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Abstract

This paper reports on negative results in a task
of automatic identification of schematic clausal
constructions and their elements in Brazilian
Portuguese. The experiment was set up so as
to test whether form and meaning properties
of constructions, modeled in terms of Univer-
sal Dependencies and FrameNet Frames in a
Constructicon, would improve the performance
of transformer models in the task. Qualitative
analysis of the results indicate that alternatives
to the linearization of those properties, dataset
size and a post-processing module should be
explored in the future as a means to make use of
information in Constructicons for NLP tasks.

1 Introduction

Constructional approaches to language descrip-
tion can be traced back to early work by Fillmore
(1968), which later gave rise to a myriad of ap-
proaches sharing the common assumptions that
(a) constructions are learned pairings of form and
function related to one another in a network, and
(b) grammar does not rely on transformations and
derivation, instead it is directly associated with
function (Goldberg, 2013).

From the 2000’s on, computational implementa-
tions of Construction Grammar started being built
both in terms of language resources comprising of
collections of constructions called Constructicons
(Fillmore, 2008; Lyngfelt et al., 2012; Ohara, 2014;
Torrent et al., 2014; Ziem and Boas, 2017), and
proofs of concept, namely constructional parsers
(Bryant, 2008; Matos et al., 2017).

As a natural consequence of the focus of con-
structionist analysis on families of constructions,
Constructicons typically start by modeling the
same kind of phenomena, leaving more schematic
and foundational language structures, clausal and
phrasal constructions, respectively, for later. These
kinds of constructions represent a challenge for
both Constructicography, that is, the process of de-

scribing and modeling constructions in a resource
(Lyngfelt et al., 2018), and for constructional pars-
ing, since schematic clausal constructions, as op-
posed to idioms, are typically difficult or impos-
sible to describe in terms of the presence of dis-
tinctive lexical fillers. Moreover, it is common for
those constructions to share constituency properties.
As an example, consider (1) and (2), both sentences
share the same syntactic structure in Brazilian Por-
tuguese, but express opposite types of semantic
events (controlled × uncontrolled activity), thus
representing instances of distinct constructions,
namely Intransitive and Unaccusative.
Because this difference is not derived from specific
lexical fillers, if the verbs in the examples were
to be changed to dance and slip respectively, the
same constructions would be used to describe the
sentences.

(1) Ele
He

correu
run.PST.3SG

hoje
today

pela
for

manhã.
morning

‘He ran this morning.’

(2) Ele
He

morreu
die.PST.3SG

hoje
today

pela
for

manhã.
morning

‘He died this morning.’

In this paper, we discuss insights from negative
results obtained in an experiment for identifying
schematic clausal constructions and their construc-
tion elements in Brazilian Portuguese (pt-br) by
using a combination of Multilingual BERT (Devlin
et al., 2019) with the computational representa-
tions of such constructions in the FrameNet Brasil
Constructicon (FN-Br Ccn) (Torrent et al., 2018;
da Costa et al., 2018; Almeida and Torrent, 2021).
Qualitative analysis of the results indicate that al-
ternatives to the linearization of the constructional
properties modeled in resources, number of an-
notated sentences and a post-processing module
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should be explored in the future as a means to make
use of information in Constructicons for NLP tasks.

In the remainder of this paper, we present, in
section 2, how constructions are represented in the
FN-Br Ccn. Next, in section 3, we go through the
steps needed to convert the FN-Br Ccn representa-
tions into a dataset that could be used for proposing
the construction identification model in section 4.
Sections 5 and 6 describe the experimental setup
used to evaluate the model and the results. Dis-
cussion of the results is carried out in section 7,
with quantitative and qualitative analyses. Section
8 presents final considerations.

2 Construction Representation in the
FN-Br Constructicon

The FN-Br Constructicon (Torrent et al., 2014,
2018) is built as part of the FrameNet Brasil lan-
guage resource, meaning that, similarly to lexical
units, constructions in this database can have their
meaning import represented in terms of frames.
Therefore, the semantics of the Intransitive
construction licensing (1) can be represented as the
Intentionally_act frame in Figure (1).

The database structure of FN-Br allows for
construction elements (CEs) to be mapped to
frame elements (FEs), when relevant. Hence,
the SUBJECT and the PREDICATE CEs in the
Intransitive construction can be respectively
mapped to the AGENT and ACT FEs in the
Intentionally_act frame.

Figure 1: The Intentionally_act frame.

