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Abstract

To produce accurate predictions, language mod-
els (LMs) must balance between generalization
and memorization. Yet, little is known about
the mechanism by which transformer LMs em-
ploy their memorization capacity. When does
a model decide to output a memorized phrase,
and how is this phrase then retrieved from mem-
ory? In this work, we offer the first methodolog-
ical framework for probing and characterizing
recall of memorized sequences in transformer
LMs. First, we lay out criteria for detecting
model inputs that trigger memory recall, and
propose idioms as inputs that typically fulfill
these criteria. Next, we construct a dataset of
English idioms and use it to compare model
behavior on memorized vs. non-memorized
inputs. Specifically, we analyze the internal
prediction construction process by interpreting
the model’s hidden representations as a gradual
refinement of the output probability distribu-
tion. We find that across different model sizes
and architectures, memorized predictions are a
two-step process: early layers promote the pre-
dicted token to the top of the output distribution,
and upper layers increase model confidence.
This suggests that memorized information is
stored and retrieved in the early layers of the
network. Last, we demonstrate the utility of
our methodology beyond idioms in memorized
factual statements. Overall, our work makes a
first step towards understanding memory recall,
and provides a methodological basis for future
studies of transformer memorization.1

1 Introduction

Transformer language models (LMs) memorize in-
stances from their training data (Carlini et al., 2021;
Zhang et al., 2021b), and evidence is building that
such memorization is an important precondition for
their predictive abilities (Lee et al., 2022; Feldman,

∗ Now at Google Research.
1Our code and data are available at https://github.

com/adihaviv/idiomem/.

2020; Feldman and Zhang, 2020; Raunak et al.,
2021; Raunak and Menezes, 2022). Still, it is un-
known when models decide to output memorized
sequences, and how these sequences are being re-
trieved internally from memory. Current methods
for analyzing memorization (Feldman and Zhang,
2020; Zhang et al., 2021b; Carlini et al., 2022)
use definitions that are based on models perfor-
mance, which changes between models and often
also between training runs. Moreover, these meth-
ods study memorization behavior in terms of the
model’s “black-box” behavior rather than deriving
a behavioral profile of memory recall itself.

Our first contributions are to provide a definition
and construct a dataset that allows probing memo-
rization recall in LMs. We define a set of criteria
for identifying memorized sequences that does not
depend on model behavior:2 sequences that have
a single plausible completion that is independent
of context and can be inferred only given the entire
sequence. We show that many idioms (e.g., “play
it by ear”) fulfill these conditions, allowing us to
probe and analyze memorization behavior. Fur-
thermore, we construct a dataset of such English
idioms, dubbed IDIOMEM, and release it publicly
for the research community.

Next, to analyze memory recall behavior, we
compare the construction process of predictions
that involve memory recall with those that do not.
To this end, given a LM, we create two sets of mem-
orized and non-memorized idioms from IDIOMEM

(Fig. 1, A). We then adopt a view of the transformer
inference pass as a gradual refinement of the output
probability distribution (Geva et al., 2021; Elhage
et al., 2021). Concretely, the token representation
at any layer is interpreted as a “hidden” probabil-

2Literature often purports to “define memorization”, result-
ing in a multitude of technical definitions with subtle differ-
ences, although we would expect this concept to be consistent
and intuitive. Thus, instead of explicitly defining “memoriza-
tion”, we will define sufficient criteria for detecting memo-
rized instances.
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Figure 1: Our methodological framework for probing and analyzing memorized predictions of a given LM: (A) we
create two sets of memorized (mem-idiom) and non-memorized (non-mem-idiom) idioms by probing the LM with
instances from IDIOMEM, (B) for each instance, we extract hidden features of the prediction computation – the
rank and probability of the predicted token across layers, and (C) we compare the prediction process of memorized
idioms versus non-memorized idioms and short sequences from Wikipedia (wiki). Memorized predictions exhibit
two characteristic phases: candidate promotion and confidence-boosting.

ity distribution over the output vocabulary (Geva
et al., 2022) (Fig. 1, B). This interpretation allows
tracking the prediction across layers in the evolving
distribution. We find a clear difference in model be-
havior between memorized and non-memorized
predictions (Fig. 1, C). This difference persists
across different transformer architectures and sizes:
retrieval from memory happens in two distinct
phases, corresponding to distinct roles of the trans-
former parameters and layers: (1) candidate promo-
tion of memorized predictions’ rank in the hidden
distribution in the first layers, and (2) confidence
boosting where, in the last few layers, the predic-
tion’s probability grows substantially faster than
before. This is unlike non-memorized predictions,
where the two phases are less pronounced and of-
ten indistinct. We further confirm these phases of
memorized predictions through intervention in the
network’s FFN sublayers, which have been shown
to play an important role in the prediction construc-
tion process (Geva et al., 2022; Mickus et al., 2022).
Concretely, zeroing-out hidden FFN neurons in
early layers deteriorate memory-recall, while inter-
vention in upper layers does not affect it.

