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Abstract

We present work in progress that aims to
address the coverage issue faced by rule-
based text generators. We propose a
pipeline for extracting abstract dependency
template (predicate-argument structures) from
Wikipedia text to be used as input for generat-
ing text from structured data with the FORGe
system. The pipeline comprises three main
components: (i) candidate sentence retrieval,
(ii) clause extraction, ranking and selection,
and (iii) conversion to predicate-argument form.
We present an approach and preliminary evalu-
ation for the ranking and selection module.

1 Introduction

Rule-based Natural Language Generation (NLG)
systems have become increasingly unpopular since
the NLP field switched first to statistical systems,
then to neural: rule-based systems tend to have
low coverage (limited robustness to new inputs),
reduced suprasentential fluency, and on the whole
need to be built manually, all of which in combina-
tion means they are no longer competitive in shared
task competitions and other NLP research contexts.
However, their output can generally be guaranteed
to have high accuracy and grammaticality, which
continues to make them the system of choice in
many commercial contexts.1 Moreover, they can

1E.g. Arria NLG’s NLG Engine.

Figure 1: A DBpedia triple set from WebNLG+ and a
corresponding generated text. Triple = Property(DB-
Subj, DB-Obj), where the DB-Subj is an entity, and the
DB-Obj another entity, a numeric, a date, etc.

be efficient in terms of data and energy require-
ments, and suitable for low-resource languages.
That is, on their own or in combination with, e.g.,
language-model-based modules, rule-based NLG
potentially has an important role to play in the cur-
rent NLP landscape if shortcomings such as the
coverage issue addressed here can be overcome.

WebNLG+. The present work was prompted by
the WebNLG+ shared task (Castro Ferreira et al.,
2020), in which part of the test set inputs contained
features not seen in the training or development
data. The WebNLG+ dataset is a benchmark for
data-to-text NLG consisting of aligned DBpedia
triple sets and texts. DBpedia triples are the build-
ing blocks of the inputs, and consist of three related
elements called a Property, a Subject and an Object
in Semantic Web terminology. A Subject (denoted
by DB-Subj in this paper) is usually an entity that
has a Property and a value for this Property, which
is the Object (DB-Obj). E.g. in Figure 1, the entity
Audi_A1 is associated with 4 properties: Engine,
Transmission, Assembly and BodyStyle. The se-
mantics of each property is defined by DBpedia
editors,2 but in most cases, the Property of the
DB-Subj is DB-Obj makes it clear (e.g., the Trans-
mission of the Audi_A1 is 5-speed manual).

The coverage issue. Unlike their neural coun-
terparts, rule-based generators submitted to the
WebNLG+ challenge such as RDFJSREALB (La-
palme, 2020), DANGNT-SGU (Tran and Nguyen,
2020) or FORGe (Mille et al., 2019b) are not
able to cope with new (previously unseen) prop-
erties. FORGe, which we are aiming to extend,
operates on dependency structures at several levels
of representation (syntax, semantics), and needs
partially lexicalised predicate-argument (PredArg)
structures in the PropBank style (Kingsbury and
Palmer, 2002) to use as input for generation (see
Figure 2b). In other words, if a mapping between

2See http://mappings.dbpedia.org/index.
php/How_to_edit_the_DBpedia_Ontology.
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property and PredArg structure as shown in Fig-
ure 2a-b does not exist, the generator cannot intro-
duce the appropriate words and, unless a backup
mechanism is in place, it will fail to generate a text.

(a) Assembly(DB-Subj, DB-Obj)

(b) DB-Obj assemble DB-Subj
pos=NP tense=PRES pos=NP

A1 A2

(c) DB-Obj assembles the DB-Subj.
the DB-Subj is assembled by DB-Obj.

Figure 2: (a) The Property Assembly, (b) a correspond-
ing PredArg template (graph with no linear order in-
formation), and (c) two possible verbalisations of the
property via the template. A1/2 = first/second argument.

Thus, the overall problem that we are tackling is
the following: given (i) the rule-based FORGe gen-
erator that covers all properties in the WebNLG+
training data, (ii) a file which contains the map-
pings between these properties and their respective
PredArg template, (iii) an input triple set that con-
tains one or more properties not currently covered
by the generator, automatically extend the map-
ping file in ii with new unseen property/template
pairs that will enable FORGe to generate a text that
verbalises all input properties.