Moreover, the FN-Br Ccn allows for other types
of information to be represented. First, CEs can be
defined in terms of phrasal constructions licensing

them. For the Intransitive, the SUB-
JECT CE is a Determined_noun_phrase,
while the PREDICATE is a
Non_complement_taking_verb_phrase.
Furthermore, the information that the verb CE of
this last construction has to be filled by a frame
that inherits Intentionally_act can also
be recorded. If instead, this slot was constrained
by a child frame of Undergoing, then this
would be an Unaccusative construction.
Formal properties of the construction can also be
represented, such as the fact that the SUBJECT

CE usually comes before the PREDICATE, and
that the first corresponds to the nsubj relation in
the Universal Dependencies tag set (de Marneffe
et al., 2021), while the latter would correspond
to the root. All the information associated to the
Intransitive construction in the FN-Br Ccn,
together with the fact that it inherits a general
Subject_predicate construction are shown
in Figure 2.

Figure 2: The Intransitive construction.

In addition to the two clausal constructions men-
tioned so far, work by Almeida (2022) has modeled
22 other clausal constructions and 22 phrasal and
POS constructions licensing the CEs in them in the
FN-Br Ccn. Many of those CEs share the same
name (e.g. PREDICATE), but are fully separate en-
tities in the database, each belonging to a single
construction. For that reason, when applying these
structures to an experiment for automatically iden-
tifying construction in corpora, the CEs can be
treated as the actual labels. A model working with
CEs is, arguably, more informative and easier to
interpret, despite being more complex. Moreover,
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the frame information, used to represent the seman-
tic part of a construction, is not lost because the
CEs are directly related to the FEs of frames. The
full dataset that includes pieces of the FN-Br Ccn
and setup used in this work are described next.

3 Dataset

The dataset used in the experiments had to be built
step by step because one of our research goals was
to assess the impact of Universal Dependencies
(UD) and Frame information embedding into a neu-
ral model for CE labeling, which is not a traditional
NLP task. The corpus consists of 673 sentences
annotated for UD, clausal constructions (and their
CEs) and frames. Subsections 3.1, 3.2 and 3.3 de-
scribe how each type of data was integrated into
the same dataset.

3.1 Universal Dependencies Treebank

To evaluate the impacts of UD information when la-
beling CEs in sentences, the model must be trained
on a corpus that has both types of data. Instead
of using the annotated sentences from the FN-Br
Ccn and including UD annotations, we opted to use
an existing, manually-annotated UD treebank and
include constructional information. Using a corpus
that has been reviewed by specialists reduces the
chances of results being affected by poor quality
UD annotations. Moreover, a manually-annotated
treebank has the advantage of guaranteeing that the
model results are be influenced by another system’s
errors. For those reasons, the UD (Brazilian) Por-
tuguese GSD treebank was chosen 1. It comprises
12019 sentences and 297045 tokens and was origi-
nally annotated using Stanford-style dependencies
for multiple languages and later converted into UD
(McDonald et al., 2013).

3.2 Constructions

To annotate the constructions for the UD pt-br GSD
sentences, the FN-Br WebTool was used, as it al-
ready contains the required set of features to work
with constructions and visualizing them (Torrent
et al., forthcoming). We worked exclusively on the
test subset of the UD pt-br GSD treebank, contain-
ing 1200 sentences. Before the annotation process
was carried out, 24 construction elements from 11
argument structure constructions were selected for
annotation. This set was chosen among all of the

1https://github.com/
UniversalDependencies/UD_Portuguese-GSD

constructions modeled by Almeida (2022) because
they were more likely to occur in the GSD treebank.
Moreover, our aim was to identify highly schematic
constructions, in opposition to constructions with
many fixed slots that could be identified by hybrid
or rule-based systems. In total, 673 sentences were
annotated. Table 1 shows not only the counts for
each construction, but also their schemata (for in-
stance examples, see Appendix A).

It is worth noting that the Instransitive
and Ergative pair discussed in section
1 is not the only in which constructions
share a schema. The same happens to
the Indirect_transitive and the
Oblique_transitive, but the former is
used by dative indirect objects, while the lat-
ter is more general. The difference between
the Elapsed_time construction and the
Presentational_existential, as their
names suggest, is semantic. The former con-
firms that something happened a certain time
ago, while the latter simply introduces a new
entity or event to a discourse. Finally, the
Stative_nominal_predicative and
Attributive_nominal_predicative
constructions assign states or attributes to their
SUBJECTS, something closely related to the type
of verbal copula present in the sentence. Other
constructions are constrained by the presence
existential verbs, indicating that the task of labeling
CEs deals with lexical, semantic and syntactic
constraints simultaneously.

