
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 930–942
May 2-6, 2023 ©2023 Association for Computational Linguistics

Generative Replay Inspired by Hippocampal Memory Indexing
for Continual Language Learning

Aru Maekawa1, Hidetaka Kamigaito1,2, Kotaro Funakoshi1, Manabu Okumura1

1Tokyo Institute of Technology, 2Nara Institute of Science and Technology
{maekawa, kamigaito, funakoshi, oku}@lr.pi.titech.ac.jp

kamigaito.h@is.naist.jp

Abstract

Continual learning aims to accumulate knowl-
edge to solve new tasks without catastrophic
forgetting for previously learned tasks. Re-
search on continual learning has led to the de-
velopment of generative replay, which prevents
catastrophic forgetting by generating pseudo-
samples for previous tasks and learning them
together with new tasks. Inspired by the bi-
ological brain, we propose the hippocampal
memory indexing to enhance the generative re-
play by controlling sample generation using
compressed features of previous training sam-
ples. It enables the generation of a specific
training sample from previous tasks, thus im-
proving the balance and quality of generated
replay samples. Experimental results indicate
that our method effectively controls the sam-
ple generation and consistently outperforms the
performance of current generative replay meth-
ods.1

1 Introduction

Humans and intelligent animals continually acquire
new knowledge and skills throughout their life-
time. This ability, called continual learning (CL)
or lifelong learning, is a fundamental requirement
for human-like general intelligence (Parisi et al.,
2019). CL is also crucial for practical applications,
as new data and tasks to train models appear every
day in the real world. It is especially important
for natural language processing (NLP) systems, in
which vocabulary and language usage change over
time. However, most neural network based mod-
els are trained with a static dataset. When learning
different tasks sequentially, performance on the pre-
viously learned tasks tends to significantly degrade,
referred to as catastrophic forgetting (McCloskey
and Cohen, 1989). Learning new tasks without
catastrophic forgetting has been a long-standing
challenge in machine learning and neural networks.

1The source code is available at https://github.
com/arumaekawa/GR-HMI.

Replay is an approach to alleviate catastrophic
forgetting by retraining with previous tasks’ data
when training a new task. Although replay-based
methods are effective in most CL scenarios, it is
necessary to retain training data for all previous
tasks, which may cause problems with storage re-
quirements and data privacy. Therefore, generative
replay was developed (Shin et al., 2017), which
uses pseudo-samples generated from generation
models instead of real samples. In the NLP do-
main, LAMOL (Sun et al., 2020a) was proposed as
a generative replay framework, where a single lan-
guage model simultaneously learns to solve tasks
and to generate pseudo-samples (Fig. 1a).

Although the generative replay does not require
any previous task’s data, it typically underperforms
actual sample replay because of the balance and
quality problems in sample generation. Regarding
the balance problem, generation models tend to
generate a large number of samples for recently
learned tasks, that results in forgetting older tasks.
This is due to the difficulty in controlling sample
generation and catastrophic forgetting occurring
in generation models. Regarding the quality prob-
lem, generative replay methods commonly assume
to generate even unseen samples which is not in-
cluded in the past training datasets. However, since
generating such unseen samples is more difficult
than generating previously trained samples, it may
cause the degradation of the quality of replay sam-
ples. To prevent the catastrophic forgetting, it is
sufficient to generate only previously learned sam-
ples.

To address these issues, we refer to the mem-
ory retrieval mechanism in the biological brain that
achieves CL. According to the hippocampal in-
dexing theory (Teyler and Rudy, 2007), the hip-
pocampus encodes memory engrams for new neo-
cortical activity patterns and uses them as memory
indexes to recall past experiences. Inspired by this
hippocampal mechanism, we propose hippocam-

930

mailto:maekawa@lr.pi.titech.ac.jp
mailto:kamigaito@lr.pi.titech.ac.jp
mailto:funakoshi@lr.pi.titech.ac.jp
mailto:oku@lr.pi.titech.ac.jp
mailto:kamigaito.h@is.naist.jp
https://github.com/arumaekawa/GR-HMI
https://github.com/arumaekawa/GR-HMI

[GEN] Context Question Answer[ANS]

[EOS]

GPT-2

Answer

[GEN] Context Question Answer[ANS]

[EOS]

GPT-2

Context Question Answer[ANS]

[CLS] Context Question

BERT

h

c h'
encode (PQ) decode (PQ)

store retrieve[GEN] Context Question Answer[ANS]

[EOS]

GPT-2

Answer

[GEN] Context Question Answer[ANS]

[EOS]

GPT-2

Context Question Answer[ANS]

LM

(b) HMI-LAMOL(a) LAMOL
QA QA

LM

 M1 M2 Mi

・・・

 Hippocampus Module

Figure 1: (a) is the overview of the LAMOL framework. The top is the learning QA to solve tasks and the bottom is
the learning LM to generate pseudo-samples. (b) is the proposed HMI implemented on LAMOL. We introduce a
hippocampus module illustrated on the left.

pal memory indexing (HMI) for improving gener-
ative reply. To remember training samples with a
small data usage, we introduce a hippocampus mod-
ule that encodes training samples into compressed
memory engrams using BERT (Devlin et al., 2019)
and product quantization (PQ) (Jégou et al., 2011),
and stores them to generate conditioned samples
during the replay step (Fig. 1b). This method
makes it possible to generate specific training sam-
ples from previously learned tasks.

We evaluated HMI on two different CL scenarios
using the original LAMOL as a baseline. The first
scenario is a sequence of different types of tasks,
for which we used five natural language understand-
ing (NLU) tasks from DecaNLP (McCann et al.,
2018). The other scenario is a sequence of different
domains in the same task, for which we used five
text classification datasets and single-pass setting,
which is considered as an ideal scenario for CL.
The results indicate that HMI consistently outper-
forms LAMOL and improves robustness to training
task order and amount of replay samples. We also
investigated the balance of previously learned tasks
in generated samples and found that HMI enables
the generation of even old task samples, which indi-
cates the controllability of sample generation with
HMI. Furthermore, we explored the potential of
further improvement of HMI with different sample
selection strategies for replay.