Proposed solution. Our aim is the automatic
extraction of property/template pairs via a pipeline
for retrieving and ranking candidate clauses from
Wikipedia that correspond to a given DBpedia in-
stantiated property (i.e. a triple), and converting
them to predicate-argument representations. We
are at an early stage of this research: the pipeline
and components have been defined and connected,
and we have identified two main challenges in our
approach: one is candidate clause extraction, i.e.
how to find a sentence or a clause that exactly
matches the input triple, the other is the identi-
fication of such candidates, i.e. if provided with a
list of candidates clauses that contains a match, is
it possible to identify it. In this paper, we focus
on the second challenge, since if we are not able
to identify target candidates, the approach cannot
work. In the remainder of the paper, we present
the different components and resources used in
our pipeline, and provide an encouraging prelim-
inary quantitative and qualitative evaluation of a
transformer-based candidate ranking and selection
component.3

3The code and data are available at https://github.
com/mille-s/PredArg-Template_Extraction.

2 Related Work

A number of papers have tackled the extraction of
templates from text to be used as input for NLG.
Duma and Klein (2013) mine and prune sentence
templates from Wikipedia articles, but (i) extract
templates given an entity (instead of a property
as in our case), and (ii) manage to obtain a tem-
plate for about 20% of the target entities. Ell and
Harth (2014) achieve impressive coverage with
their (multi-property) sentence templates, but also
suffer accuracy problems, with the text faithfully
representing the input in only about half the cases.
Our general approach is conceptually similar to
Perera and Nand (2015)’s, who use an open In-
formation Extraction (IE) tool to identify candi-
date sentence spans that verbalise a given prop-
erty, and then acquire lexicalisation information
via VerbNet, resorting to default strategies when
a predicate is not covered by VerbNet. Hoang
et al. (2022) suggest several general approaches
to align triple components and textual elements,
namely string, substring, hypernym and synonym
matching; for property matching, they also use a
pre-trained vector model to calculate the distance
between words. Other recent work on this topic
uses keyword matching (Kaffee et al., 2022) or co-
sine similarity (Abhishek et al., 2022) for aligning
triples and text in under-resourced languages. In
order to assess the strength of the alignment, Ab-
hishek et al. (2022) apply a Natural Language In-
ference (NLI) model to detect (lack of) entailment
between the triples and the candidate sentences.

One difference between our approach and most
of the related work on template mining for NLG
is that we want to extract predicate-argument tem-
plates (Figure 2b), and not full-sentence templates.
However, the approaches have a lot in common,
since we extract the predicate-argument structures
from sentences. The main issue with most of the
approaches above is the lack of accuracy. Recently,
Transformers have been shown to improve accuracy
for Question-Answering (Karpukhin et al., 2020),
including for the specific task of aligning text and
structured data (Oguz et al., 2022) and also for
fact checking, for instance for comparing tables
and text (Zhang et al., 2020). In our approach, we
therefore explore another way of aligning linguis-
tic predicates and properties via Transformer-based
meaning similarity scoring.
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Figure 3: Overview of the pipeline for PredArg template extraction (see Appendix A for module output illustrations)

3 Template Extraction Pipeline

In this section, we describe the components that al-
lows us to extract one or more PredArg template(s)
given one input DBpedia triple.4 Figure 3 shows
a complete view of the pipeline (see Appendix A
for module outputs). The three main components
of the pipeline (indicated across the bottom in Fig-
ure 3) are: (i) Candidate sentence retrieval, (ii) Can-
didate clause ranking and selection, (iii) conversion
to predicate-argument template.

3.1 Candidate sentence retrieval

The first step is to find candidate sentences for a
given input triple; since DBpedia triples are often
verbalised in Wikipedia texts, we use the Wikipedia
contents as a candidate source. Via the Hugging-
Face dataset,5 we have access to the title and the
cleaned (plain) text of each article. We first find
the Wikipedia articles of both the DB-Subj and the
DB-Obj (if any), and then run the entity linking
tool DBpedia Spotlight (Mendes et al., 2011) on
the input triple’s DB-Subj and DB-Obj and on the
article text to find sentences that mention both the
DB-Subj and the DB-Obj.