Last, we show our findings extend to types of
memory recall beyond idioms by applying our
method to factual statements from the LAMA-
UHN dataset (Poerner et al., 2020) (e.g. “The
native language of Jean Marais is French”). For
factual statements that were completed correctly
by the LM, we observe the same two phases as in
memorized idioms, further indicating their connec-
tion to memory recall.

To summarize, we construct a novel dataset of
idioms, usable for probing LM memorization irre-
spective of the model architecture or training pa-
rameterization. We then design a probing method-
ology that extracts carefully-devised features of the
internal inference procedure in transformers. By ap-
plying our methodology and using our new dataset,
we discover a profile that characterizes memory
recall, across transformer LMs and types of mem-
orized instances. Our released dataset, probing
framework, and findings open the door for future
work on transformer memorization, to ultimately
demystify the internals of neural memory in LMs.

2 Criteria for Detecting Memory Recall

To study memory recall, we require a set of inputs
that trigger this process. Prior work on memoriza-
tion focused on detecting instances whose inclu-
sion in the training data has a specific influence
on model behavior, such as increased accuracy on
those instances (Feldman and Zhang, 2020; Ma-
gar and Schwartz, 2022; Carlini et al., 2022, 2021,
2019). As a result, memorized instances differ
across models and training parameterization. Our
goal is instead to find a stable dataset of sequences
that correctly predicting their completion indicates
memorization recall. This will greatly reduce the
overhead of studying memorization and facilitate
useful comparisons across models and studies.

To build such a dataset, we start by defining
a general set of criteria that are predicates on se-
quence features, entirely independent of the LM
being probed. Given a textual sequence of n words,
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we call the first n − 1 words the prompt and the
nth word the target. We focus on the task of pre-
dicting the target given the prompt, i.e., predicting
the last word in a sequence given its prefix.3 Such
predictions can be based on either generalization
or memorization, and we are interested in isolat-
ing memorized cases to study model behavior on
them. Particularly, we are looking for sequences
for which success in this task implies memorization
recall.

We argue that the following criteria are sufficient
for detecting such memorized sequences:
1. Single target, independent of context: We

require that the target is the only correct contin-
uation, regardless of the textual context where
the prompt is placed.4

2. Irreducible prompt: The target is the single
correct completion only if the entire prompt is
given exactly. Changing or removing parts from
the prompt would make the correct target non-
unique.

Claim 2.1. Assume a sequence fulfills the above
criteria. Then, if a LM correctly predicts the tar-
get, it is highly likely that this prediction involves
memory recall.

Justification. First, observe that most natural-
language prompts have many possible continua-
tions. For example consider the sentence “to get
there fast, you can take this ____”. Likely con-
tinuations include “route”, “highway”, “road”,

“train”, “plane”, “advice”, inter alia. Note that
there are several divergent interpretations or con-
texts for the prompt, and for each, language offers
many different ways to express similar meaning.

A prediction that is a product of generalization
— i.e., it is derived from context and knowledge
of language — always has plausible alternatives,
depending on the context and stylistic choice of
words. Hence, the relationship between the entire
prompt and the target, where the target is the single
correct continuation, is something that needs to be
memorized rather than derived via generalization.
A LM that predicts the single correct continuation
either memorized this relationship, or used “cues”
from the prompt that happen to provide indica-
tion towards the correct continuation. To illustrate
the latter, consider the sequence “it’s raining cats

3In cases where tokenization divides the target to sub-
tokens, our task becomes predicting the target’s first token.

4We assume that contexts are naturally-occurring and not
adversarial.

and ____” which has a single correct continuation,
“dogs”, but a LM might predict it without observing
this sequence during training, due to the seman-
tic proximity of “cats” and “dogs”. Our second
criterion excludes such cases by requiring that the
correct continuation is only likely given the entire
sequence.

Therefore, a LM that correctly completes a se-
quence that fulfills both criteria, is likely to have
recalled it from memory.

In the next section, we argue that idioms are a
special case of such sequences, and are thus useful
for studying memorization (§3).

3 The Utility of Idioms for Studying
Memorization

An idiom is a group of words with a meaning that
is not deducible from the meanings of its individual
words. For example, consider the phrase “play it
by ear” — there is a disconnect between its non-
sensical literal meaning (to play something by a
human-body organ called ‘ear’) and its intended
idiomatic meaning (to improvise).

A key observation is that idioms often satisfy our
criteria (§2), and therefore can probe memoriza-
tion. First, by definition, idioms are expected to
be non-compositional (Dankers et al., 2022). They
are special “hard-coded” phrases that carry a spe-
cific meaning. As a result, their prompts each have
a single correct continuation, regardless of their
context (criterion 1). For example, consider the
prompt “crying over spilt ____” — a generaliz-
ing prediction would predict that this slot may be
filled by any spillable item, like wine, water or
juice, while a memorized prediction will retrieve
only milk in this context. Notably, while this is an
empirical characterization of many idioms, there
might be exceptions, e.g., contexts that are adver-
sarially chosen to change the completion. Second,
many idioms are “irreducible”, for example the
sub-sequences “crying over” or “over spilt” by
themselves have but scant connection to the word

“milk”.
Still, not all idioms fulfill the criteria. For exam-

ple, even when the idiom is far from literal, its con-
stituents sometimes strongly indicate the correct
continuation, such as with the case of “it’s raining
cats and ____” (as explained in §2). To construct
a dataset of memorization-probing sequences, we
will carefully curate a set of English idioms and
filter out ones that do not fulfill our criteria.
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Source # of Idioms Idiom Length (words)

MAGPIE 590 4.5± 0.9
LIDIOMS 149 5.1± 1.2
EF 97 5.6± 1.9
EPIE 76 4.4± 0.7

Total (unique) 814 4.7± 1.8

Table 1: Statistics per data source in IDIOMEM.