2 Related Work

CL, which involves learning from a stream of tasks
without catastrophic forgetting, is a long-standing
issue in machine learning. In the NLP, CL has been
studied for diverse tasks, for example, word and

sentence representations (Xu et al., 2018; Liu et al.,
2019), sentiment analysis (Chen et al., 2015; Xia
et al., 2017), composition language learning (Li
et al., 2020b), relation learning (Han et al., 2020),
dialogue systems (Lee, 2017; Madotto et al., 2021),
text classification, and question-answering (QA)
(de Masson d'Autume et al., 2019; Wang et al.,
2020).

Regularization-based methods aim to constrain
changes in model parameters important for previ-
ous tasks. Various methods have been proposed to
estimate the importance of each parameter. For ex-
ample, elastic weight consolidation (EWC) (Kirk-
patrick et al., 2017) uses the Fisher information
matrix. Synaptic intelligence (SI) (Zenke et al.,
2017) estimates importance from the contribution
to loss changes. Memory-aware synapses (MAS)
(Aljundi et al., 2018) computes the sensitivity of
parameters on the basis of the gradient of model
outputs.

Architecture-based methods dynamically change
the network structure to assign model parameters
for each task. Progressive neural networks (PNN)
(Rusu et al., 2016) freeze the current parameters
and add a new column of the network when train-
ing a new task. Instead of extending the network,
PackNet (Mallya and Lazebnik, 2018) applies net-
work pruning using dynamic filters to separate the
neurons used for each task.

Replay-based methods mitigate catastrophic for-
getting by retraining for previous tasks when train-
ing for a new one. MbPA++ (de Masson d'Autume
et al., 2019) introduces an episodic memory that
stores real samples of previous tasks to use for ex-
perience replay and local adaptation. Meta-MbPA

931

(Wang et al., 2020) applies a meta-learning algo-
rithm to improve MbPA++. To enhance the replay-
based methods with a limited amount of samples,
Wang et al. (2020) and Huang et al. (2021) also in-
vestigated effective selection strategies other than
random sampling. Instead of keeping real samples
for replay, Shin et al. (2017) proposed generative
replay, which trains a model to generate pseudo-
samples. Sun et al. (2020a) proposed LAMOL as a
generative replay method for NLP tasks. LAMOL
uses GPT-2 (Radford et al., 2019) to simultane-
ously learn a variety of NLP tasks and pseudo-
sample generation. L2KD (Chuang et al., 2020)
and DnR (Sun et al., 2020b) use knowledge dis-
tillation to extend LAMOL. MFK-LAMOL (Choi
and Kang, 2021) makes replay more efficient by
using more forgotten pseudo-samples in genera-
tive replay. Rational-LAMOL (Kanwatchara et al.,
2021) uses critical freezing guided by supervised
or unsupervised rationale. RVAE-LAMOL (Wang
et al., 2022) enhances LAMOL by mapping differ-
ent tasks into a limited unified feature space.

Current generative replay methods have prob-
lems on the balance and quality of generated sam-
ples. To address these issues, we propose a sample-
generation control with the HMI method, inspired
by the biological brain. In contrast to the previous
work, our approach prevents low quality samples by
using the assumption that a model generates only
previously learned samples. HMI also achieves
balanced sample generation by strong sample-level
conditioning rather than task-level conditioning.
Although our HMI can be applied to most of the
existing generative replay methods, similar to other
recent work, we build HMI upon LAMOL, which
is a simple generative replay baseline for CL in
NLP and whose implementation code is available.

3 LAMOL: Language Modeling for
Lifelong Language Learning

Before describing HMI, we briefly explain
LAMOL (Sun et al., 2020a), on which we propose
our HMI, in this section.

LAMOL is a generative replay framework using
a single GPT-2 to solve different types of NLP
tasks and generate pseudo-samples. In LAMOL, all
training samples are fed into GPT-2 as a sequence
of context, question, and answer. As illustrated
at the top of Figure 1a, GPT-2 learns each task in
a QA manner, predicting the answer part on the
basis of the given context and question. As well

as training QA, GPT-2 learns language modeling
(LM) to generate the whole sequence of the context,
question, and answer, as illustrated at the bottom of
Figure 1a. During the training step, the parameters
of GPT-2, θGPT-2, are optimized to minimize the
QA loss LQA and the LM loss LLM together as
L = LQA + λLLM, where λ is a hyperparameter.

When training for a new task, LAMOL generates
pseudo-samples for previous tasks to use for replay.
Assume a stream of tasks {T1, T2, . . . TT } to train
a model with LAMOL, where the number of tasks
T may be unknown. Before training a new task Ti
(i > 1), GPT-2 generates pseudo-samples by top-k
sampling from the first token [GEN]. The number
of pseudo-samples is γ|Ti|, where γ is the sampling
ratio and |Ti| is the number of training samples in
Ti. Defective samples, which do not have a unique
[ANS] token that indicates the start position of the
answer, are discarded, and the others are mixed
with Ti to alleviate forgetting for T<i in training.

When using the same [GEN] for all tasks, the
ratio for old tasks in the generated samples de-
creases exponentially in theory (Sun et al., 2020a).
Therefore, Sun et al. (2020a) proposed to replace
[GEN] with a task-specific token [TASK] (e.g.,
"__sst__") to control GPT-2 to generate pseudo-
samples belonging to the specific task. In the be-
ginning of training for Ti, γ

i−1 |Ti| pseudo-samples
for each previous task, T1, . . . , Ti−1, are generated
using the corresponding task-specific token.

4 Hippocampal Memory Indexing (HMI)

In this section, we introduce our Hippocampal
Memory Indexing (HMI) that can suppress the
problems of unbalanced and low-quality genera-
tion in the replay by accessing compressed features
for previous training samples.