In order to find more candidate sentences and
possibly get better candidates, we also perform a
relaxed search. We get a named entity type for the
DB-Subj using Spacy NER,6 and parse Wikipedia
article titles until we find an article about an entity
of the same type as the DB-Subj. We then pro-
ceed to run Spacy NER on the DB-Obj and the

4Since FORGe performs triple aggregation during the gen-
eration, we don’t need to extract PredArg templates that corre-
spond to multiple triples.

5https://huggingface.co/datasets/
wikipedia

6https://spacy.io/api/entityrecognizer

found article so as to find sentences that contain
two entities of the type of the DB-Subj and DB-
Obj, and replace these entities with the ones from
the original input for the ranking phase.

3.2 Candidate clause ranking and selection

In this section, we detail how we extract minimal
clauses and calculate their semantic similarity with
the input triple using a Sentence Transformer bi-
encoder model7 (Reimers and Gurevych, 2019),
so that candidates scored above a given threshold
are kept while others are discarded (see Section 4).
Existing sentence similarity approaches return a
score for a pair of sentences; in our case, we need
a similarity score between a triple and a clause, so
we fine-tuned the model to this task using a dataset
created for this purpose.

Fine-tuning. We created a fine-tuning dataset
with pseudo-verbalisations of input triples aligned
with sentences from the WebNLG+ training set as
follows. For each triple T, we compiled 4 sets of
sentences that correspond to 4 levels of similarity
with T: 1 (sentences that verbalise exactly T), 0.66
(sentences that verbalise a triple that has 2 elements
in common with T, either DB-Subj and Property,
DB-Subj and DB-Obj, or Property and DB-Obj),
0.33 (1 element in common with T), and 0 (no
element in common with T), see Table 1.

We obtained 7,645 triple/sentence pairs in to-
tal for the set of similarity 1, 24K pairs for 0.66,
399K for 0.33 and 23M for 0. To balance the
dataset, we randomly picked 7,645 pairs from the
sets 0.66, 0.33 and 0. Finally, we converted each
triple to a typed pseudo-verbalised form (Pasricha

7https://huggingface.
co/sentence-transformers/
nli-distilroberta-base-v2
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Triple: Location(Agra Airport, India)
1.00 ’Agra Airport is in India.’, ’Agra airport is located

in India.’
0.66 ’Agra Airport is located in Uttar Pradesh.’, ’The

Taj Mahal is in India.’, etc.
0.33 ’AGR is the ATA Location Identifier for Agra Air-

port.’, ’AC Hotel Bella Sky Copenhagen is in Copen-
hagen.’, ’Mother Theresa is from India’, etc.

0.00 ’Agnes Kant is a national of the Netherlands.’, ’FC
Köln played the 2014-15 season in the Bundesliga.’,
’Ampara Hospital has 476 beds.’, etc.

Table 1: Sentences with different similarity levels; in
bold, the elements in common with the triple.

et al., 2020): Location(Agra Airport, India) →
<AIRPORT> Agra Airport <PROP> location
<PLACE> India.8 In our use case, when an un-
known property is detected in the input, we will
not have at hand a verbalisation of the triple that
contains it since the objective of our pipeline is
to discover such verbalisations. Therefore, the
pseudo-verbalisation here is an adequate strategy:
the pseudo-verbalised input triple will be compared
to the candidate clauses.

Clause extraction. The sentences retrieved (see
Section 3.1) are usually long, in the Wikipedia
style; we thus reduce each sentence to the minimal
subtree that contains a finite verb and two elements
of the same types as the the DB-Subj and the DB-
Obj respectively. Each candidate sentence is parsed
with the Stanza Universal Dependency parser (Qi
et al., 2020); the output syntactic structures are then
processed to extract the minimal subtree via our
own graph-transduction grammars. The original
sentence span that corresponds to this clause sub-
tree is selected (see Appendix A for illustration).