3.1 The IDIOMEM Dataset

We begin with existing datasets of English idioms:
MAGPIE (Haagsma et al., 2020),5 EPIE (Saxena
and Paul, 2020), and the English subset of LID-
IOMS (Moussallem et al., 2018). We enrich this
collection with idioms scraped from the website
“Education First” (EF).6 We then split each idiom
into a prompt containing all but the last word, and
a target that is the last word. Next, we filter out
idioms that do not comply with our criteria (§2) or
whose target can be predicted from their prompt
based on spurious correlations rather than memo-
rization. To this end, we use three simple rules:
• Short idioms. We observe that prompts of id-

ioms with just a few words often have multiple
plausible continuations, that are not necessar-
ily the idiom’s target, violating our first crite-
rion. For example, the prompt “break a ____”
has many possible continuations (e.g. “win-
dow”, “promise”, and “heart”) in addition to its
idiomatic continuation “leg”. To exclude such
cases, we filter out idioms with < 4 words.

• Idioms whose target is commonly predicted
from the prompt’s subsequence. We filter such
cases to ensure the prompt fulfills our second
criterion (prompt irreducibility).
To detect these cases, we use an ensemble of
pretrained LMs: GPT2M, ROBERTA-BASE

(Liu et al., 2019), T5-BASE (Kale and Ras-
togi, 2020) and ELECTRA-BASE-GENERATOR

(Clark et al., 2020), and check for each model if
there is an n-gram (1 ≤ n ≤ 4) in the prompt
from which the model predicts the target. We
filter out idioms for which a majority (≥ 3) of
models predicted the target (for some n-gram).

• Idioms whose targets are semantically simi-
lar to tokens in the prompt. To further ensure
prompt irreducibility, we embed the prompt’s
tokens and the target token using GloVe word

5We take idioms with an annotation confidence of > 75%
and exclude frequently occurring literal interpretations.

6https://www.ef.com/wwen/english-resources/
english-idioms/

Prompt Target Pred. Sim. IDIOMEM

“make a mountain
out of a”

molehill ✓

“think outside the” box ✓
“there’s no such
thing as a free”

lunch ✓

“go back to the
drawing”

board ✓

“boys will be” boys ✓
“take it or leave” it ✓ ✓

Table 2: Example English idioms included and ex-
cluded from IDIOMEM by our filters of predictable tar-
get (Pred.) and prompt-target similarity (Sim.).

embeddings (Pennington et al., 2014). We mea-
sure the cosine distance between the target token
to each token in the prompt separately and take
the maximum of all the tokens. We filter out
idioms where this number is higher than 0.75
(this number was tuned manually using a small
validation set of idioms).

Overall, 55.7% of the idioms were filtered out,
including 48.5% by length, 6.1% by the predictable-
target test and an additional 1.6% by the prompt-
target similarity, resulting in an 814 idioms dataset,
named IDIOMEM. Further statistics are provided
in Tab. 1, and example idioms in Tab. 2.

4 Probing Methodology

Background and Notation Assuming a trans-
former LM with L layers, a hidden dimension d
and an input/output-embedding matrix E ∈ R|V |×d

over a vocabulary V . Denote by s = ⟨s1, ..., st⟩
the input sequence to the LM, and let hℓ

i be the
output for token i at layer ℓ, for all ℓ ∈ 1, ..., L and
i ∈ 1, ..., t. The model’s prediction for a token si is
obtained by projecting its last hidden representation
hL
i to the embedding matrix, i.e. softmax(EhL

i ).
Following (Geva et al., 2021, 2022), we in-

terpret the prediction for a token si by viewing
its corresponding sequence of hidden representa-
tions h1

i , ...,h
L
i as an evolving distribution over

the vocabulary. Concretely, we read the “hidden”
distribution at layer ℓ by applying the same pro-
jection to the hidden representation at that layer:
pℓ
i = softmax(Ehℓ

i). Using this interpretation,
we track the probability and rank of the predicted
token in the output distribution across layers. A
token’s rank is its position in the output distribution
when sorted by probability from highest to lowest
(e.g. the rank of the final predicted token is zero).
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GPT2M GPT2L BERTB BERTL

Memorized idioms (mem-idiom) 364 44.7% 392 48.2% 230 28.3% 305 37.5%
Non-memorized idioms (non-mem-idiom) 450 55.3% 422 51.8% 584 71.7% 509 62.5%

Table 3: Number of memorized idioms vs. non-memorized idioms from the IDIOMEM dataset for each model. An
instance is considered a memorized example if the model correctly predicts the target.