4.1 Overview

HMI is implemented as a module that works on
LAMOL. Figure 1b shows the overview of our
HMI on LAMOL. The training process of HMI on
LAMOL is as follows.
1. The hippocampus module encodes each train-
ing sample into a feature vector representation with
a BERT encoder (§ 4.2.1).
2. Product Quantization (PQ) compresses the
encoded feature as a memory engram in a hip-
pocampal memory for future replay (§ 4.2.2).
To prevent increasing the size of the hippocam-
pal memory, we apply memory pruning at the end

932

of training for each task (§ 4.2.3).
3. The memory engrams are used to condition the
generation by GPT-2 to generate the correspond-
ing samples (§ 4.3). This allows us to control the
task balance in replay samples and generate only
previously learned samples of higher quality.

We describe the hippocampus module, which en-
codes and stores memory engrams for each training
sample, in § 4.2 and explain generation control with
HMI in § 4.3. Finally, we explain the pre-training
for HMI in § 4.4.

4.2 Hippocampus Module

The hippocampus module is a memory component
that stores memory engrams, compressed represen-
tations of training samples in previously learned
tasks. During replay, the module retrieves stored
memory engrams and provides them for GPT-2 to
generate the corresponding previous samples. In
this section, we describe the encoding of a memory
engram from each training sample and the pruning
of the hippocampal memory in the module.

4.2.1 Memory Engram Encoding
A memory engram is created from the context and
question part of each training sample. Each se-
quence consisting of the context and question is
first encoded to a fixed-sized vector representation
with the BERT encoder. Similar to BERT, we use a
special classification token [CLS] in the beginning
of an input sequence to obtain a sample-level em-
bedding h[CLS] ∈ RH , where H is the embedding
dimension in BERT. It is further converted to a d-
dimensional feature vector h = WEh[CLS] ∈ Rd,
where WE ∈ Rd×H is a weight matrix. Note that,
during CL, the encoder parameters {ϕBERT,WE}
are frozen to prevent the features from drifting,
which degrades the controllability of HMI.

4.2.2 Feature Quantization
A feature vector h ∈ Rd is then quantized to re-
duce the data size of the hippocampal memory. In
the beginning of training a new task, we train a
quantization model on encoded feature vectors for
all training samples in the new task and all feature
vectors currently stored in the hippocampal mem-
ory. We use PQ (Jégou et al., 2011), which has a
lower reconstruction error than a simple quantiza-
tion model that uses only k-means. PQ first divides
a d-dimensional h into S sub-vectors, each of di-
mension d/S. It then creates a codebook by com-
puting N centroids for each S partitions with the

GPT-2

+ +

++

+

+

hEmb

Position

Word ...

...

...
hEmb

hMem,1

hMem,2

hMem,L

...

h

(a) Self-Attention

(b) Embedding

WD

WM

Figure 2: Feature-vector injection to GPT-2. (a) Self-
Attention: hMem,l is fed into the l-th self-attention layer
and used as an additional key and value. (b) Embedding:
hEmb is added to word and position embeddings.

k-means algorithm. Using this codebook, each h is
quantized to S integer indices c ∈ {0, . . . , 255}S
and stored in the hippocampal memory as a mem-
ory engram.

4.2.3 Memory Pruning
It is inefficient to keep memory engrams of all
training samples in each previously learned task,
which may cause a scalability problem with the
data size for an increased number of tasks. Thus,
we set the maximum number of stored memory
engrams Mmax. When learning the i-th task Ti, the
memory engrams of all training samples in Ti are
first appended to the hippocampus module as the
i-th task hippocampal memory Mi. After updating
the codebook of the PQ model, every hippocampal
memory {M1,M2, . . .Mi} is reduced to satisfy
|Mj | ≤ Mmax

i for 1 ≤ j ≤ i by randomly selecting
memory engrams to keep from Mj . Therefore, we
can keep the total number of memory engrams at
most Mmax regardless of the number of tasks.

4.3 Sample Generation with Hippocampal
Memory Indexing

To condition the sample generation, we feed the
memory engram of each training sample into GPT-
2. We use two schemes, each of which is based
on embedding and self-attention layers (Li et al.,
2020a; Fang et al., 2021), as described as follows
and illustrated in Figure 2.

Embedding Layer In GPT-2, the embedding rep-
resentation of the t-th token in an input sequence
is the sum of the word embedding h

(t)
WE ∈ RH and

position embedding h
(t)
PE ∈ RH , where H is the

933

embedding dimension in GPT-2. The feature vec-
tor h is added to it, so the new embedding vector is
h
(t)
Emb = h

(t)
WE +h

(t)
PE +WDh, where WD ∈ RH×d

is a weight matrix.

Self-Attention Layer The feature vector h is
used as an additional key and value in each
self-attention layer. It is first projected into
an LH-dimensional vector with a weight matrix
WM ∈ RLH×d. It is then divided into L vectors
[hMem,1, . . . ,hMem,L] and converted to a key and
value in each self-attention layer.

We apply the feature-vector injection to the train-
ing, replay, and inference steps. During the training
step, a quantized memory engram c, encoded from
a training sample in the hippocampus module, is
decoded back into a feature vector h′ and given to
GPT-2 to condition the generation for both the QA
and LM. It reduces the effect of quantization errors
between training and generation to use h′ rather
than the BERT encoder outputting h directly. Dur-
ing the replay step, when training for the i-th task
Ti (i > 1), we randomly select γ

i−1 |Ti| memory
engrams from the hippocampal memory for each
previous task, M1, . . . ,Mi−1, and provide them for
GPT-2 to generate the corresponding past training
samples by greedy decoding.

In inference, GPT-2 generates the answer part
on the basis of the given context and question with
injected h encoded from the context and question
of a test sample.