3.3 Conversion to PredArg templates
The predicate-argument structures of the selected
clauses from the previous step are created. For
this, we use the grammar-based UD Converter re-
leased for the Surface Realisation Shared Tasks
(Mille et al., 2019a), which given a UD parse re-
turns a predicate-argument structure. The specific
DB-Subj and DB-Obj are replaced by generic [DB-
Subj] and [DB-Obj] placeholders.

4 Experiments and preliminary results
In this paper, we provide a first evaluation of the
ranking component; we believe that there are many
ways of finding more candidate sentences (see Sec-
tion 5), but predicting which candidate is suitable
(or not) is particularly crucial in our pipeline.

8See Appendix B for details on the data and fine-tuning.

Evaluation setup. For the evaluation, we com-
pare two models, the off-the-shelf Transformer
(Reimers and Gurevych, 2019) and our fine-tuned
version of it, on two datasets, (a) the WebNLG+
development subset of single-property inputs (401
triples), and (b) the subset of the WebNLG+ test set
comprising all and only items with properties not
seen in the WebNLG+ training data (113 triples).
The objective is to obtain performance upper and
lower bounds for the fine-tuned model by examin-
ing how accurate it is at selecting the right candi-
date (a) for properties seen during fine-tuning, and
(b) for unseen properties, which is the most realis-
tic scenario for PredArg template extraction. For
each input triple, there are 1 to 3 exactly matching
sentences (the corresponding reference sentences
in the WebNLG+ dataset), which are the target
sentences that we want the model to prefer (rank
highest) for the input triple. For use as the non-
matching candidates, which should be dispreferred
(ranked lower) by the model, we select all other
sentences that verbalise one-triple inputs, and all
sentences that verbalise two-triple inputs; the total
Dev and Test candidate pools contain 1,834 and
2,887 sentences respectively. This way, we ensure
that we have candidates with a significant mean-
ing overlap with the target sentences (one-triple
inputs can share elements with one another, see
Section 3.2, and two-triple inputs can include ele-
ments or even full triples of the one-triple inputs).

Results. On the development data (top half of
Table 2), the fine-tuned model ranks all the target
sentences at the top in 98.5% of the cases, and
one of the target sentences at the top in 99.5%
of the cases. The average similarity score of the
correctly top-ranked sentences is 0.963, and the
first non-target sentence is on average scored 0.346
points below. The off-the-shelf model is effective
at placing one, but not all, target sentences at the
top, and the difference in scores between the target
and non-target sentences is half of what it is for the
fine-tuned model (0.170 and 0.346 respectively).

To assess to what extend the models capture
the semantics of the properties, we repeated the
experiment above but modifying the input triples
in two ways: replacing the property name by an-
other randomly selected property (Avg. top PMod),
and inverting the DB-Subj and DB-Obj (Avg. top
PInvSO). The off-the-shelf model has a harder time
discriminating between correct and wrong proper-
ties than the fine-tuned model (similarity scores of
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0.785 and 0.684, respectively, for the off-the-shelf
model, 0.963 and 0.754 for the fine-tuned model).
However, neither of the models is able to discrim-
inate cases where the DB-Subj and DB-Obj are
switched, yielding even higher scores on average
than with the original triple (Avg. top PInvSO).

We then looked for the threshold at which a
model gets the best F1 score when selecting a can-
didate sentence. We tested all thresholds (in steps
of 0.01 from 0 to 1) for each model on the Dev set
and obtained values of 0.73 and 0.87 for the off-
the-shelf and fine-tuned models respectively, which
yield a F1 of 0.798 and 0.955 respectively. On the
unseen test set, these thresholds yield a significantly
lower F1 score, the fine-tuned model reaching an
F1 of only 0.694 and the off-the-shelf model 0.429.
Note that a better F1 can be achieved on these un-
seen triples by selecting different thresholds (both
higher, at 0.93 and 0.78 respectively).9

Error analysis. We examined all the false pos-
itives and false negatives for the best threshold
on the Dev set (0.87), and found the following er-
rors.10 False positives (53 errors): (i) a sentence
that corresponds to 2 triples was selected, because
one or more elements of the second triple are very
similar with the input triple’s DB-Subj, DB-Obj
or Property (75% of errors); (ii) the selected sen-
tence verbalises a triple that is almost identical to
the input triple (25%). False negatives (35 errors):
(i) mismatch between a DB-Subj, Property or DB-
Obj and their corresponding verbalisation due to
an accent, a comma in a number, quotation marks,
parentheses, casing (57%); (ii) a triple element is
verbalised with a word judged semantically distant
(29%); (iii) a reference sentence is wrong (14%).
Only false negatives (i) and (iii) in the stem from
errors or lack of normalisation in the data; the other
errors are due to the model.