In regards to their elements, the majority of the
constructions considered for the experiments have
only their SUBJECT and PREDICATE CEs (which
are treated as distinct types of subject and predi-
cates), with the execption of Elapsed_time and
Presentational_existential, which
have EXISTENTIAL VERBS, NOMINALS and
SECONDARY PREDICATES. Because the variety
of pt-br in the UD GSD tends to be monitored
for verb inflection and SUBJECTS could be nully
instantiated, in some sentences, only PREDICATE

CEs were annotated. The annotation schema was
designed to handle those cases. It is also worth
noting that multiple constructions can occur in one
single sentence. However, those instances were
discarded in next steps, so that the model could be
trained to label a single CE (see section 5).
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Construction Schema # Sent

Active_bitransitive [NP [V NP [PP]]] 21

Active_direct_transitive [NP [V [NP]]] 337

Indirect_transitive [NP [V [PP]]] 7

Oblique_transitive [NP [V [PP]]] 75

Intransitive [NP [V]] 33

Ergative [NP [V]] 30

Elapsed_time [Vexi [NP [VP]]] 2

Presentational_existential [Vexi [NP [VP]]] 8

Locative_predicative [NP [Vcop [AdvP | PP]]] 17

Attributive_nominal_predicative [NP [Vcop [AP | NP]]] 106

Stative_nominal_predicative [NP [Vcop [AP | NP]]] 37

Total - 673

Table 1: Constructions present in the dataset with their respective schemata and number of annotated examples.
The subscripts specify that the slots must be filled by existential verbs or verbal copulas. With the exception of
Elapsed_time and Presentational_existential, all constructions have SUBJECT and PREDICATE
construction elements. The CEs on these two are the EXISTENTIAL VERBS, NOMINALS and SECONDARY PREDI-
CATES.

3.3 Frames

The FN-Br Ccn represents constructions in an in-
terconnected graph to express inheritance between
them, but also to connect them to other types of
entities, including frames, which can be used to ex-
plicitly define the semantics of constructions (see
Appendix B). Although it would not make sense to
feed this frame information to our model because
it is part of the prediction objective, these frames
serve as anchor nodes to identify relevant clusters
in the network. Such clusters can be used to im-
prove the quality of CE classification. The idea of
using frame clusters as explicit semantic informa-
tion was implemented using two algorithms that
compute potentially relevant frames for each token
in the sentences.

The first algorithm, responsible for frame disam-
biguation, has been used in previous works (Matos
and Salomão, 2014; Costa et al., 2022). It consists
of a variation of the spreading activation algorithm
executed over the whole network. First, the system
identifies and activates the nodes for the words in
the sentence, then it iterates over their neighbor
nodes spreading “energy”. For each word that con-
tains a potential lexical unit, the frame with the
highest energy is selected as the evoked frame. The
algorithm is highly dependent on FN-Br’s cover-

age, especially of lexical items, because they act as
the initial activation points.

The goal of the second algorithm is to identify
a set of frames related to a token that could be
relevant for label prediction. The procedure de-
pends on a fixed set of frames, containing those
related to one of the 11 relevant argument structure
constructions in the database. FN-Br is also modi-
fied when running this algorithm: it is transformed
in a digraph where arcs represent the inheritance,
subframe and perspective relations in the original
database. For each token, the system finds the min-
imum paths from its frame to the frames related
to constructions in the digraph. In many instances,
this path doesn’t exist and the token is associated
only to its own frame. For the others, the frame
is associated to the whole cluster of potentially
relevant frames.

4 Model

Figure 4 shows the general architecture of the pro-
posed model. The system was designed and imple-
mented in a way such that some components could
be switched or just removed to facilitate testing of
the various scenarios.The most important elements
in the model are described next.
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Figure 3: The complete architecture of the proposed system. Because BERT manipulates word piece tokens, the
sequence size of the UD annotated sentence (M ) is not the same as L. The output from BERT is transformed into a
M size sequence later in the pipeline using a mapping of word piece indices to UD tokens. Each vector i in this
sequence – referred as Ei in the image – is concatenated with its position frame embedding and UD relation, which
is then used by other components to label the construction element in that position.