4.4 Pre-training

The memory engrams encoded in the hippocam-
pus module should contain enough information to
reconstruct the corresponding samples with GPT-
2. However, a naive [CLS] token embedding of
BERT and a linear projection with randomly initial-
ized WE are considered insufficient. In addition,
the GPT-2 side uses the connections with WD and
WM, which are initialized randomly, so it may
make CL unstable, especially for initial tasks.

To address these issues, we introduce a pre-
training of the BERT encoder and GPT-2 as an
autoencoder (AE) using an unlabeled text corpus.
In the pre-training, the BERT encoder learns to
encode each input text into a single feature vec-
tor, and GPT-2 learns to reconstruct the original
input from the feature vector. Note that we do not
apply the quantization model to the pre-training.
This is because it is not necessary to store feature
vectors, since we do not consider the replay of

the pre-training data, and this also allows the en-
coder parameters {ϕBERT,WE} to be optimized
through gradient descent. With this pre-training,
the model encodes well-informed memory engrams
and achieves their conditional generation with GPT-
2 from the beginning of CL.

Along with the AE, GPT-2 simultaneously learns
the LM in this pre-training. This is to prevent GPT-
2 from losing the knowledge of the LM that GPT-2
originally has by training the AE. Therefore, we
optimize the sum of the AE loss and the LM loss
L = LAE + LLM, and obtain the initial model pa-
rameters {ϕBERT,WE,θGPT-2,WD,WM} for CL.
The effect of the pre-training are given in Ap-
pendix A.

5 Experiments

5.1 General Settings

Tasks, Datasets, and Metrics To evaluate the
effectiveness of HMI for CL on different types of
tasks, we first evaluated it on a scenario of select-
ing five NLU tasks from decaNLP (McCann et al.,
2018), following the settings of Sun et al. (2020a):
QA (SQuAD), semantic parsing (WikiSQL), senti-
ment analysis (SST), semantic role labeling (QA-
SRL), and goal-oriented dialogue (WOZ).

To evaluate it on another CL scenario, we used
five text classification tasks from diverse domains:
news classification (AGNews), sentiment analysis
(Yelp, Amazon), Wikipedia article classification
(DBPedia), and QA categorization (Yahoo). We
followed the settings of de Masson d'Autume et al.
(2019) to use the balanced version datasets2 and ap-
plied the single-pass setting, where a model trains
with each dataset for only one epoch.

Each dataset has the corresponding evaluation
metric ranging from 0 to 100%. More details of
tasks and datasets are given in Appendix B.1.

Compared Methods We compared the following
methods:
- LAMOL This is the baseline generative replay
method, without HMI. GPT-2 generates pseudo-
samples by top-k sampling with k = 20 given only
first tokens [GEN]/[TASK].
- HMI-LAMOL Our HMI implemented on
LAMOL. We evaluated the effectiveness of HMI
by comparing it to LAMOL.

2We used the random sampled subsets released by Sun
et al. (2020a).

934

- Real Samples Replay samples in HMI-LAMOL
are replaced with actual training samples corre-
sponding to the given memory engrams. This is
considered as the upper bound of HMI-LAMOL in
terms of the quality of generated samples.
- Multitask All tasks are simultaneously trained
with GPT-2. Note that GPT-2 optimizes only the
QA loss. Since future tasks are not accessible in
CL, this is often regarded as the upper bound.

Implementation We implemented the above
methods on the basis of the official implementation
of LAMOL.3 We also re-implemented LAMOL to
use [GEN]/[TASK] for learning the QA as well as
learning the LM to make training fast and improve
performance by unifying input format. We used
the smallest pre-trained GPT-24 as the language
model for all methods and the smallest pre-trained
BERT5 for the encoder of the hippocampus module
in HMI-LAMOL.

Hyper-parameters For all methods, we fol-
lowed the settings in Sun et al. (2020a): We set
λ = 0.25 for the weight of the LM loss and applied
greedy decoding during inference. We trained the
models for nine epochs for each NLU task and for
only one epoch for each text classification task. For
HMI-LAMOL, we set the maximum size of the
hippocampal memory Mmax to 10,000. We also set
the dimension d of the feature vector h to 768, the
same as the embedding dimension in BERT and
GPT-2. We set the number of partitions S = 16 and
the number of centroids N = 256 for the feature
quantization. All the results in our experiments
were the average over two runs (seed = 42, 43).
More details of the experimental settings are given
in Appendix C.

For the pre-training in HMI-LAMOL (§ 4.4), we
used 1,070,272 text lines from the Wiki-40B (Guo
et al., 2020) test set as training data. We trained
the model with them for three epochs to obtain the
initial model parameters for CL.

5.2 Evaluations

5.2.1 Five Different NLU Tasks
Settings We trained each model on the five NLU
tasks in either descending/ascending order in ac-
cordance with the number of training samples.

3https://github.com/jojotenya/LAMOL
4https://huggingface.co/gpt2
5https://huggingface.co/

bert-base-uncased

Replay sample ratio (γ) 0.01 0.05 0.2

Large to small: (SQuAD → WikiSQL → SST → QA-SRL → WOZ)

LAMOLGEN (Sun et al., 2020a)* - 69.6 73.1
LAMOLTASK (Sun et al., 2020a)* - 71.5 74.3
LAMOLGEN 69.1 74.1 75.5
LAMOLTASK 67.9 74.4 76.2

HMI-LAMOLGEN 72.7 75.3 76.4
HMI-LAMOLTASK 72.6 75.2 76.6

HMI-LAMOLGEN + Real samples 73.9 76.4 78.0
HMI-LAMOLTASK + Real samples 73.7 76.4 77.6

Small to large: (WOZ → QA-SRL → SST → WikiSQL → SQuAD)

LAMOLGEN (Sun et al., 2020a)* - 63.2 73.0
LAMOLTASK (Sun et al., 2020a)* - 75.3 76.9
LAMOLGEN 57.7 59.3 72.9
LAMOLTASK 58.2 60.5 76.4

HMI-LAMOLGEN 67.1 76.5 77.3
HMI-LAMOLTASK 70.8 75.5 77.5

HMI-LAMOLGEN + Real samples 75.5 78.0 78.9
HMI-LAMOLTASK + Real samples 75.0 78.0 79.2

Multitask 77.2

Table 1: Experimental results on the five NLU tasks in
two different orders. * indicates the reported score by
Sun et al. (2020a).

