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Abstract

Text classification is a popular and well-studied
problem in Natural Language Processing. Most
previous work on text classification has focused
on deep neural networks such as LSTMs and
CNNs. However, text classification studies us-
ing syntactic and semantic information are very
limited in the literature. In this study, we pro-
pose a model using Graph Attention Network
(GAT) that incorporates semantic and syntactic
information as input for the text classification
task. The semantic representations of UCCA
and AMR are used as semantic information
and the dependency tree is used as syntactic in-
formation. Extensive experimental results and
in-depth analysis show that UCCA-GAT model,
which is a semantic-aware model outperforms
the AMR-GAT and DEP-GAT, which are se-
mantic and syntax-aware models respectively.
We also provide a comprehensive analysis of
the proposed model to understand the limita-
tions of the representations for the problem.

1 Introduction

The text classification problem has been widely
studied in the literature (Yao et al., 2019;
Malekzadeh et al., 2021) in the field of Natural
Language Processing (NLP).

The text classification problem has been recently
used as a downstream task in SentEval (Conneau
and Kiela, 2018), a toolkit for evaluating sentence
representations. In the literature, studies on Seman-
tic Textual Similarity (STS) (Reimers et al., 2019;
Gao et al., 2021) have used the text classification to
evaluate the sentence embeddings learned by their
proposed models using the datasets provided by the
SentEval toolkit (Conneau and Kiela, 2018).

For text classification, traditional deep learning
models such as Long Short-Term Memory (LSTM)
Networks (Hochreiter and Schmidhuber, 1997)
and Convolutional Neural Networks (CNN) (Kim,
2014) have been adopted. These deep learning
models capture the local semantic and syntactic

information by using the input as a sequence of
words but they ignore the semantic and syntactic
information of the input (Peng et al., 2018). Re-
cently, Graph Neural Networks (GNNs) (Battaglia
et al., 2018; Cai et al., 2018) have been used for
text classification (Yao et al., 2019; Malekzadeh
et al., 2021), sequence labeling (Marcheggiani and
Titov, 2017; Zhang et al., 2018a), and question
answering (Song et al., 2018; De Cao et al., 2019).

In dependency parsing the aim is to find a tree
that represents dependencies between words in a
sentence. On the contrary, semantic parsing maps
a text to its formal representation that provides an
abstraction of its meaning. There has been a recent
increase in the studies that propose various neural
network architectures such as tree-LSTM (Takase
et al., 2016), Heterogeneous Graph Transformer (Li
et al., 2020), and Transformer (Xie et al., 2021) that
integrate semantic and syntactic information. GNN
models that integrate external representations into
deep learning models referred to as semantic and
syntax-aware models, are the well-studied models
in the literature for various NLP problems such
as Neural Machine Translation (NMT) (Bastings
et al., 2017) and text classification (Elbasani and
Kim, 2022). These models have gained attention
because they are capable of capturing information
over long distances, especially between discontinu-
ous constituents (Wang and Li, 2022).

In this study, we analyzed the impact of semantic
and syntactic representations within Graph Atten-
tion Networks (GAT), particularly for the text clas-
sification problem. We used the dataset provided
by SentEval toolkit (Conneau and Kiela, 2018). We
constructed the GAT model by integrating Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013) and the Universal Conceptual Cognitive An-
notation (UCCA) (Abend and Rappoport, 2013)
as graph-based semantic representations and the
dependency tree as syntactic representation. Since
the size of the datasets in SentEval toolkit (Con-
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neau and Kiela, 2018) is different, we evaluated
the results of our proposed model with the studies
that use the SentEval toolkit (Conneau and Kiela,
2018). 1

The rest of the paper is organized as follows. Sec-
tion 2 reviews similar semantic and syntax-aware
models. Section 3 describes our methodology for
addressing the text classification problem using
semantic and syntactic parser models. Section 4
presents our experimental results along with a de-
tailed analysis of the proposed models. Finally,
Section 5 concludes the paper with insights on the
impact of the semantic and syntactic information
on the classification problem.