Probing Procedure Our key method to under-
stand how transformer LMs retrieve information
from memory is comparing features of memory re-
call to inference that does not necessarily include
memory recall. Given a set of sequences that fulfill
the criteria in §2, we split them into a “memo-
rized” set whose targets’ first token is predicted
correctly by the model being analyzed given (and
are therefore memorized), and a “non-memorized”
set whose target is predicted incorrectly. We addi-
tionally include a second set of “non-memorized”
instances: natural-language sequences randomly
sampled from a large corpus (we assume most
naturally-occurring sequences are not memorized).

To probe a LM, we run it on the 3 sets, and for
each set and each layer, we (a) extract the rank and
probability of the final predicted token in the hid-
den distribution for each prompt, and (b) compute
the mean rank and probability over all prompts.

5 Probing Memorization Using Idioms

5.1 Experimental Setup

Datasets For each LM under analysis (see be-
low), we split IDIOMEM into two disjoint subsets
of memorized and non-memorized idioms, denoted
as mem-idiom and non-mem-idiom, respectively,
according to whether or not the LM succeeds in
completing them. We produce an additional set
of non-memorized instances, wiki, by sampling
prompts from the WIKITEXT-103 dataset (Merity
et al., 2017) of the same length distribution as in
IDIOMEM (see Tab. 1).

Models We use multiple transformer LMs that
are different in size, architecture, and optimiza-
tion objective. We use GPT2 (medium and large)
(Radford et al., 2019), an autoregressive trans-
former decoder, and BERT (base and large) (De-
vlin et al., 2019), a transformer encoder trained
with a masked language modeling (MLM) objec-
tive. To evaluate BERT on a specific idiom, we
feed the idiom’s prompt concatenated with the spe-
cial mask token and a period (e.g. “think outside
the [MASK].”). Further details on each model are
presented in Tab. 6. The number of memorized and

non-memorized idioms from IDIOMEM for each
model are provided in Tab. 3.

5.2 Memorized Predictions are a Two-Step
Process

Fig. 2 shows the probability and rank of the
output token across layers, for memorized and
non-memorized idioms and short sequences from
Wikipedia, by GPT2M, GPT2L, BERTB, and
BERTL. Naturally, the prediction’s rank decreases
across layers as the prediction probability increases.
However, for memorized predictions these trends
occur as two distinct and sharp inference phases. In
lower layers, the prediction’s rank decreases from a
high rank to near zero, while its probability is also
close to zero. For example, in GPT2L the rank de-
creases until layer 20 while the probability remains
below 0.1. We refer to this phase as candidate pro-
motion, as the predicted token is being promoted
to be a top candidate in the output distribution.

Compared to non-memorized predictions, the
initial rank of memorized predictions is generally
higher, especially in GPT2 (6000 vs. 3000 in
GPT2M, and 3000 vs. 1500 in GPT2L). A po-
tential explanation would be a generally lower fre-
quency of the predicted token for memorized id-
ioms. However, we find there is only low negative
correlation between the initial rank of the predicted
token and its frequency (see Tab. 4). We there-
fore offer a different explanation: non-memorized
predictions are often promoted in early layers that
detect local “shallow” patterns, such as common
bigrams (Geva et al., 2021), while predictions for
memorized idioms are not local as they requires
processing of the entire input.

In the middle layers, once the predicted token
reaches the top of the hidden distribution, its proba-
bility increases until the last layer. We refer to this
phase as confidence boosting, as the distribution
shifts towards the predicted token. For memorized
idioms, this increase is abrupt and dramatic, with
a final probability of > 0.6 across all models. In
comparison, predictions on short sequences from
Wikipedia and non-memorized idioms have a sub-
stantially lower probability of ∼ 0.2. This can be
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Figure 2: The predicted token’s probability and rank across layers, for memorized idioms (mem-idiom), non-
memorized idioms (non-mem-idiom) and short sequences from Wikipedia (wiki). Memory recall exhibits two
characteristic phases of candidate promotion and confidence boosting.

explained by the fact that memorized idioms have
a single correct target, rather than many possible
continuations, as in the instances from Wikipedia.
In addition, low-probability predictions for non-
memorized idioms are expected as the model did
not memorize the idioms and does not know their
continuation. In §B, we provide more fine-grained
analysis of these trends via a log-scaled view of the
prediction’s rank and a visualization of the ranks
and probabilities for separate clusters of the memo-
rized predictions.

We further verify that our extracted hidden-
distribution features distinguish between memo-
rized and non-memorized predictions by training
linear classifiers over combinations of these fea-
tures (details in §A). We observe that, indeed, our
features enable separation between memorized and
non-memorized predictions at high accuracy (77%-
85% across models). Moreover, classifiers that use
hidden distribution features are more accurate than
those relying only on the model’s output. Over-

correlation p-value

GPT2M -0.22 2.9e−21

GPT2L -0.18 5.4e−14

BERTB -0.19 1.8e−15

BERTL 0.15 3.5e−10

Table 4: Pearson correlation between the predicted to-
ken’s rank at the first layer and its general frequency in
Wikipedia.

all, these findings provide a profile of memorized
predictions, suggesting that the memorized infor-
mation is retrieved in early layers at inference.