We evaluated it with and without task-specific to-
kens, and with three different replay sample ratios
γ ∈ {0.01, 0.05, 0.2}. We obtained the perfor-
mance of CL as the average score on the five tasks
at the end of training streams.

Results Table 1 shows the results. The results
indicate that HMI-LAMOL outperformed LAMOL
in all cases, that is, in both two task orders and all
γ. HMI-LAMOL with the best resulting setting,
in ascending order and γ = 0.2, even beat multi-
task. HMI-LAMOL also reduced the performance
gap between the two task orders. Although the per-
formance of LAMOL degraded when the value of
γ decreased, HMI-LAMOL mitigated the perfor-
mance degradation of LAMOL. As expected, even
when using the same [GEN] token, HMI-LAMOL
typically performed as well as using task-specific
tokens because it includes their role as well. How-
ever, there is also a performance gap from replacing
generated samples with real samples. This indi-
cates that HMI-LAMOL could be further improved
by developing a better model for conditional gener-
ation.

935

https://github.com/jojotenya/LAMOL
https://huggingface.co/gpt2
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

γ Methods (i) (ii) (iii) (iv) Avg. Std.

0.01
LAMOLTASK 42.9 49.6 61.7 62.4 54.2 8.3

HMI-LAMOLTASK 68.2 68.9 67.6 69.4 68.5 0.7
+ Real samples 70.2 71.7 70.1 71.0 70.8 0.7

0.05
LAMOLTASK 61.2 66.2 63.8 63.4 63.7 1.8

HMI-LAMOLTASK 70.9 71.7 71.1 71.1 71.2 0.3
+ Real samples 72.7 73.2 73.3 73.1 73.1 0.2

0.2
LAMOLTASK 71.0 71.9 68.0 71.4 70.6 1.5

HMI-LAMOLTASK 72.2 72.6 72.3 71.8 72.2 0.3
+ Real samples 74.9 73.9 75.6 75.5 75.0 0.7

- Multitask 72.7

Table 2: Experimental results on the five text classifica-
tion tasks. (i)–(iv) denote four random task orders. Avg.
and Std. respectively represent average and standard
deviation for the four orders.

5.2.2 Five Text Classification Tasks
Settings We applied the single-pass setting,
which is considered to make it difficult for HMI-
LAMOL to memorize training samples.6 We tried
the three different γ as in the previous experiments
(§ 5.2.1). We used the task-specific tokens for all
methods except multitask learning. Following pre-
vious studies (de Masson d'Autume et al., 2019;
Sun et al., 2020a), we report our results for four
random task orders. The four orders are shown in
Appendix B.2.

Results As shown in Table 2, HMI-LAMOL im-
proved upon LAMOL also in this scenario. For
all γ, the p-value of the paired t-test between the
results on the four task orders of LAMOL and HMI-
LAMOL was smaller than 1%. In particular, the
performance gains were larger for smaller γ. More-
over, HMI-LAMOL had smaller standard devia-
tions for the four task orders, which indicates that
it is robust to the task training order of CL.

5.2.3 Sample Selection Strategies
Although HMI can control sample generation at
the sample level as well as at the task level, in
the previous experiments, we randomly selected
memory engrams to use for the sample generation
for each replay step. In this section, we compare
the following three selection strategies with the
random selection:
- Nearest K-means Inspired by previous studies
on real samples replay (Wang et al., 2020; Huang
et al., 2021), we compute k-means centroids of all
memory engrams in the hippocampal memory for
each task, where k is the number of generated re-

6Results in the multiple-pass setting are shown in Ap-
pendix D.

Methods
NLU tasks Text classification tasks

desc asc (i) (ii) (iii) (iv)

Random 72.9 69.7 68.7 67.4 67.4 68.4
Nearest K-means 73.1 69.1 69.0 68.6 67.0 69.0
Loss Difference 71.8 65.5 62.4 66.2 67.4 68.0
Low Perplexity 71.8 59.3 67.8 63.7 64.9 68.6

Table 3: Results of HMI-LAMOL with different selec-
tion strategies for generating samples.

play samples for each task, and choose the nearest
memory engram for each centroid. This strategy
can be used to include more diverse samples in
replay than the random selection.
- Loss Difference We select samples with a larger
loss difference between before and after training
Lbefore − Lafter. The samples selected through this
process are considered more effective for model
training.
- Low Perplexity To ensure the quality of generated
samples, we use memory engrams for the samples
with low perplexity of the model after training.

In order to simplify the comparison of the se-
lection strategies, we do not apply the memory
pruning (§ 4.2.3) and select samples from all pre-
viously learned samples. We also set the small
γ = 0.01, where the difference in the selection
strategy is more likely to affect CL performance.
We tried all task orders for both CL scenarios with
the task-specific tokens.

Results Table 3 shows the results. We first find
that the selection strategies clearly affected the final
performance of CL. This indicates that the control
of the sample generation with HMI-LAMOL also
works at the sample level as well as at the task level.
This further indicates that HMI-LAMOL has the
potential to improve performance when we can use
a better selection strategy.