2 Related Work

In addition to the traditional neural networks that
simply rely on neural language models, semantic
and syntax-aware models have been recently used
effectively in NLP problems such as text classifica-
tion (Ahmed et al., 2018; Huang et al., 2020; Liang
et al., 2022; Elbasani and Kim, 2022), natural lan-
guage generation (Guo et al., 2021), question an-
swering (Schlichtkrull et al., 2020), semantic role
labeling (SRL) (Schlichtkrull et al., 2020; Moham-
madshahi and Henderson, 2021), reading compre-
hension (Sachan and Xing, 2016; Galitsky, 2020),
text summarization (Takase et al., 2016; Dohare
and Karnick, 2017), language modelling (Zhang
et al., 2020), and machine translation (Qin and
Liang, 2020; Slobodkin et al., 2021; Nguyen et al.,
2021; Li and Flanigan, 2022).

Dependency trees usually provide sufficient syn-
tactic information in various NLP tasks (Huang
et al., 2020; Liang et al., 2022; Guo et al., 2021)
and improve the performance of the models con-
siderably. As for the external resource of semantic
information, the most popular semantic represen-
tation is the AMR (Hardy and Vlachos, 2018; El-
basani and Kim, 2022; Kouris et al., 2022).

In particular, GNNs (Bastings et al., 2017;
Marcheggiani and Titov, 2019; Schlichtkrull et al.,
2020; Guo et al., 2021; Elbasani and Kim, 2022)
have been used as models into which syntac-
tic and semantic information are easily inte-
grated. In addition to GNNs, Transformers have
also been used to integrate such external re-
sources such as syntax-aware word representation
(SAWR) (Xie et al., 2021), syntax-aware local at-

1The code is publicly available at https://github.
com/adalin16/depling-GAT

tention (SLA) (Li et al., 2020), syntax-graph guided
self-attention (SGSA) (Gong et al., 2022), Scene-
Aware Self-Attention (SASA), and Scene-Aware
Cross-Attention (SACrA) head (Slobodkin et al.,
2021). Last but not least, the Heterogeneous Graph
Transformer (Hu et al., 2020), a customized ver-
sion of the Transformer (Vaswani et al., 2017), has
been recently introduced as a model with semantic
AMR information (Yao et al., 2020).

3 Methodology

In this section, we describe the proposed semantic-
and syntax-aware GAT models that integrate se-
mantic and syntactic information as external re-
sources into the model. First, we explain the pre-
processing step that is performed to convert the text
into the required form to be processed by the GAT
model.

3.1 Preprocessing

GAT models use adjacency and feature matrices
that are extracted from graphs as input. There are
several approaches to transform a text into a graph,
such as digitizing text (Hamid et al., 2020), sta-
tistical methods (PMI, TF-IDF) (Yao et al., 2019),
dependency trees (Zhang et al., 2018b) or semantic
graphs (AMR) (Elbasani and Kim, 2022).

In this study, we use dependency trees and se-
mantic graphs. Here we explain the preprocessing
step along with the parser model that is used to con-
vert datasets into dependency trees and semantic
graphs, as well as the details of extracting adja-
cency and feature matrices from graphs and trees.

Converting datasets into graphs/trees The
parser models that are employed to extract the
graphs and trees from the datasets are described
below:

• UCCA Semantic Parser We use the self-
attentive semantic parser model by Bölücü
and Can (2021) to extract the UCCA-based
semantic representations. The model is based
on a graph-based approach with an encoder-
decoder architecture, where the encoder is
a Transformer (Vaswani et al., 2017) with 2
MLP classifiers and the decoder corresponds
to the CYK algorithm (Chappelier and Raj-
man, 1998) that generates a constituency tree
with the maximum score using the per-span
scores obtained from the transformer encoder.
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Figure 1: UCCA, AMR semantic graphs, and the dependency trees along with the feature and adjacency matrices
that are used as input to the GAT model are illustrated for the example phrase “a gentle compassionate drama about
grief and healing" from the MR dataset (Pang and Lee, 2005). The gray color in the matrix represents the value of 1
and the white color represents the value of 0. Each row in the feature matrix corresponds to the pre-trained word
embedding of a node in the graph/tree.