4.1 Preprocessing

As described in section 3, the dataset built for the
experiment already includes tokenized sentences.
In this schema, tokens correspond to words, with
the exception of some special cases, such as con-
tractions. BERT, however, is trained on sequences
created by a word piece tokenizer, i.e., tokens can
be full words, but also subwords. During prepro-
cessing, each sentence in the corpus went through
BERT’s word piece tokenizer and the resulting se-
quences of subwords were stored. Using those
sequences and the treebank tokenized sentences, a
mapping between indices was computed for each
record, so that, given any subword, its complete
token can be retrieved. Both the BERT tokenized
sequences and the mappings serve as inputs to the
model.

4.2 Encoding UD relations & Frames

Neural networks can process syntactic trees using
two main approaches: having a specialized archi-
tecture to handle these complex data structures or
apply some form of transformation to linearize the
trees (Tai et al., 2015; Liu et al., 2017). The former
has the advantage of being designed to perform
this type of task, albeit being more computationally
expensive and more complex to implement. In this
work, the trees were linearized using a strategy very
similar to the one described by Liu et al. (2017). It
works by first associating each token with its one-

hot encoded relation to its head. By itself, this is
not enough to represent the relation because there is
no information about the head. To compensate for
this, the tokens are reorganized into a Breadth-first
search (BFS) sequence order, which guarantees
that the head of a relation will always come before
its dependent tokens. The only setback is the lack
of limits in the distance between two related tokens.
It is important to note that this reordering of the
sequence never happens before the sentence is pro-
cessed by BERT, as that is not compatible with how
the language model was trained.

Similarly to the UD relations, the frame clusters
associated to each token in the dataset were lin-
earized into sparse binary vectors where each posi-
tion indicates the presence of a frame. Those sparse
vectors of size 1136 (total number of frames) are
reduced to 50-dimension vectors by a dense layer
before they are used by a LSTM or Transformer
Block. This linearization process does not embed
any type of information about the relation between
frames, but has the advantage of being easily inte-
grated into the model without the need of a special
architecture.

4.3 Pre-trained BERT

In all of our experiments, a pre-trained multilin-
gual BERT model (Devlin et al., 2019) was used
as the first component, with the goal of obtaining a
sequence of vectors from a sequence of sub-words
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in our corpus. Although word embedding models
could have been used for this step, there are advan-
tages in using a language model. First, because of
how those models are trained, vector representa-
tions of tokens are contextual, i.e., there is no single
word vector, but a representation of that word in
a specific sentence. The added information is es-
pecially useful, considering that our final task is
the identification of CEs that may be represented
by multiple words in a sentence. In fact, there is
evidence that constructional information can be
identified and extracted from BERT vectors (Tay-
yar Madabushi et al., 2020). Second, the fact that a
single model was trained in 104 languages makes
it easier to evaluate our experiments for other Con-
structicons, modeled after other languages. Finally,
the applicability of this type of model to many dif-
ferent tasks in NLP makes it a good candidate for
fine-tuning in our CE labeling experiments.

For all settings presented in section 5, the BERT
model was fine-tuned to each downstream task us-
ing the multilingual cased parameters as the check-
point2. In this procedure, each BERT sequence
output is transformed into one of smaller dimen-
sions before feeding it to the subsequent layers.
This transformation was necessary because BERT
operates at the subword level, while our CE labels
are assigned at the word level. For this step, we
simply averaged all of the subword vectors of a
single word to obtain a sequence of a smaller size.

4.4 Bi-LSTM

Long short-term memory (LSTM) artificial neu-
ral networks are designed to process sequences of
data without the caveats of normal recurrent net-
works, especially the problem of vanishing gra-
dients (Hochreiter and Schmidhuber, 1997). A
LSTM unit processes data in sequential timesteps,
taking as input the cell and hidden state from a pre-
vious timestep, as well as the actual data input and
outputting new cell and a new hidden output. In
theory, each output is related to a different type of
information: the hidden state, when dealing with
text data, is the current token output and the cell
state is a more general, sentence-level memory that
can always be influenced.

In our experimental setup, we used unmodified
LSTM cells, containing only the forget and input
gates to change the cell state, and the output gate.

2https://github.com/google-research/
bert

We also made sure to use a Bidirectional LSTM,
since relevant information of a CE can be present
before or after the actual CE in the sentence. Dur-
ing development, we have decided to use hidden
(and cell) states of 20 dimensions for each direction,
because greater values didn’t increase performance.
The forward and backward hidden states were con-
catenated, resulting in vectors of size 40 for each
position in the sequence. In the final model, the Bi-
LSTM layer input are the averaged BERT vectors
concatenated with their UD and frame information
and in BFS order, according to their dependency
tree. This layers transforms the inputs to vectors of
lower dimension to be classified by a final layer.