Discussion. We were surprised by the decrease
in the score between the Dev and the Test sets, espe-
cially for the off-the-shelf Transformer, for which
we would expect no difference between seen and
unseen properties. We hypothesise that the Test
set is more challenging: (i) the reference sentences
seem less similar (0.910 on Test VS 0.932 on Dev
when running the off-the-shelf Transformer on the
gold sentences for triples of size 1); (ii) some prob-
lematic cases are more frequent (e.g. the DB-Subj
or DB-Obj has content in parentheses in 34% of

9Fig. 6 and 7 in Appendix C show the F1/Threshold plots.
10See Tables 3 to 8 in Appendix D for examples.

the Test triples, VS 12% in the Dev set); (iii) there
are more candidate sentences for the Test set (see
Evaluation setup). There are likely other factors.

All properties of Dev. Set (401 triples)
Off-the-shelf Fine-tuned

AccuracyAll (%) 91.02 98.50
AccuracyOne (%) 98.25 99.50
Avg. top POK 0.785 0.963
Margin 0.170 0.346
Avg. top PMod 0.684 0.754
Avg. top PInvSO 0.803 0.971
F1 (thresh.) 0.798 (0.73) 0.955 (0.87)

Unseen porperties of Test Set (113 triples)
Off-the-shelf Fine-tuned

AccuracyAll (%) 56.64 73.45
AccuracyOne (%) 87.61 96.46
Avg. top POK 0.787 0.929
Margin 0.110 0.212
Avg. top PMod 0.702 0.776
Avg. top PInvSO 0.815 0.952
F1 Dev thresh. 0.429 0.694
F1 (best thresh.) 0.537 (0.78) 0.745 (0.93)

Table 2: Evaluation of the ranking module (WebNLG+).
AccuracyAll/One = % of cases with all/one good can-
didate(s) ranked at the top; Avg. top POK = Average
score (0 to 1) of correctly top-ranked n candidates for a
given input triple; Margin = difference in % between
top ranked candidates and first non-correct candidate;
Avg. top PMod/InvSO = Average score (0 to 1) of the
top-ranked candidate for a given input triple in which
the property name was randomly changed / the DB-Subj
and DB-Obj were inverted; F1: best F1 score for candi-
date selection obtained via the indicated threshold.

5 Future work
We are currently developing the approach reported
here further, including investigating how to in-
crease the F1 for candidate selection on unseen
data, for instance by using cross-encoders for the
final ranking of the top candidates or NLI to fil-
ter out bad candidates (Abhishek et al., 2022). To
find more and better candidates, we will apply co-
reference resolution on the Wikipedia pages, test
Open IE approaches to identify text spans (Perera
and Nand, 2015), and explore the use of Simple
Wikipedia (Duma and Klein, 2013) and WEXEA
(Strobl et al., 2020). We will further develop our
prototype clause extractor, and will apply our ap-
proach to other languages to test its portability.
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A Sample outputs of all components

In this section , we illustrate each step of the whole
pipeline.

Input triple
Alan_Bean ∥ birthDate ∥ "1932-03-15"

Entity linking (DBpedia Spotlight)
• DB-Subj: Alan Bean

– kbid: 11139903761698166211
– dbpedia link:

http://dbpedia.org/resource/Alan_Bean

• DB-Obj: "1932-03-15"
– kbid: 0 (No dbpedia entity found)

Entity type assignment (Spacy)
• DB-Subj: Alan Bean

– Entity label: 380 (PERSON)

• DB-Obj: "1932-03-15"
– Entity label: 391 (DATE)

Typed pseudo-verbalisation
We first check if the DB-Subj or DB-Obj are

a number –using regular expressions- or a time
period –using the python module dateutil.parser. If
not, we do the DBpedia query:

• DB-Subj (Alan_Bean): None

• DB-Obj (1932-03-15): TIMEPERIOD

Since the DB-Obj has a type, we then query
DBpedia for the DB-Subj only, and choose the first
returned type (in bold below):

{{’uri’: ’http://dbpedia.org/ontology/Person’},
{’uri’: ’http://dbpedia.org/ontology/Animal’},
{’uri’: ’http://dbpedia.org/ontology/Astronaut’},
{’uri’: ’http://dbpedia.org/ontology/Eukaryote’},
{’uri’: ’http://dbpedia.org/ontology/Species’}}

We can then proceed to produce the pseudo-
verbalised triple as follows:

<PERSON> Alan Bean <PROP> birth date
<TIMEPERIOD> "1932-03-15"

Sentence extraction (Entity matching) and pars-
ing (Stanza)
To get Wikipedia pages, we retrieve (i) the page
of the DB-Subj, (ii) the page of the DB-Obj if any,
and (iii) 1,000 random article about an entity that
has the same type as the DB-Subj (matching the
Spacy tag of the title with that of the DB-Subj). We
then look for candidates on the pages, based on
the type predicted by DBpedia Spotlight (pages of
DB-Subj and DB-Obj) or by Spacy (other pages).
We detokenise the DB-Subj and the DB-Obj for
them to be parsed as one single named entity.

Figure 4: Sample UD structure (selected columns)

Clause Extraction (graph transduction gram-
mars)
The output of the clause extractor is the minimal
subtree that contains both the DB-Subj and
the DB-Obj, with additional trimming (e.g. a
relative pronoun before the DB-Subj is removed):
’Alan_Bean was born on "1932-03-15"’

Clause ranking (Transformer)
The similarity of the extracted clause with the
input triple is then calculated: ’Alan_Bean was
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born on "1932-03-15"’ -> 0.8853045701980591’.
If the clause is above the defined threshold, it is
selected for the template. See more examples of
ranking and selection in Appendix D.

Conversion to PredArg (UD Converter)
Figure 5 shows the delexicalised predicate-
argument template extracted from the selected
clause.

Figure 5: Sample PredArg template (selected columns)

B Details on the fine-tuning step

Our method for triple pseudo-verbalization is based
on the one in (Pasricha et al., 2020); we adapted a
couple of aspects not detailed in the paper: (i) we
implemented our own simple functions for check-
ing if a DB-Obj is of type number or date, and (ii)
we took the first ontology type (starting with dbo:)
in the rdf:type section of the DBpedia page for the
other types.

The finetuning dataset is built from the one-triple
items in the test set of the WebNLG+ dataset.11 For
finetuning the model, we sample 7,645 items for
each of the 4 similarity categories as explained in
the paper. The sample is divided 70/15/15 for train-
ing, development and test sets, respectively. The
train batch size is 16, and the train loss is Cosine
Similarity Loss. It uses the Embedding Similarity
Evaluator (which uses the development set) with
evaluation steps = 1000, and some warm-up steps
(10% of the training data), with num_epochs = 4.

C Plots F1-score clause ranking and
selection

Figures 6 and 7 show a plot of the F1-score in
function of the selection threshold for candidate
sentences.

D Sample classification errors

Tables 3 to 8 show examples of mis-selection of
candidate sentences for an input triple. In cyan,
correctly selected target sentences; in orange, erro-
neously selected (false positive) or discarded (false
negative) sentences.

11https://drive.google.com/file/d/
1BM-W0GTa931jdNp1De_vHcfa8GGdPhTL/view?
usp=sharing
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Figure 6: Threshold definition for clause selection (Development set)
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Figure 7: F1 score for clause selection (Test set)
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Input
<AIRPORT> Athens International Airport <PROP> location <PLACE> Spata
Target sentences
Athens International Airport is located in Spata.
Athens International Airport is in Spata.