• AMR Semantic Parser As an AMR seman-
tic parser, we use the T5 parser (Roberts
et al., 2020). The model is based on a lan-
guage model that is fine-tuned on English.
The model is integrated into the spaCy li-
brary (Honnibal and Montani, 2017) and is
called AMRLib2.

• Dependency Parser We use the Deep Bi-
affine dependency parser model Dozat and
Manning (2016) to extract the dependency
trees. The model is based on a graph-based
approach where BiLSTM with biaffine clas-

2https://spacy.io/universe/project/
amrlib

sifiers is used as an encoder and MST is
used as a decoder that generates dependency
trees from predicted arcs and labels in the en-
coder. We use the model3 integrated within
the Stanza library (Qi et al., 2020).

Extracting adjacency and feature matrices from
graphs/trees Since the inputs of the proposed
model are adjacency and feature matrices, we ex-
tracted the matrices from graphs and trees. The
semantic representations of UCCA and AMR are
based on DAG, and the dependency trees are rep-
resented by trees. We followed the same proce-

3https://stanfordnlp.github.io/stanza/
depparse.html
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Figure 2: Overview of the GAT model along with its input in the form of a feature and adjacency matrix. The
matrices correspond to semantic and syntactic information in the form of a UCCA or an AMR graph, or a dependency
tree.

Dataset Train Dev Test
Movie Review (MR) (Pang and Lee, 2005) 10,662 train in k-fold test in k-fold
Customer Review (CR) (Hu and Liu, 2004) 3,770 train in k-fold test in k-fold
Subjectivity / Objectivity (SUBJ) (Pang and Lee, 2004) 10,000 train in k-fold test in k-fold
Multi-Perspective Question and Answering (MPQA) (Wiebe et al., 2005) 10,606 train in k-fold test in k-fold
Stanford Sentiment Analysis 2 (SST-2) (Socher et al., 2013) 67,349 872 1,821
Text Retrieval Conference (TREC) (Voorhees and Tice, 2000) 5,452 train in k-fold 500
The Microsoft Research Paraphrase Corpus (MRPC) (Dolan et al., 2004) 4,726 train in k-fold 1,725

Table 1: The details of the datasets given in the downstream tasks in SentEval toolkit.

dure for all of the representations considering all
as graphs.

For a given graph G = (V,E), V is the set of
nodes and E is the set of labeled edges (UCCA -
edges, AMR - relations between nodes, dependency
tree - dependency relations). We extracted:

• the feature matrix X (n × k, where n is the
number of nodes (UCCA - terminal and non-
terminal nodes, AMR - words, dependency
tree - words except the ROOT node) in the
graph and k is the embedding dimension),

• the adjacency matrix A (n×n, where n is the
number of nodes in the graph), which is not
trainable.

For the feature matrix, we used pre-trained
word embeddings (BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019)) for nodes (UCCA - terminal nodes,

AMR - words, dependency tree - words) and a
randomly generated embedding with the same em-
bedding dimension of the pre-trained word embed-
dings for non-terminal nodes in UCCA.

UCCA, AMR, and dependency tree representa-
tions of the phrase “a gentle compassionate drama
about grief and healing" from the Movie Review
(MR) dataset (Pang and Lee, 2005) with extracted
adjacency and feature matrices are given in Fig-
ure 1.

3.2 Graph Attention Network

In order to incorporate external semantic infor-
mation, we adopted Graph Attention Networks
(GAT) (Veličković et al., 2017) that are based on
self-attention layers. We used GATs for the text
classification problem since they provide a straight-
forward method to utilise semantic information in
the form of a semantic graph (UCCA/AMR) or a
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dependency tree. The overview of the model is
given in Figure 2.

GNN models have different types of updating
mechanisms for nodes. The basic version of updat-
ing, as applied in this study, updates each node i in
the l-th layer, H l+1 as follows:

H l+1 = σ(AH lW l) (1)

where σ(·) refers to ReLU non-linear activation
function, A is the adjacency matrix, W l is the at-
tention weights in the l-th layer. H l is the feature
matrix of the l-th layer (H0 = X , where X is the
feature matrix extracted from a semantic graph or a
dependency tree) where l is a hyperparameter that
needs to be finetuned for the graph.