5.3 Testing the Roles of Different Layers
Through Intervention

Our analysis in the previous section interprets hid-
den representations as distributions over the output
vocabulary. We now conduct intervention experi-
ments to verify that this interpretation is meaning-
ful for studying memory recall, and to test layers’
roles in that process. Concretely, we zero out FFN
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Figure 3: Intervention in non-dominant (left) and dominant (right) FFN sub-updates in GPT2M. Each cell shows
the percentage of memorized idioms for which the prediction was changed by zeroing-out the FFN sub-updates
between the start and end layers.

sub-updates to the hidden representation (§4) and
measure changes in memorized predictions.

A Short Primer on Transformer FFN Sublayers.
FFN sublayers are the final computation in trans-
former layers, which output the hidden distribution
at the center of our analysis. In general, they have
a key role in capturing knowledge in transformer
LMs (Dai et al., 2022; Meng et al., 2022). We
follow Geva et al. (2022) and view the computa-
tion of each FFN sublayer as a weighted collection
of dm sub-updates to the output distribution, each
promoting a concept in the vocabulary space, e.g.
“past-tense verbs” or “female athletes”. To under-
stand this, consider the computation of the FFN
at layer ℓ, given by FFNℓ(hℓ

i) = f(W ℓ
Khℓ

i)W
ℓ
V ,

where W ℓ
K ,W ℓ

V ∈ Rdm×d are parameter matri-
ces, dm is the intermediate hidden dimension, and
f is a point-wise non-linearity activation func-
tion. This computation can be decomposed as:
FFNℓ(hℓ

i) =
∑dm

j=1 f(h
ℓ
i · kℓ

j)v
ℓ
j =

∑dm
j=1m

ℓ
jv

ℓ
j ,

where kℓ
j and vℓ

j are the j-th row in W ℓ
K and the

j-th column in W ℓ
V , respectively. Geva et al. argue

that each weight mℓ
j is the score assigned by the

model for some textual pattern, and each vector vj

promotes a concept that follows that pattern.

Experiment First, we sample 100 random in-
stances from IDIOMEM that the model memorized.
Then, for each range of up to 3 consecutive lay-
ers, we perform two complementary experiments,
where we run GPT2M’s inference on the 100 in-
stances while intervening in the chosen layers to
cancel the contribution of FFN sub-updates to the
prediction. Specifically, for each layer ℓ in the layer
range, we perform the following two interventions:
first, we zero out (i.e. artificially set to 0 during
inference) the weights of the 10 most dominant

sub-updates, which are known to be particularly
salient for predictions (Geva et al., 2022) (there are
dm sub-updates per layer). Concretely, we sort the
sub-updates by their contribution to the FFN out-
put |mℓ

i |||vℓ
i || ∀i ∈ [1, ..., dm], and set mℓ

i = 0 for
the 10 sub-updates with the highest contribution.
Next, we zero out non-dominant sub-updates, i.e.
all the sub-updates except for the 10 most dominant
ones. For each intervention, we measure how often
it changes the predicted token. Further measure-
ments of the change in rank and probability of the
target token are reported in §C.

Results Fig. 3 shows, for each layer range, the
percentage of memorized idioms where the pre-
dicted token has changed. Focusing on zeroing out
non-dominant FFN sub-updates (Fig. 3, left), we
observe a two-phase pattern of decreasing “layer
importance” which corresponds to the two-phase
pattern of decreasing rank and increasing prob-
ability during inference (§5.2): layers’ effect on
memory recall drops precipitously in the first 10
layers, corresponding to the candidate promotion
phase. Then, from around layer 10 onwards, the
drop in effect is much less steep, corresponding to
the confidence-boosting phase. Intervention in up-
per layers rarely changes the predicted token, and
its effect is limited to reducing the model’s con-
fidence (§C). We further visualize this two-phase
behavior in Fig. 7 in §C.

These findings suggest that the candidate pro-
motion phase, while having a smaller effect on
the prediction’s assigned probability compared to
the later confidence-boosting stage, in fact, has a
crucial role in memory recall.

We also observe that interventions in the first
layer are by far the most destructive, with 100%
change in prediction for non-dominant updates

254



(Fig. 3, left). Unlike for other layers, this is also
observable when zeroing out the dominant sub-
updates (Fig. 3, right), which constitute only 0.1%
of layer sub-updates. This suggests the first layer
is especially critical for memorized predictions.

6 Memorization of Factual Statements

We now examine if our findings generalize beyond
idioms to other types of memory recall, focusing
on the completion of statements expressing facts.