4.5 Transformer Block

The Transformer architecture (Vaswani et al., 2017)
was proposed as a “simpler” alternative to popu-
lar sequence neural networks, relying only on at-
tention mechanisms, instead of the recurrence ob-
served in an LSTM network, for example. The
most important mechanism in a Transformer Block
is the Multi-Head Self-Attention, a series of com-
putations that generate multiple weight matri-
ces––generally referred to as attention filters––used
to transform parts of the input based on the whole
input itself. Each attention filter captures a dif-
ferent aspect of the information and their results
are then concatenated. In NLP, this mechanism
is usually exemplified as the importance that each
word in a sentence has for every single word, where
importance can be framed in various ways.

In BERT’s architecture, the Transformer is the
main unit. Hence, the use of an additional layer in
our proposed model can be seen as an extension
to make the language model fit the goals of our
experiment. The difference between BERT’s origi-
nal layers and the one included in this work is on
the hidden dimension size and the type of input se-
quence. The block still has 12 attention heads, but
they manipulate hidden vectors of size 300, instead
of the 768 in Multilingual BERT. This reduction
was mostly motivated by hardware limitations, but
also because the layer is closer to the actual output
of the system, which is way smaller in dimension.
In regards to the input sequence, this Transformer
takes as input a sequence with the same size as the
UD token sequence, not the one used by BERT.
Each position in this sequence consists of the av-
eraged BERT subword vectors concatenated with
the UD relation and frame information, similarly
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to the LSTM.

4.6 Conditional Random Fields

Conditional Random Fields (CRF) are a class of
discriminative models that can classify a sample
considering its contextual information. In NLP,
this type of model has been used extensively for
labelling tasks, such as POS tagging and NER
(Chiche and Yitagesu, 2022; Li et al., 2020). Simi-
larly to the latter, in our experiments, we decided to
use a CRF layer after the final Bi-LSTM (or Trans-
former) layer because a CE generally spans more
than a single token of the input sentence. While a
simple dense layer applied to all tokens can inde-
pendently predict CE labels, the CRF is parameter-
ized to capture the internal logic of labels, which
can correlate to construction constraints. For ex-
ample, in the vast majority of cases in Brazilian
Portuguese, a PREDICATE CE cannot be followed
by a SUBJECT CE. Moreover, it can attenuate mis-
takes made by the model in previous layers by
using both linguistic information and the labeling
probabilities. In the experiments where the CRF
was used, the log-likelihood was used as the loss
function.

5 Experiments

In order to understand the impacts of UD and frame
data in CE labeling, 9 different experimental setups
were proposed, 5 variations using LSTM and 4 us-
ing Transformers. For each of those options, the
effectiveness of the CRF was evaluated, with and
without UD and frame data. The LSTM was the
only model where the BFS sorting of tokens was
tested, hence it has one more variation. This type of
ordering was considered only for this architecture
because, in theory, the way information vanishes in
the cell states is influenced by the order of the ele-
ments in the input sequence. The Transformer can
handle this problem by simply adjusting attention
weights.

One of the challenges of working with the
dataset described in section 3 was the num-
ber of samples annotated for each construc-
tion. For Elapsed_time, for example, only
two examples were found in the 673 sentences.
This variation in construction frequency is ex-
pected and leads to the fact that a much larger
dataset would be needed to find a reasonable
amount of examples for that construction. We
have decided to consider only the two most fre-

quent constructions in the UD Portuguese GSD
treebank, namely Direct_transitive and
Attributive_nominal_predicative, as
the models could not perform consistently for the
ones with less samples. This resulted in a dataset
with 443 sentences and 4 CE labels that was split
into train and test sets in a 8:2 ratio. Considering
the relative effectiveness of BERT’s fine-tuning and
that constructional information can be extracted
from it, this dataset can still be used to predict CE
labels (Devlin et al., 2019; Sun et al., 2019; Tay-
yar Madabushi et al., 2020).

In all variations, the networks were implemented
to predict a single CE label (or none) for each po-
sition corresponding to a token in the sequence,
despite the fact that it is possible for more than
one label to be true. This was done because, in
our first implementation tests, we verified that only
one instance of the dataset had a token with two
labels. Moreover, convergence was slow during
training, even after adjusting parameters, without
any performance gains. For that reason, we used
a softmax activation function and cross-entropy as
the loss function. When the final layer was a CRF,
loss is computed using the log-likelihood.