We fed the output of the node in the final layer
into the output layer that applies the softmax func-
tion to generate the output class of a given text
either as a binary or a multi-class classification:

Z = softmax(Ho) (2)

where Ho is the feature matrix of the final GAT
layer.

4 Experiments and Results

4.1 Datasets
We evaluated the model on 7 downstream tasks
given in the SentEval toolkit (Conneau and Kiela,
2018). The details of the datasets are given in
Table 1.

4.2 Experimental Setting
We used PyTorch 3.7 to implement the model. We
used cross-entropy loss for both binary and multi-
class classification. The Adam (Kingma and Ba,
2014) was used as the optimizer in all models with
ϵ = 1e − 8, and the default max grad norm for
gradient clipping.

We used the monolingual (BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019)) and multilingual pre-trained lan-
guage models (M-BERT (Devlin et al., 2019),
XLM-R (Conneau and Lample, 2019), XLM-R-
large (Conneau et al., 2020)) in order to build the
feature matrices as described in Section 3.1. All
hyperparameters along with their values are given
in Appendix A.

We evaluated the models applied to binary and
multi-class classification problems using the SentE-
val toolkit (Conneau and Kiela, 2018). We used ac-
curacy metric in all downstream tasks and reported

Precision, Recall, and F1 for a detailed analysis of
the class-wise results for TREC.

4.3 Results

The results obtained from the semantic and syntax-
aware GAT models (UCCA-GAT, AMR-GAT, and
Dep-GAT) on 7 datasets in SentEval toolkit (Con-
neau and Kiela, 2018) along with the state-of-the-
art results are given in Table 2. The results show
that the performance of the GAT models is slightly
behind the state-of-the-art results (Cer et al., 2018;
Gao et al., 2021; Reimers et al., 2019). The main
reason is that these models learn sentence embed-
dings and then apply the learned sentence embed-
dings to the downstream tasks (Reimers et al., 2019;
Gao et al., 2021). Here, the main aim is to inves-
tigate the external usage of semantic and syntac-
tic information without performing separate learn-
ing for sentence embeddings but solely relying on
the existing semantic and syntactic information.
Therefore, we only compare the performance of
the semantic- and syntax-aware GAT models with
each other for 7 downstream tasks. The results
show that the UCCA-GAT model performs better
than the AMR-GAT and the Dep-GAT models. The
analysis of the adjacency matrices extracted from
the AMR semantic parser and the UCCA seman-
tic parser shows that the relations such as “about",
“like", “of", etc. are defined as concepts and used as
edge labels instead of nodes in the AMR representa-
tion. Since our models use the nodes without edge
labels, the model misses the concepts that might
give a clue about the target class. This also leads
to sparse adjacency matrices for AMR graphs com-
pared to other adjacency matrices extracted from
UCCA graphs and dependency trees.

We analyse the class-wise results obtained from
the three models using the TREC dataset (Voorhees
and Tice, 2000) (multi-class classification prob-
lem). The results are given in Table 3. It can be
clearly seen that UCCA-GAT is particularly good
at predicting the classes “num" and “loc", since
the number of relations in the UCCA graphs is
higher in these classes than in other classes. The
performance of AMR-GAT is worse than the other
models (UCCA-GAT, Dep-GAT) because we lose
the relations represented as labels in the AMR se-
mantic representation and we used only the nodes
in the semantic and syntactic representations in the
preprocessing step during the extraction of the adja-
cency matrices for the AMR-GAT model. The Dep-
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Our proposed models
MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

UCCA-GAT 82.04 83.37 90.38 87.29 89.35 81.92 73.50 83.98
AMR-GAT 81.55 81.11 88.98 83.94 85.83 79.65 72.87 83.42
Dep-GAT 80.66 81.62 89.10 85.76 88.03 81.06 75.25 83.07

State-of-the-art
BERT-CLS embedding ♡ 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
BiLSTM ♢ 81.1 86.3 92.4 90.2 - - - -
Universal Sentence Encoder ♣ 80.09 85.19 93.98 86.70 86.38 93.2 70.14 85.10
SimCSE-BERTbase ♠ 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SBERT-NLI-large ♡ 84.88 90.07 94.52 90.33 90.66 87.4 75.94 87.69

