": "dark"

"satellite"

Figure 4: Example prompt of the VISTS language
model. Blue: The visualization state contains the stringi-
fied Vega-Lite specification. Black: The table state con-
tains a stringified version of the column header and the
first three rows of the Pandas data frame of the currently
used dataset. Green: The conversation history contains
up to eight previous turns in the dialog. Red: The new
input field contains the current user query. Purple: The
examples section contains up to three possible retrieved
few-shot examples from long-term memory. Orange:
The word OUTPUT is the last word entered into the model,
signaling the start of the generation process. The subse-
quent action and arguments are possible outputs to be
generated by the model given the preceding prompt.

B Evaluation

We evaluated the system by conducting an active
user study engaging 24 users with the VISTS
dialog assistant. The user study was conducted
with people of academic background (58.3% male,
37.5% female, 4.2% prefer not to say). 8.4% of
the participants are in NLP, 54.2% are in Visualiza-
tion, 20.8% are in climate science, and 16.6% are
people from other fields subsumed under ’Others’.
62.5% of the participants were between the ages
of 20 and 30, 29.2% were between 30 and 40, and
8.3% were between 40 and 50. 29.2% had less than
three years of experience in their domain, 37.5%
between three and five years, and 33.3% more than
five years.

80

B.1 Method

The main goal of our study was to find out:

1. The quality of the answers given by the system
with respect to the different types of queries
in the NL2VIS task.

2. The system’s response quality on few-shot
tasks.

We put participants into a task-oriented dialog sit-
uation. Users were given the option to choose
from a set of seven different climate data sets. To
generate goals for users to achieve with the sys-
tem, we generate visualization tasks from the pool
of common low-level visualization tasks specified
by Amar et al. (2005): : characterize distribu-
tion, compute derived value, correlate, determine
range, filter, find extremum, find anomalies, clus-
ter, retrieve value, sort. Every user is randomly
assigned two of those tasks. A low-level visual-
ization task is presented to the user as a general
instruction, e.g., to filter the dataset according to a
certain condition. The user must then try to solve
the task by interacting with the chatbot. Further,
every participant was assigned one few-shot task
from the pool of few-shot categories: custom visu-
alization, custom functionality, locomotion which
each is comprised of several few-shot tasks, but we
are mainly interested in the response quality per
category. The custom visualizations that can be
created are marker plots, heat maps, flow visual-
izations. Custom functions to be invoked include
exporting visualizations, changing map style, and
updating the dataset. Locomotion few shot tasks
include zooming in/out, moving left/right/up/down,
and navigating to a city of choice. To solve a task,
a user can ask as many questions as necessary. Dur-
ing the interaction, users are prompted to rate the
quality of each response from the chatbot on a Lik-
ert scale from 1 (poor) to 5 (very good), i.e. how
appropriate the response was given the query. In
addition, users are asked to provide textual feed-
back on what they consider to be particularly good
or bad answers. This helps us understand these ex-
treme cases better in hindsight and learn from them.
Before the study began, users were shown a video
of a short sample conversation (less than 10 turns)
between a user and the chatbot, explaining how to
rate responses and where to provide feedback.
Once all tasks have been completed, we allow
the participants to explore the system freely in an



(4]

N

w

N

thluhil

9 |
358 483 311 478 364 4.3 4.5 321 429 4.5
172 041 176 067 139 149 122 155 0.76 1

Figure 5: Results of the user evaluation on the ten low-
level tasks of Amar et al. (2005): a) characterize the
distribution, b) compute a derived value, c) correlate,
d) determine range, e) filter, f) find extremum, g) find
anomalies, h) cluster, i) retrieve value, j) sort. The mean
is provided in the first row of the table below, std in the
second.

unbounded way. The unconstrained interaction
helps us get additional feedback for a broader hori-
zon of uses that we may not have thought of be-
fore. This feedback is interesting for guiding future
work.

B.2 Results

All in all, we collected a set of 279 dialog turns
from the users during the study. The average di-
alog has a number of 11.6 user turns, which is
higher than the average number of user turns in
current task-oriented dialog datasets such as Multi-
WOZ (Budzianowski et al., 2018).
NL2VIS Tasks. The results on the low-level visu-
alization tasks are shown in Figure 5. The mean
Likert score across all tasks is 3.82. The standard
deviation across all tasks is 1.53. The mean for
each task is shown in the first row of the table in
Figure 5, and the standard deviation is shown in the
second row. We can see that the mean score for the
tasks compute derived value, determine range, find
extremum, find anomalies, retrieve value and sort is
very high, with an average value above 4. This tells
us that the system provides high-quality responses
for these subsets of low-level visualization tasks.
Tasks like characterize distribution, correlate,
filter and cluster have an average value above 3,
but also show a larger standard deviation. This
shows that for these tasks the response quality
varies more between appropriate and inappropri-
ate responses, but the tendency is towards positive
responses. Overall, the system does not perform
below average on any of the tasks.
Few-Shot Tasks. The results on the few-shot tasks
are shown in Figure 6. The average rating over all

81

o

IS

w

N

-

3.11 4.5 4.62
1.85 0.76 1.06

Figure 6: Results of the user evaluation on the three few-
shot task categories: k) custom functionality, 1) custom
visualization, m) locomotion. The mean is provided in
the first row of the table below, std in the second.

tasks is 3.77. The standard deviation over all tasks
is 1.65. The mean for each task is shown in the first
row of the table in Figure 6, and the standard devi-
ation is shown in the second row. We can see that
the means for the custom visualization task and the
locomotion task are very high with values above
4. This shows that the system had no problems
finding out how to create custom visualizations on
the leaflet map and navigating it based on a few
examples. The mean scores for the custom func-
tionality task are above 3 and show higher standard
deviations, indicating that the response quality is
more variable for this few-shot category. We found
a possible explanation for this in the vulnerability
of the few-shot paradigm to typos. In particular,
typos when changing the map type or selecting
column names cause problems because the system
usually passes the arguments as they are given in
the input to the function, which then leads to errors
in execution. The integration of a spell checker
or the use of system-initiated check questions in
case of uncertainty are possible levers for future
improvements in this respect.

Overall, the system always scores above the
mean of 3 for all tasks. This shows that, on average,
users found the responses to be helpful. However,
it also shows that while the system performed well
on the majority of responses, it did not perform
optimally on all inputs.