Top-ranked sentences Score
Athens International Airport is located in Spata. 0.958
Athens International Airport is in Spata. 0.955
Athens International Airport, which is located in Spata, serves the city of Athens. 0.949
Athens International Airport is in Spata and serves the city of Athens. 0.943
Athens International Airport in Spata serves the city of Athens. 0.934
Agra Airport is in Agra. 0.523

Table 3: False positive Dev Type (i) (Non-target sentence > 0.87)

Input
<PLACE> Ann Arbor, Michigan <PROP> leader title <PERSONFUNCTION> Mayor
Target sentences
Mayor, is the title of the leader in Ann Arbor, Michigan.
The leader title of Ann Arbor, Michigan, is Mayor.
Ann Arbor, Michigan is led by the Mayor.

Top-ranked sentences Score
The leader title of Ann Arbor, Michigan, is Mayor. 0.994
Ann Arbor, Michigan is led by the Mayor. 0.990
Mayor, is the title of the leader in Ann Arbor, Michigan. 0.988
The City Administrator leads Ann Arbor in Michigan. 0.908
A City Administrator leads Ann Arbor, Michigan. 0.897
Albany, Georgia is led by a Mayor. 0.657

Table 4: False positive Dev Type (ii) (Non-target sentence > 0.87)

Input
<AIRPORT> Alpena County Regional Airport <PROP> runway length <NUMERIC> 1533.0
Target sentences
The runway length of Alpena County Regional Airport is 1,533.
The runway length of Alpena County Regional airport is 1533.0.

Top-ranked sentences Score
The runway length of Alpena County Regional airport is 1533.0. 0.995
The runway length of Alpena County Regional Airport is 1,533. 0.567
The Adolfo Suárez Madrid–Barajas Airport is in San Sebastián de los Reyes and has a runway length of

0.474
3500.0 metres.

Located in Alcobendas, Adolfo Suarez Madrid-Barajas Airport has a runway with the length of 3500.0 metres. 0.470
The Adolfo Suárez Madrid–Barajas Airport located at San Sebastian de los Reyes has a runway length of 3500. 0.466
Ann Arbor, Michigan has a population of 1580.7 per square kilometre and a total area of 74.33 square kilometres. 0.464

Table 5: False negative Dev Type (i) Number (Target sentence < 0.87)
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Input
<FOOD> Bakso <PROP> ingredient <FOOD> Noodle
Target sentences
Bakso contains noodles.
Noodle is an ingredient in Bakso.
The dish Bakso contains noodles.

Top-ranked sentences Score
Noodle is an ingredient in Bakso. 0.989
The dish Bakso contains noodles. 0.857
Bakso contains noodles. 0.820
Vermicelli is an ingredient in Bakso. 0.640
Vermicelli is an ingredient of the dish Bakso. 0.636
Vermicelli is included in bakso. 0.553

Table 6: False negative Dev Type (i) Casing (Target sentence < 0.87)

Input
<PERSON> N. R. Pogson <PROP> nationality <MUSICALARTIST> England
Target sentences
N. R. Pogson was English.
N.R. Pogson was an English national.
N. R. Pogson is British.

Top-ranked sentences Score
N.R. Pogson was an English national. 0.913
N. R. Pogson is British. 0.909
N. R. Pogson was English. 0.574
People from the United Kingdom are called British people. 0.482
British people is a demonym for people in the United Kingdom. 0.458
The native people of the United Kingdom are known as the British people. 0.441

Table 7: False negative Dev Type (ii) (Target sentence < 0.87)

Input
<PLACE> Swords, Dublin <PROP> is part of <SETTLEMENT> Dublin (European Parliament constituency)

Target sentences
Swords is a part of the Dublin European Parliamentary constituency.
Swords belongs to the Dublin constituency of the European Parliament.
Swords, Dublin is part of the Dublin European Parliament constituency.

Top-ranked sentences Score
Swords, Dublin is part of the Dublin European Parliament constituency. 0.893
Swords is a part of the Dublin European Parliamentary constituency. 0.835
Swords belongs to the Dublin constituency of the European Parliament. 0.774
Trane is located in Swords, Dublin, Ireland. 0.638
Trane is located in Swords, Dublin, which is in Ireland. 0.625
The location of Trane is in Swords, Dublin, Ireland. 0.620

Table 8: False negative Dev Type (iii) (Target sentence < 0.87)
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