Table 2: Accuracy results of the downstream tasks using the proposed models and the other state-of-the-art models.
The highest scores are given in bold. (♣ results from (Cer et al., 2018); ♠ results from (Gao et al., 2021); ♡ results
from (Reimers et al., 2019); ♢ results from (Conneau et al., 2017))

UCCA-GAT AMR-GAT Dep-GAT
Class Precision Recall F1 Precision Recall F1 Precision Recall F1
num 0.97 0.89 0.93 0.90 0.84 0.87 0.91 0.82 0.87
loc 0.86 0.79 0.83 0.86 0.78 0.82 0.82 0.80 0.81
hum 0.80 0.80 0.80 0.74 0.80 0.77 0.77 0.85 0.81
desc 0.85 0.83 0.84 0.82 0.83 0.82 0.87 0.87 0.87
enty 0.70 0.85 0.77 0.77 0.83 0.80 0.81 0.87 0.84
abbr 0.86 0.67 0.75 0.64 0.78 0.70 0.67 0.67 0.67
avg. 0.84 0.81 0.82 0.79 0.81 0.80 0.81 0.81 0.81

Table 3: Class-wise results on the TREC dataset (Voorhees and Tice, 2000)

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 78.33 79.15 87.80 82.78 85.01 80.40 69.68
RoBERTa 80.16 79.89 89.11 87.29 89.35 79.11 72.52
XLNet 74.62 75.99 83.15 77.46 80.56 76.82 67.71

Multilingual Embeddings
M-BERT 79.27 81.94 88.15 83.11 83.14 81.00 72.35
XLM-R 82.04 82.23 89.48 84.76 85.01 81.92 72.93
XLM-R-large 78.78 83.37 90.38 85.82 87.59 81.42 73.50

Table 4: Accuracy results obtained with monolingual and multilingual embeddings in UCCA-GAT model. The best
values are in bold.

GAT model achieves better overall results since the
dependency trees can capture long-distance infor-
mation. The only class that Dep-GAT cannot cap-
ture is “abbr", compared to the success achieved
with other classes in the TREC dataset (Voorhees
and Tice, 2000).

Figure 3 illustrates the confusion matrices of the
semantic and syntax-aware GAT models for the
TREC dataset. The results show that the UCCA-
GAT model predicts the class “num" better than

other models. In addition, the Dep-GAT model is
better at predicting the class “desc". For all models,
there is a general confusion between the classes
“desc" and “ent".

We also analyse the models deeply in terms of
the impact of the layers and embeddings.

• Embeddings We present an analysis of
the pre-trained language models used
in the extraction of feature matrix X
from UCCA, AMR, and dependency
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(a) UCCA-GAT (b) AMR-GAT (c) Dep-GAT

Figure 3: Confusion matrices of the semantic and syntax-aware GAT models on TREC dataset (Voorhees and Tice,
2000)

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 77.68 81.11 83.98 83.11 82.48 75.61 70.43
RoBERTa 81.55 79.44 85.44 83.44 85.83 79.65 70.78
XLNet 72.64 72.12 82.56 78.15 79.68 71.95 68.87

Multilingual Embeddings
M-BERT 78.77 79.71 87.45 82.17 83.91 76.42 71.19
XLM-R 79.49 79.28 88.98 83.56 84.46 78.20 72.87
XLM-R-large 80.10 80.08 87.95 83.94 85.01 78.62 72.35

Table 5: Accuracy results obtained with monolingual and multilingual embeddings in AMR-GAT model. The best
values are in bold.

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 77.30 79.50 86.43 82.99 83.64 78.80 70.78
RoBERTa 78.95 80.11 89.10 83.14 88.03 79.62 71.59
XLNet 72.45 74.40 82.47 78.04 81.38 75.27 69.51

Multilingual Embeddings
M-BERT 79.39 79.55 84.69 82.64 84.51 79.89 73.51
XLM-R 80.19 81.62 87.59 83.84 85.78 81.06 74.09
XLM-R-large 80.66 81.14 88.11 85.76 86.49 79.49 75.25

Table 6: Accuracy results obtained with monolingual and multilingual embeddings in Dep-GAT model. The best
values are in bold.

tree. We used BERT (Devlin et al., 2019)
(bert-base-cased), RoBERTa (Liu
et al., 2019) (roberta-base),
and XLNet (Yang et al., 2019)
(xlnet-base-cased) monolingual
embeddings with base variants consisting
of 768 hidden dimensions, whereas we
used multilingual version of BERT (M-

BERT) (Devlin et al., 2019), and RoBERTa
(XLM-R) (Conneau and Lample, 2019) and
its large version (XLM-R-large) (Conneau
and Lample, 2019).