The results indicate that nearest k-means had
stably good performance. However, we did not
observe a clear advantage compared with random
selection. This might be because even random
selection can also include a sufficient number of
varied samples. In contrast with these strategies
focusing on the diversity of generated samples, the
other two strategies, which are based on a single
measure, such as loss difference or perplexity, did
not perform well and lacked stability. After observ-
ing generated samples with these strategies, we
discovered a serious bias in the generated samples:
the selection based on the loss difference included
more samples from a single class in the text classifi-

936

 0% 50% 100%

LAMOLGEN, = 0.01
LAMOLTASK, = 0.01

HMI-LAMOLGEN, = 0.01
HMI-LAMOLTASK, = 0.01

LAMOLGEN, = 0.05
LAMOLTASK, = 0.05

HMI-LAMOLGEN, = 0.05
HMI-LAMOLTASK, = 0.05

LAMOLGEN, = 0.2
LAMOLTASK, = 0.2

HMI-LAMOLGEN, = 0.2
HMI-LAMOLTASK, = 0.2

SQuAD [WikiSQL]

 0% 50% 100%

SQuAD WikiSQL [SST]

 0% 50% 100%

SQuAD WikiSQL SST [SRL]

 0% 50% 100%

SQuAD WikiSQL SST SRL [WOZ]

 0% 50% 100%

LAMOLGEN, = 0.01
LAMOLTASK, = 0.01

HMI-LAMOLGEN, = 0.01
HMI-LAMOLTASK, = 0.01

LAMOLGEN, = 0.05
LAMOLTASK, = 0.05

HMI-LAMOLGEN, = 0.05
HMI-LAMOLTASK, = 0.05

LAMOLGEN, = 0.2
LAMOLTASK, = 0.2

HMI-LAMOLGEN, = 0.2
HMI-LAMOLTASK, = 0.2

WOZ [SRL]

 0% 50% 100%

WOZ SRL [SST]

 0% 50% 100%

WOZ SRL SST [WikiSQL]

 0% 50% 100%

WOZ SRL SST WikiSQL [SQuAD]

SQuAD WikiSQL SST SRL WOZ defect

Figure 3: Task balance in replay samples generated with LAMOL and HMI-LAMOL in the experiments of the NLU
tasks. Each graph shows the results of generated replay samples when training for each new task denoted with [].

cation task; generated samples selected on the basis
of the perplexity tended to be of high quality but
short in length and easy to predict. In conclusion,
our experiments demonstrated that the diversity of
the generated samples contributes to CL perfor-
mance, which is consistent with the recent findings
on real samples replay Wang et al. (2020); Huang
et al. (2021).

6 Analysis

6.1 Balance of Replay Samples

To validate the controllability in sample generation
in HMI-LAMOL, we investigated the balance of
each task in the replay samples generated in the
experiments on the five NLU tasks, described in
§ 5.2.1. To classify the replay samples, we used
the BERT classifier model trained with the same
training data as the experiments of CL.

Figure 3 shows the portion of each task in the
generated replay samples for each replay step in the
CL experiments. We first find that LAMOL gen-
erated many samples from more recently learned
tasks rather than from older tasks. It became
more evident in the smaller γ, which is consis-
tent with the performance trend in CL. Although
task-specific tokens alleviate this problem to some
extent, when γ = 0.01, almost all of the gener-
ated samples were from the most recently learned
task in all replay steps. These results indicate that
the task-specific tokens are insufficient to tie the

NLU tasks Text classification tasks

raw text 103,329 KB 340,200 KB
+ gzip 10,879 KB 106,914 KB

no compression 263,553 KB 862,500 KB
+ PQ 3,129 KB 9,368 KB
+ PQ, Pruning 540 KB 540 KB

Table 4: Storage requirements for the hippocampal
memory after training the last task in our two CL ex-
periments. raw text indicates the size of ASCII text file
containing all real samples, and the next line is the size
after gzip compression. no compression means the case
of keeping all samples as real-valued vectors.

generated samples to each task.
However, HMI-LAMOL successfully controls

the sample generation for each previous task. In
contrast to LAMOL, it enables the generation of
samples for older tasks even with the small γ.

6.2 Effect of Memory Compression

HMI uses the feature quantization (§ 4.2.2) and
the memory pruning (§ 4.2.3) to reduce the extra
storage space required to store memory engrams.
Table 4 shows the storage requirements for HMI
with and without the two compression methods. It
also shows the storage requirements when keeping
real samples as raw text file and when applying
gzip compression.

When keeping real-valued vectors without the
feature quantization, HMI requires even more stor-

937

age space than when keeping real samples. How-
ever, after applying the quantization, each memory
engram is compressed to 16 bytes, which is 96x
smaller than real-valued vectors and suppressed
much less than keeping real samples. Note that
the numbers in Table 4 include the PQ codebook,
which is 384 KB in size. In addition, the mem-
ory pruning reduces it to fixed 540 KB, which the
storage requirements will never exceed even if the
number of tasks or training samples increase.

7 Conclusion

We proposed hippocampal memory indexing
(HMI), inspired by the biological brain, that con-
trols generative replay by conditioning sample gen-
eration with compressed representations of previ-
ous training samples. Experimental results indi-
cated that HMI successfully controls the sample
generation of generative replay and consistently im-
proves the CL performance and robustness. HMI is
expected to be further improved by exploring better
selection strategies for generating samples.

Limitations

First, in contrast to most existing generative re-
play approaches, HMI needs extra data space to
store features of previous training samples for the
sample generation control, while these features are
compressed to quantization indices, which require
smaller storage space, and their total number is
limited to at most Mmax by the memory pruning.

Second, there is still a performance gap between
the replay of generated samples and real samples in
HMI. This indicates that it is difficult to completely
reconstruct previously learned samples from mem-
ory engrams.

Third, although HMI can control the generated
samples for replay, there is room for further in-
vestigation into the selection strategies better than
the random selection. In addition, we tried only
random selection and did not further investigate
the selection methods for samples in the memory
pruning, which can be also explored in future work.

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-

seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 139–154.

Zhiyuan Chen, Nianzu Ma, and Bing Liu. 2015. Life-
long learning for sentiment classification. In Pro-
ceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 750–
756, Beijing, China. Association for Computational
Linguistics.

Heejeong Choi and Pilsung Kang. 2021. Lifelong lan-
guage learning with the most forgotten knowledge.
IEEE Access, 9:57941–57948.