Data Datasets for evaluating memorization of
factual knowledge typically contain simple queries
such as “The continent of Kuwait is”, where pre-
dicting the next token requires knowledge of the
triplet ⟨s, r, t⟩ where s is a source entity (e.g.,
Kuwait), t a target entity (e.g., Asia), and r is the
relation between them (e.g., is the continent
of). However, unlike idioms, such queries are not
suitable for probing memorization since they often
fail to satisfy the criteria in §2. Concretely, queries
often include “clues” that could make the predic-
tion easy to guess and based on generalization
(Poerner et al., 2020) (e.g. predicting a Spanish-
speaking country for the query “Federico López
was born in”), and the same fact can be expressed
in multiple different ways (e.g. “Kuwait is a coun-
try in Western Asia” also encodes the above fact).

To test memorization of facts, we, therefore,
collect factual statements where such cases are
excluded. We use LAMA-UHN (Poerner et al.,
2020), a subset of the LAMA dataset (Petroni et al.,
2019), where “easy-to-guess” queries are filtered
out. LAMA comprises of queries structured as
“fill-in-the-blank” cloze statements (e.g. “Gordon
Scholes is a member of the ____political party.”).
To accommodate autoregressive LMs, we consider
only queries where the blank appears at the end. In
addition, we keep only queries with a single cor-
rect completion (based on LAMA). This turns our
definition of memorized and non-memorized sets
(§4) equivalent to separating based on the evalu-
ation metric of LAMA: an instance is considered
memorized if the model predicts the single correct
completion and non-memorized otherwise. Overall,
the resulting collection consists of 17,855 factual
statements with 22 unique relations.

Memorized Facts Exhibit a Similar Predic-
tion Process to Idioms We repeat our analysis
(§5.1), using the collected factual statements and
GPT2M. Splitting the statements to those memo-
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Figure 4: The predicted token’s probability and rank
across layers of GPT2M, for memorized (mem-fact)
and non-memorized (non-mem-fact) facts and short
sequences from Wikipedia (wiki).

rized and non-memorized by the model results in
786 mem-facts vs. 17,069 non-mem-facts state-
ments.

Fig. 4 shows the rank and probability of the pre-
dicted token across layers. Like idioms, memorized
facts exhibit a clear two-phase prediction process,
where the prediction probability rapidly increases
once the candidate reaches a low rank (at layer
16). This is in contrast to non-memorized facts and
short sequences from Wikipedia, where the rank
(probability) gradually decreases (increases) across
layers without a distinct two phases.

Differences from Memorized Idioms Stem from
Ill-Defined Targets There is one major differ-
ence compared to memorized idioms (Fig. 4 vs.
Fig. 2 upper left), which is a substantial drop in
probability (0.62 → 0.21) in the last two layers.
We hypothesize that this is because the input query
has multiple plausible completions that were not
specified as “correct” targets in LAMA. We verify
this by manually analyzing predictions, and find
that for 82 out of 100 queries there is more than
one correct continuation in top 5 predicted tokens.
We posit that the above deficiency of LAMA is
inherent because, in violation of our criterion (§2),
factual statements can usually be expressed in many
ways so their prompt has no single correct target.

7 Related Work

Memorization as Training-Data Influence.
Memorization in LMs has attracted immense atten-
tion due to their rich sensitive training data (Carlini
et al., 2019; Song and Shmatikov, 2019; Carlini
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et al., 2021; Zhang et al., 2021b; Carlini et al.,
2022; Tirumala et al., 2022; Tänzer et al., 2022;
Raunak and Menezes, 2022). Recent work suggests
that memorization is necessary for performant ML
due to the “long tail” of infrequently-observed pat-
terns (Zhang et al., 2021a; Feldman, 2020; Brown
et al., 2021; Raunak et al., 2021). This line of
work has two key limitations: (a) only black-box
behavior is measured rather than looking at models’
internal prediction process, and (b) it detects mem-
orized instances by measuring the effect of their
inclusion in the training set on inference behavior.
This results in a set of memorized examples that
is specific to the model, training data, and even
training pass, making it difficult to build on these
results in future research.

Transformers and Idioms. Nedumpozhimana
and Kelleher (2021) showed that idioms are iden-
tified using textual cues within the expression;
Dankers et al. (2022) showed that idioms tend to
be internally processed as single units of meaning.
It has also been known (Fakharian and Cook, 2021;
Salton et al., 2016) that LM contextual embeddings
encode information about whether or not an expres-
sion is idiomatic (vs. literal). (Shwartz and Dagan,
2019; Chakrabarty et al., 2022) also studied repre-
sentations and interpretation of non-compositional
sequences, such as idioms. No prior work used
idioms to probe LM memorization, which is one of
the main contributions of this work. We release our
dataset, IDIOMEM, to facilitate future research on
memorization recall in LMs. Diagnostic datasets,
such as IDIOMEM, have often proven useful in the
past (Sugawara et al., 2022; Parrish et al., 2021).

Memorization of Factual Knowledge. An ex-
tensive line of work (Petroni et al., 2019; Jiang
et al., 2020; Poerner et al., 2019; Lewis et al.,
2020; Elazar et al., 2021) studied LMs’ capacity
to acquire relational knowledge during training.
Some attention has also been given to understand-
ing the inner workings of factual-memory recall:
Wallat et al. (2020) showed that some facts are
retrieved from the bottom and intermediate layers,
and Meng et al. (2022) localized factual-knowledge
recall within feed-forward-component computation.
Since factual statements do not fulfill our criteria, it
is difficult to convincingly argue that correct predic-
tions indicate memory recall, making it impossible
to use them to isolate the effect of memorization.