The results obtained using monolingual and
multilingual pre-trained embeddings are given
in Table 4, 5 and 6 for UCCA-GAT, AMR-
GAT, and Dep-GAT respectively. The re-
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(a) MR Dataset (b) CR Dataset

(c) SUBJ Dataset (d) MPQA Dataset

(e) SST-2 Dataset (f) TREC Dataset

(g) MRPC Dataset

Figure 4: Accuracy scores based on the number of layers in the proposed models.

sults show that multilingual embeddings are
more effective for both proposed semantic and
syntax-aware models. In monolingual embed-
dings, the results obtained from the models
RoBERTa pre-trained word embeddings are
higher than that of the others (BERT, XLNet).

• Impact of the layers We also analyse the im-
pact of the number of layers in the proposed
models (UCCA-GAT, AMR-GAT, Dep-GAT)
on the performance of the models. We per-
form the experiments with embeddings with
which we obtained the best results. We vary
the number of the layers from 1 to 7 and re-
port the results in Figure 4 for all datasets
with UCCA-GAT, AMR-GAT, and Dep-GAT

models. The results show that the syntax-
aware model (Dep-GAT) learns in deeper lay-
ers, and semantic-aware models (UCCA-GAT
and AMR-GAT) tend to learn in shallow lay-
ers or in the middle layers. The previous
studies already show that syntactic features
are encoded in the shallow layers and seman-
tic features are encoded in the deeper layers
of the pre-trained language models (Conneau
et al., 2018; Jawahar et al., 2019), and here we
also obtained better results with deeper layers
in the syntax-aware model and with shallow
layers in the semantic-aware models (UCCA-
GAT and AMR-GAT).

16



5 Conclusion

Semantic and syntax-aware models have recently
been proposed for various NLP problems, that espe-
cially require long-distance information, especially
between discontinuous constituents, in addition to
the local information captured by sequential mod-
els. In this paper, we propose a graph neural net-
work model that incorporates semantic and syntac-
tic information for the text classification task. To
the best of our knowledge, this is the first study that
compares semantic and syntactic information used
in a graph neural network, specifically for the task
of text classification. We present a detailed analy-
sis of the results, showing that the UCCA semantic
information improves the performance of the clas-
sification model compared to syntactic information
(i.e. dependency tree). However, we were not able
to obtain similar results with the model using the
AMR semantic representation. This shows that the
preprocessing step to convert the graph into adja-
cency and feature matrices is a very important step
in GNN models.

As future work, we plan to improve the prepro-
cessing step to obtain more informative adjacency
and feature matrices.
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A Hyperparameter Values

Table 7, 8, and 9 list the hyperparameter values
used in the UCCA-GAT, AMR-GAT and Dep-GAT
models, respectively, for downstream tasks.
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Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.2 0.1 0.2 0.2 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout rate 0.1 0.1 0.1 0.2 0.1 0.1 0.1
number of hidden 800 800 800 800 400 800 800
number of head 2 1 2 2 4 1 1

Table 7: Hyperparameters used for the UCCA-GAT for downstream tasks in experiments

Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.1 0.1 0.2 0.1 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout rate 0.2 0.1 0.2 0.1 0.2 0.1 0.1
number of hidden 800 400 800 800 800 400 800
number of head 2 1 2 2 4 1 1

Table 8: Hyperparameters used for the AMR-GAT for downstream tasks in experiments

Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.1 0.1 0.2 0.1 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
dropout rate 0.1 0.1 0.2 0.1 0.2 0.1 0.1
number of hidden 800 400 800 800 800 400 800
number of head 2 1 2 2 4 1 1

Table 9: Hyperparameters used for the Dep-GAT for downstream tasks in experiments
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