For training, we used an Adam optimizer with
learning rate set to 3e − 5. Due to GPU memory
limitations, batch size was set to 16 samples and
the maximum number of epochs to 20, which was
not a problem because of the reduced size of the
training dataset. To prevent over-fitting, the loss
over the validation set was monitored and after 3
epochs without any improvements, training would
be stopped, resulting in less than 20 epochs per
training run. Every model variation was trained
10 times so that their performance and generaliza-
tion could be better analyzed. The BERT model’s
weights were adjusted, i.e. fine-tuned, in each of
those runs and, in order to prevent tests from in-
fluencing one another, memory was cleaned up
between executions.

Table 2 summarizes the number of parameters in
each model as the difference to each of the two base
model types and their average number of training
epochs.

6 Results

After the execution of all of the training algorithms,
model results were computed and compiled into
Table 3. The main metric used for evaluation was
a macro-F1 calculated by treating each label as a
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Model ∆|θ| epochs
LSTM
Base 0 (~180M) 10.5
CRF +35 11.7
Frm, UDrel +70,450 10.0
Frm, UDrel+order +70,450 10.3
Frm, UDrel, CRF +70,485 11.5
Transformer
Base 0 (~206M) 10.4
CRF +35 12.0
Frm, UDrel +6,725,525 10.0
Frm, UDrel, CRF +6,725,560 11.6

Table 2: Model size in number of parameters and num-
ber of epochs used on average for training.

Model F1
µ best

LSTM
Base .694 (.050) .767
CRF .700 (.015) .720
Frm, UDrel .647 (.081) .709
Frm, UDrel+order .603 (.111) .763
Frm, UDrel, CRF .675 (.072) .748
Transformer
Base .643 (.044) .703
CRF .643 (.044) .720
Frm, UDrel .618 (.033) .653
Frm, UDrel, CRF .638 (.054) .767

Table 3: Average and best macro-F1 scores for each
model, based on the results of 10 separate training exe-
cutions. Standard deviations are shown in parentheses.
The best overall results for all experiments are high-
lighted.

binary class, computing their F1s and then aver-
aging. The label used to indicate the absence of
a CE is ignored in this calculation. The main ad-
vantage of using a macro-F1 over the micro-F1 or
accuracy lies on the fact that the absence of a CE
can be treated asymmetrically. This is relevant for
our analysis because it can focus on the predictions
where the model assigned a label in order to obtain
insights.

To better understand the variations between dif-
ferent training iterations, the average (with standard
deviation) and the best F1 scores for each config-
uration were observed. In terms of averages, the
LSTM model with a CRF, but without frames or
UDs had the best performance. This configuration
also had the smallest standard deviation, indicating

that training is somewhat consistent. In terms of
best results, the base LSTM model without CRF
and the complete Transformer model have the high-
est F1, with a score of .767. Of the two, the LSTM
is a considerable smaller model, as shown in Table
2. Taking into consideration that the averages of
the models are not that different, for a LSTM-based
model, the inclusion of only a CRF seems to yield
the best results. For a Transformer-based network,
the extra semantic and syntactic information, along
with the CRF, contributes to better results.

The worst configuration, on average, was the
LSTM model where tokens were reordered using
the dependency tree BFS results. In constrast, every
model achieved better average F1 scores when a
CRF layer was added.

7 Discussion

As previously stated, the LSTM models performed
better, especially when no additional frame or UD
data was embedded into the inputs. However, when
using Transformers, the same type of data can in-
crease performance. One possible explanation is
that the latter has a considerably larger number of
parameters, making it easier to integrate the ad-
ditional information, but, at the same time, being
more complex to train and, thus, having worse per-
formance than LSTMs. Also, the difference in the
results is likely affected by the small size of the
training dataset, it is possible that the quality of the
predictions could improve if more samples were
processed by the networks.