8 Conclusion

We introduce a methodological framework for de-
tecting and analyzing memorized predictions in
transformer LMs. This includes a set of criteria
on textual sequences for probing memorized pre-
dictions, the IDIOMEM dataset of idioms fulfilling
these criteria, and an interpretation method of pre-
diction internals. We characterize a behavioral pro-
file that is unique to predictions involving memory
recall and is observable across different LMs and
data types. By providing these fundamental tools
and initiating a thread of research on the phenom-
ena we observe, we hope to empower future work
towards demystifying transformer memorization.

Limitations

Our criteria for detecting memorized instances are
sufficient but not necessary, which raises the ques-
tion of what other sequences that trigger memory
recall satisfy them.

Additionally, while correct prediction for se-
quences that fulfill our criteria implies memory
recall, incorrect prediction does not necessarily im-
ply that no memory was used. This means that
our set non-mem-idiom might include some por-
tion of memorized sequences. This does not qual-
itatively affect our results as long as mem-idiom
still contains more memorized predictions than
non-mem-idiom, as is evidenced by the stark differ-
ences we observe between LMs’ internal behaviors
on these sets.

Our work focuses on showing the utility of id-
ioms for probing memorization, and opening up a
new thread of research in this vein. We therefore
leave further investigation of the above gaps for
future work.
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A Distinguishing Memorization Using
Hidden-Distribution Features

§5.2 shows differences in our extracted hidden-
distribution features, namely the rank and probabil-
ity across layers, between memorized idioms and
non-memorized sequences. To verify that these fea-
tures are distinguishing between memorized and
non-memorized predictions, we build a classifier
that receives them as input, as follows.

Experiment To answer the above, we represent
every instance in IDIOMEM, for every LM we ex-
periment with, as a sequence of probabilities and
ranks assigned to the predicted token at each layer.
This results in a feature vector for each instance in
IDIOMEM for each of our LMs (GPT2M, GPT2L,
BERTB, and BERTL). We then append a class
label for each LM’s instances corresponding to
whether it memorized them. Then, for each LM’s
dataset, we perform 10-fold cross-validation with
an 80%-20% train-test split to evaluate the accuracy
of a logistic-regression classifier using the Logis-
ticRegresion classifier of scikit-learn,7 specifying
L1 penalty and a bilinear solver as constructor pa-
rameters. After each split and before evaluating the
classifier, we balance the test set by replacing the
larger class with a random subsample the size of the
smaller class. To isolate the distinguishing utility
of ranks from that of probabilities, we repeat this
process while only taking either of them as features
at each time. We also repeat this process while sep-
arately considering just the last-layer probability
as a single feature, the last hidden state vector, and
finally, the ranks in layers of layers 1-12 (omitting
ranks in layers 13-16 where ranks are usually 0)
appended to all layer probabilities.

Results Results are given in Tab. 5. We observe
that, across all models, most classifiers perform
well over the 50%-accuracy baseline for their class-
balanced test sets. The output probability alone is
often highly distinguishing with around 78% accu-
racy, but the vector of 16 hidden-distribution prob-
abilities seems to contain additional distinguish-
ing information, as using it alongside ranks results
in higher accuracy, typically around 84%. Using
the ranks in addition to probabilities usually de-
creases accuracy, but omitting the ranks in layers
13-16 (which we know are mostly 0 as this is the
confidence-boosting phase) attenuates this effect.

7https://scikit-learn.org/
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Figure 5: The predicted token’s probability and rank
across layers for each cluster, after clustering the mem-
orized idioms in GPT2M according to rank and proba-
bility across layers.

We conjecture that ranks have little meaningful in-
formation, especially in the confidence-boosting
phase.

B Fine-grained Analysis of Memorized
Predictions

§5.2 shows how recall of memorized predictions
exhibits two characteristic phases (specifically, see
Fig. 2). To shed light on this phenomenon, we
conduct additional analysis.

B.1 Memorized Idioms In-depth Breakdown

In our analysis, we address all memorized predic-
tions jointly. We now check whether these aver-
aged results are consistent across subgroups of the
memorized idioms. To this end, we cluster the
memorized idioms by GPT2M, using the same hid-
den features as in §A, i.e., each instance is repre-
sented by the predicted token probability and rank
across layers. We then cluster the idioms into seven
groups, using K-mean clustering, and visualize the
prediction rank and probability across layers for
each group. We set the number of clusters to k = 7
based on manual inspection, and as we observed
no substantial differences in the resulting clusters
for larger values of k.