Yung-Sung Chuang, Shang-Yu Su, and Yun-Nung Chen.
2020. Lifelong language knowledge distillation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2914–2924, Online. Association for Computa-
tional Linguistics.

Cyprien de Masson d'Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Ad-
vances in Neural Information Processing Systems,
volume 32, pages 13122–13131. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen
Dong, and Changyou Chen. 2021. Transformer-
based conditional variational autoencoder for
controllable story generation. arXiv preprint
arXiv:2101.00828.

Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami
Al-Rfou. 2020. Wiki-40B: Multilingual language
model dataset. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 2440–
2452, Marseille, France. European Language Re-
sources Association.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu,
Peng Li, Maosong Sun, and Jie Zhou. 2020. Contin-
ual relation learning via episodic memory activation
and reconsolidation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6429–6440, Online. Association
for Computational Linguistics.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang,
and Diyi Yang. 2021. Continual learning for text clas-
sification with information disentanglement based
regularization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 2736–2746, Online. As-
sociation for Computational Linguistics.

938

https://doi.org/10.3115/v1/P15-2123
https://doi.org/10.3115/v1/P15-2123
https://doi.org/10.1109/ACCESS.2021.3071787
https://doi.org/10.1109/ACCESS.2021.3071787
https://doi.org/10.18653/v1/2020.emnlp-main.233
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2020.lrec-1.297
https://aclanthology.org/2020.lrec-1.297
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218

Herve Jégou, Matthijs Douze, and Cordelia Schmid.
2011. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(1):117–128.

Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat
Lertvittayakumjorn, Boonserm Kijsirikul, and Peer-
apon Vateekul. 2021. Rational LAMOL: A rationale-
based lifelong learning framework. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2942–2953, Online.
Association for Computational Linguistics.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526.

Sungjin Lee. 2017. Toward continual learning for con-
versational agents. CoRR, abs/1712.09943.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun
Li, Yizhe Zhang, and Jianfeng Gao. 2020a. Optimus:
Organizing sentences via pre-trained modeling of a
latent space. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4678–4699, Online. Association
for Computational Linguistics.

Yuanpeng Li, Liang Zhao, Kenneth Church, and Mo-
hamed Elhoseiny. 2020b. Compositional language
continual learning. In International Conference on
Learning Representations.

Tianlin Liu, Lyle Ungar, and João Sedoc. 2019. Contin-
ual learning for sentence representations using con-
ceptors. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3274–3279, Minneapolis, Minnesota. Association for
Computational Linguistics.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu-
njoon Cho, Pascale Fung, and Zhiguang Wang. 2021.
Continual learning in task-oriented dialogue systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7452–7467, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 7765–7773.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning
and Motivation, 24:109–165.

German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter. 2019. Continual
lifelong learning with neural networks: A review.
Neural Networks, 113:54–71.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. In Advances in Neural Information Process-
ing Systems, volume 30, pages 2990–2999. Curran
Associates, Inc.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee.
2020a. Lamol: Language moodeling is for lifelong
language learning. In International Conference on
Learning Representations.

Jingyuan Sun, Shaonan Wang, Jiajun Zhang, and
Chengqing Zong. 2020b. Distill and replay for con-
tinual language learning. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 3569–3579, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Timothy J Teyler and Jerry W Rudy. 2007. The hip-
pocampal indexing theory and episodic memory: up-
dating the index. Hippocampus, 17(12):1158–1169.

Han Wang, Ruiliu Fu, Xuejun Zhang, and Jun Zhou.
2022. Rvae-lamol: Residual variational autoencoder
to enhance lifelong language learning. arXiv preprint
arXiv:2205.10857, abs/2205.10857.

Zirui Wang, Sanket Vaibhav Mehta, Barnabas Poczos,
and Jaime Carbonell. 2020. Efficient meta lifelong-
learning with limited memory. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 535–548,
Online. Association for Computational Linguistics.

Rui Xia, Jie Jiang, and Huihui He. 2017. Distantly
supervised lifelong learning for large-scale social
media sentiment analysis. IEEE Transactions on
Affective Computing, 8(4):480–491.

939

https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.18653/v1/2021.acl-long.229
https://doi.org/10.18653/v1/2021.acl-long.229
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
http://arxiv.org/abs/1712.09943
http://arxiv.org/abs/1712.09943
https://doi.org/10.18653/v1/2020.emnlp-main.378
https://doi.org/10.18653/v1/2020.emnlp-main.378
https://doi.org/10.18653/v1/2020.emnlp-main.378
https://openreview.net/forum?id=rklnDgHtDS
https://openreview.net/forum?id=rklnDgHtDS
https://doi.org/10.18653/v1/N19-1331
https://doi.org/10.18653/v1/N19-1331
https://doi.org/10.18653/v1/N19-1331
https://doi.org/10.18653/v1/2021.emnlp-main.590
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://openreview.net/forum?id=Skgxcn4YDS
https://openreview.net/forum?id=Skgxcn4YDS
https://doi.org/10.18653/v1/2020.coling-main.318
https://doi.org/10.18653/v1/2020.coling-main.318
https://doi.org/10.48550/ARXIV.2205.10857
https://doi.org/10.48550/ARXIV.2205.10857
https://doi.org/10.18653/v1/2020.emnlp-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.39
https://doi.org/10.1109/TAFFC.2017.2771234
https://doi.org/10.1109/TAFFC.2017.2771234
https://doi.org/10.1109/TAFFC.2017.2771234

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2018.
Lifelong domain word embedding via meta-learning.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18,
pages 4510–4516. International Joint Conferences on
Artificial Intelligence Organization.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intel-
ligence. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 3987–
3995. PMLR.