The LSTM where the order of the tokens was
changed also provides good insight on how this
model used the information to make predictions
and why it has the lowest average F1 score. When
analyzing the average F1 scores for each con-
struction element, it was noted that final F1 was
mostly influenced by the SUBJECT CE of the
Attributive_nominal_predicative. In
the model using a CRF, the F1 for the subject was
.628, for the one with the BFS ordering, it was .388.
This is a strong evidence that when optimizing with
few samples, for a CE that has a relatively strict
position in a sentence, positional information is
relevant. It also shows that the model was not able
to compensate for the absence of this kind of in-
formation using only UDs and a different ordering.
This type of problem can be potentially avoided
by using a network architecture designed to handle
graphs or trees.
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We have also decided to carry out a qualitative
analysis of the predictions made by the best Trans-
former model. All of the predictions made over the
test set were transformed back to CE spans, which
where then aligned to the original sentences and
paired with the original human annotations. Mak-
ing this side-by-side comparison, notes were taken
for each record. During this process, we observed
that some types of errors were way more frequent
than others. For instance, 26% of the sentences had
only the head words of the constructions elements
labeled, while 13% had a problem of discontinuity
in the CE span. These numbers agree with the F1
results displayed on Table 3 that show an improve
in performance when a CRF layer is added. Be-
cause this type of layer models the relation between
the classification labels, it is able to correct some
of the mistakes in continuity and length of the CE
spans made by the previous layers.

More importantly, these errors seem to orig-
inate from an overgeneralization made by the
model over the POS of words. Despite the fact
that POS tags are not part of the input to the
model, this information is arguably embedded
into BERT. More evidence of that is found on
examples where the model labeled some word
with the incorrect CE. Although rare, when it
happens, the CE predicted for that word is of the
same POS of a head of that CE. For example,
many verbs are labeled as the predicate of a
Direct_transitive construction, even
when they are part of other type of construc-
tion. The same happens for adjectives and the
Attributive_nominal_predicative.
This happened in 8.7% of the analyzed sentences.

The problem of overgeneralization also occurs
with the conj relation in this model. Interestingly,
this seems to be the only UD relation that clearly
influenced the predictions of the test set. In 8,7%
of the sentences, the model labeled the tokens of a
conjunct despite the fact that they are not related to
a subject or predicate. In a deterministic approach,
this type of error can be easily verified using the
dependency trees, as the CE span nodes would not
be connected.

8 Final considerations

The experiment reported on in this paper aimed
at testing whether UD and frame information ex-
tracted from a Constructicon could positively influ-
ence the performance of Transformer-based mod-

els for schematic construction identification in sen-
tences. However, the most effective models in our
tests are still the smaller LSTMs, without any ex-
tra information. Furthermore, we have identified
that the trained models were overgeneralizing cer-
tain aspects of the data, causing performance to
degrade.

One of the limitations of our experiments is in
the architecture of the network itself when these
various types of information are used. For both
LSTM and Transformers, there are gaps that could
be filled if they were implemented to fully handle
tree and graph structures instead of their linearized,
thus, simplified, versions. Other changes in the net-
work structure and training procedure are needed to
prevent the overgeneralization discussed in section
7.

Another course of action to better understand
how neural networks can be used to classify con-
structions effectively is to expand the dataset, both
in number of samples, but also in representation
of different clausal structures. For example, if the
models were to be trained to also label the CEs
of the Unaccusative construction, they would
have to learn the semantic boundaries that differen-
tiate an unaccusative from a transitive verb.

Finally, in spite of their limitations, it is clear
that performance could be improved by using post-
processing algorithms that could either find anoma-
lous outputs (e.g. the incorrect conjucts and even
expand the spans of the CEs based on the depen-
dency relations. This type of procedure is adequate
because the models are already able to identify
most CE heads.
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A Argument structure constructions in
the FN-Br Ccn

A.1 Active_bitransitive

This construction expresses predicates with three
central participants, i.e. a trivalent event.

(3) O
The

jornal
news

atribui
attribute.PRS.3SG

o
the

abandono
abandonment

ao
to_the

custo
cost

da
of_the

ferrovia.
railroad

‘The news attributes the abandonment to the
cost of the railroad.’

(4) O
The

ministro
minister

transferiu
transfer.PST.3SG

a
the

sede
head_office

da
of_the

colônia
colony

para
to

o
the

Rio
Rio

de
de

Janeiro.
Janeiro

‘The minister transferred the seat of the
colony to Rio de Janeiro.’

A.2 Active_direct_transitive

This construction is licensed by predicates that re-
quire at least two participants, one agent and the
other is patient-like.

(5) A
The

agência
agency

federal
federal

determinou
determine.PST.3SG

o
the

início
start

imediato
immediate

dos
of_the

trabalhos.
works

‘The federal agency determined the immedi-
ate start of the works.’