Results are shown in Fig. 5. We find that all
groups exhibit the confidence-boosting phase, as
the prediction probability quickly increases starting
from the intermediate layers. Notably, the lowest
final probability observed is > 0.5, which is sub-
stantially higher than the average probability of
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GPT2M GPT2L BERTB BERTL

probability 84.6± 2.8 84.0± 2.3 84.2± 1.8 77.6± 3.3
ranks 63.2± 1.6 59.5± 2.7 73.3± 3.3 64.5± 3.6
probability + ranks 83.6± 2.7 82.9± 2.9 82.7± 2.2 76.9± 2.9
ranks layer 1-12 + probability 84.3± 2.8 83.4± 2.7 82.7± 2.2 77.2± 4.2

probability last layer 79.5± 3.5 83.3± 2.3 77.7± 2.3 74.2± 4.8
final hidden state 72± 2.1 72.5± 3.7 72.7± 2.9 66.0± 3.0
token ids 58± 0.2 59.4± 0.2 58.8± 0.2 71.6± 0.2
random 49.5± 3.8 49.7± 4.7 50.4± 4.9 50.1± 3.5

Table 5: Cross-validation accuracy of a logistic-regression classifier trained to distinguish between memorized and
non-memorized idioms.

∼ 0.2 for non-memorized predictions (§5.2). How-
ever, considering the prediction rank for the differ-
ent groups, we observe a relatively large variation.
Specifically, we observe that 55% of the instances
(cluster 0) have a low initial rank. This further
supports the findings in §A.

B.2 Log-Scale Visualization
Fig. 6 shows a log-scaled view of the graphs from
Fig. 2. We observe that, in terms of orders of mag-
nitude (vs. absolute value), the differences in initial
ranks between memorized and non-memorized pre-
dictions are more minor, especially in BERT mod-
els, whereas rank differences measured in upper
layers are more stark.
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Figure 6: The predicted token’s probability and log-scaled rank across layers, for memorized idioms (mem-idiom),
non-memorized idioms (non-mem-idiom) and short sequences from Wikipedia (wiki).
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Figure 7: We visualize the effect of intervening in each
3-consecutive-layer range according to the procedure
in §5.3.

C Intervention Experiments: Additional
Analysis

C.1 Additional Visualization

In §5.3, we performed an intervention-based ex-
periment to test the effect of zeroing out FFN sub-
updates in layer computation. This produced a
heat map of values corresponding to intervention’s
effect for each layer range. Here, we plot the in-
tervention’s effect across all 3-layer layer ranges.
Note that since there are 24 layers, there are a to-
tal of 22 ranges of 3 consecutive layers. Fig. 7
visualizes the effect of intervening in each such
range.

As discussed in §5.3, we observe a steep drop
in effect in the first 10 layers, followed by a more
leveled slope of decrease in the upper layers.

C.2 Analyzing Changes in Rank and
Probability of the Target Token

In addition to measuring how often an intervention
changes memorized predictions (§5.3), we further
measure the average change in the rank and prob-
ability of the target token. Note that the original
target rank for memorized predictions is always
zero, as the target token is the top candidate in the
original output distribution.

Change in target rank Fig. 8 shows the change
in the target token’s rank for all intervention ex-
periments. Overall, we observe similar trends as
in §5.3. First, zeroing out either dominant or non-
dominant FFN sub-updates in upper layers (layers
11-24) does not affect memory recall, as the target
token is still ranked as the top candidate in the out-
put distribution. Moreover, zeroing out in early lay-
ers (1-10) damages memory recall as the target rank

increases by > 20 positions. Specifically, zeroing-
out non-dominant FFN sub-updates in layers 2-4
increases the target rank by 60, and disabling either
dominant or non-dominant sub-updates in the first
layer completely eliminates memory recall as the
rank increases to > 6000.

Change in target probability Fig. 9 shows the
change in the target token’s probability for all in-
tervention experiments. Unlike the prediction rank,
which is mostly influenced by the lower layers dur-
ing memory recall, the prediction probability is
highly influenced by the intermediate and upper
layers, where confidence boosting happens. Dis-
abling FFN sub-updates in only three of these lay-
ers reduces the prediction probability by up to 33%.
Considering the lower layers (1-9), zero-outs lead
to a large probability decrease (up to 50%). This is
expected since these interventions often change the
prediction, i.e. they eliminate the target from the
top of the output distribution.

D Experimental Setting Details

Tab. 6 shows the evaluated models’ hyperparame-
ters.
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Figure 8: Change in the rank of the target token following intervention zeroing out non-dominant (left) and dominant
(right) FFN sub-updates in GPT2M. Each cell shows the average change in rank of the target token after zeroing out
the sub-updates in the layers between the start and end layers. For readability, we provide plots with the first layer
(top) and without (bottom).
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Figure 9: Change in the probability of the target token following intervention zeroing out non-dominant (left) and
dominant (right) FFN sub-updates in GPT2M. Each cell shows the average change in probability of the target token
after zeroing-out the sub-updates in the layers between the start and end layers. For readability, we provide plots
with the first layer (top) and without (bottom).

GPT2M GPT2L BERTB BERTL

Layers 24 36 12 24
Model hidden dimensions (d) 1024 1280 768 1024
Feed-forward dimensions (dm) 4096 5120 3072 4096
Attention heads 12 20 12 16
Parameters 345M 774M 110M 340M
Vocabulary size (# of tokens) 50,256 50,256 30,522 30,522

Table 6: The models’ hyperparameters.
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