940

https://doi.org/10.24963/ijcai.2018/627
https://proceedings.mlr.press/v70/zenke17a.html
https://proceedings.mlr.press/v70/zenke17a.html

Methods Pre-training
NLU tasks Text classification tasks
desc asc (i) (ii) (iii) (iv)

LAMOL
– 76.2 76.4 71.0 71.9 68.0 71.4
LLM 75.8 76.5 70.0 72.4 71.5 71.7

HMI-LAMOL
LAE 76.2 77.2 71.8 72.3 72.2 71.4
LAE + LLM 76.6 77.5 72.2 72.6 72.3 71.8

Table 5: Results of CL experiments with γ = 0.2 and
using task-specific tokens for the different pre-training
tasks.

A Effect of Pre-training

As described in § 4.4, we applied the LM loss as
well as the AE loss to the pre-training in HMI.
Table 5 shows the CL performance of LAMOL and
HMI-LAMOL for the different pre-training tasks.

The results show that HMI-LAMOL pre-trained
with LM, outperformed HMI-LAMOL, pre-trained
only with AE, for all task settings, which indi-
cates pre-training LM is effective in HMI-LAMOL.
Whereas, it is difficult to say that the pre-training
LM is also effective in LAMOL, and the perfor-
mance of LAMOL, pre-trained with LM, was still
lower than HMI-LAMOL. Therefore, the gain of
HMI is not only due to the pre-training.

B Tasks and Orderings

B.1 Details of Datasets

Following previous studies, we used five NLU tasks
and five text classification tasks for our experiments.
Table 6 contains a summary of the datasets, their
size, metrics, and examples of the SQuAD-like QA
scheme in decaNLP (McCann et al., 2018).

B.2 Ordering for Text Classification Tasks

For text classification tasks, we consider four ran-
dom permutation orders, which mirror those in a
previous study (de Masson d'Autume et al., 2019):
(i) Yelp→AGNews→DBPedia→Amazon→Yahoo,
(ii) DBPedia→Yahoo→AGNews→Amazon→Yelp,
(iii) Yelp→Yahoo→Amazon→DBpedia→AGNews,
(iv) AGNews→Yelp→Amazon→Yahoo→DBpedia.

C Details of Experiment Settings

We used a single Tesla V100 for all experiments.
We implemented all methods with half-precision
number (16-bit float). All experiments were aver-
aged over two runs with seed = 42, 43. A sum-
mary of the training hyperparameter settings, fol-
lowing the settings in the official implementation
of LAMOL,3 are listed in Table 7. More details of

the implementation can be found in our released
experimental source code.1

D Five Text Classification Tasks with
Multiple-pass Setting

In our experiments with the five text classification
tasks (§ 5.2.2), we evaluated our HMI in the single-
pass setting, which is considered as an ideal setting
for CL and where HMI is more difficult to mem-
orize training samples. In this section, we also
present the performance of HMI when training for
each task for nine epochs, the same setting as in
previous work.

Table 8 shows the results of LAMOL and HMI-
LAMOL, which use task-specific tokens and γ =
0.2, and other current methods. The results indicate
that HMI-LAMOL also consistently outperformed
LAMOL in this setting and narrows the gap with
the replay of real samples. Note that although Meta-
MbPA also has a good performance, MbPA++ and
Meta-MbPA cannot be directly compared to other
methods because of using real samples.

941

Task Dataset Context Question Answer # of Train # of Test Metric

Question
Answering SQuAD Albert Einstein lived in a flat

at the Kramgasse 49, ...
Where is Albert
Einstein live? The Kramgasse 49 87,599 10,570 nF1

Semantic
Parsing WikiSQL The table has columns club, ...

Which club was founded ... ?
What is the translation
from English to SQL?

SELECT player from
table WHERE ... 56,355 15,878 lfEM

Sentiment
Analysis SST It’s a very valuable film... Is this review

negative or positive? positive 6,920 1,821 EM

Semantic Role
Labeling QA-SRL The trilogy was released on

vinyl by ipecac recordings.
What was released

on something? The trilogy 6,414 2,201 nF1

Goal-oriented
Dialogue WOZ I am looking for African food What is the

change in state? food: African; 2,536 1,646 dsEM

Text
Classification

AGNews Smart phone market
growing ...

Is this sentence
World, ... ? Sci/Tech

115,000 7,600 EM

Yelp Nothing special, your
typical buffet food. ...

Is this sentence
very negative, ... ? negative

Amazon One of the worst
comercials ...

Is this sentence
very negative, ... ? very negative

DBPedia Rubyville Elementary
School ...

Is this sentence
Company, ... ? EducationalInstitution

Yahoo What should I do, I
cant quit smoking? ...

Is this sentence
Society & Culture, ... ? Health

Table 6: Summary of datasets, size, metrics, and example of conversion to dacaNLP format of all tasks.

Hyperparameter Value

optimizer Adam
epsilon of Adam 1.0× 10−4

learning rate 6.25× 10−5

learning rate schedule warm-up linear
warm-up ratio 0.005
weight decay 0.01
max gradient norm 1.0

Table 7: Training hyperparameters in our experiments.

Methods (i) (ii) (iii) (iv) Avg.

MbPA++ (de Masson d'Autume et al., 2019) 70.8 70.9 70.2 70.7 70.6
MbPA++ (Wang et al., 2020) 75.3 74.6 75.6 75.5 75.3
Meta-MbPA (Wang et al., 2020) 77.9 76.7 77.3 77.6 77.3

LAMOL (Sun et al., 2020a) 76.7 77.2 76.1 76.1 76.5
DnR (Sun et al., 2020b) 77.4 77.2 77.1 76.9 77.2

LAMOL 76.6 76.8 76.8 76.8 76.8
HMI-LAMOL 77.5 77.5 77.8 77.3 77.5
HMI-LAMOL + Real samples 77.5 77.5 78.0 78.0 77.7

Table 8: Results on five text classification tasks in the
multiple-pass setting. LAMOL and HMI-LAMOL were
evaluated with our implementation (bottom three rows),
and the other scores are obtained from each paper.

942