(6) Eu
I

misturo
mix.PRS.1SG

o
the

tempero
seasoning

e
and

está
it’s

pronto!
ready

‘I mix the seasoning and it’s ready!’
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A.3 Indirect_transitive

This construction is very similar to the
Oblique_transitive because both have the
predicated object introduced by a preposition. The
main difference is that the indirect object in this
construction must be a dative object, i.e. it needs
to play a beneficiary or recipient role.

(7) O
The

diretor
director

respondeu
reply.PST.3SG

aos
to_the

jornalistas.
journalists

‘The director answered the journalists.’

(8) Assim_que
As_soon_as

a
the

carta
letter

chegou,
arrive.PST.3SG,

contaram
tell.PST.3PL

para
to

ele.
he

‘As soon as the letter arrived, they told him.’

A.4 Oblique_transitive

The Oblique_transitive construction is the
one used by certain verbs in Portuguese, in which
the oblique/indirect object is introduced by a prepo-
sitional phrase. These complements are not op-
tional and, semantically speaking, the event has
two central participants.

(9) A
The

cidade
city

precisa
need.PRS.3SG

de
of

uma
a

reflexão
reflection

mais
more

profunda.
deep

‘The city needs a deeper reflection [on the
matter].’

(10) A
The

família
family

procurou
look.PST.3SG

por
for

cirurgias
surgeries

corretivas
corrective

‘The family sought corrective surgeries.’

A.5 Intransitive

Construction with an agent-like subject and an
unergative verb.

(11) João
João

Paulo
Paulo

concordou
agree.PST.3SG

com
with

a
the

fala.
statement

‘João Paulo agreed with the statement.’

(12) Eu
I

ensinei
teach.PST.3SG

com
with

entusiasmo.
enthusiasm

‘I taught with enthusiasm.’

A.6 Ergative
Construction with a non agent-like subject and an
unaccusative verb.

(13) O
The

jogo
game

começou
start.PST.3SG

em
on

ritmo
pace

alucinante.
crazy

‘The game started at a breakneck pace.’

(14) A
The

produção
production

industrial
industrial

aumentou
rise.PST.3SG

1,7%
1.7%

ante
from

abril.
april

‘Industrial production rose 1.7% from April
onwards.’

A.7 Elapsed_time
In this construction, the idea that an event occurred
some time ago is expressed. In the following exam-
ples, the verb ‘haver’ was translated as ‘have’, but
has the meaning of an exlcusively existential verb.

(15) Eles
They

moram
live.PRS.3PL

naquela
in_that

cidade
city

há
have.PRS.3SG

vinte
twenty

anos.
years

‘They have lived in that city for twenty
years.’

(16) O
The

crime
crime

aconteceu
happen.PST.3SG

há
have.PRS.3SG

três
three

dias.
days

‘The crime happened three days ago.’
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A.8 Presentational_existential

This type of construction is used to add new, entity-
central, information to a discourse, i.e., there’s no
subject being referred to, only existential predica-
tion of a nominal. Optionally, this nominal can be
followed by a secondary predicate.

(17) Existem
exist.PRS.3PL

30
30

negócios
businesses

na
in_the

categoria.
category

‘There are 30 businesses in the category’

(18) Tem
have.PRS.3SG

umas
some

pessoas
people

esperando
wait.PRS.PROG.3SG

você
you

lá
there

fora.
outside

‘There are people waiting for you outside’

A.9 Locative_predicative

This type of construction is used to express where
the SUBJECT is located.

(19) E
And

eles
they

estão
be.PRS.3PL

na
in

cadeia,
jail,

naquele
in_that

inferno.
hell

‘And they’re in jail, in that hell’

(20) Seu
his

pai
father

estava
be.PST.3SG

em
in

serviço
service

na
in_the

Coréia.
Korea

‘His father was on duty in Korea.’

A.10 Attributive_nominal_predicative

This type of construction consists of a predica-
tional clause where a stable object or property
is being predicated and is quite similar to the
Stative_nominal_predicative, with the
only difference being the stable vs temporary con-
strual.

(21) O
The

apoio
support

dos
of_the

fãs
fans

também
also

será
be.FUT.3SG

essencial.
essential

‘The support of the fans will also be essen-
tial.’

(22) Reichenbach
Reichenbach

é
be.PRS.3SG

um
a

município
municipality

na
in_the

Alemanha.
Germany

‘Reichenbach is a municipality in Germany.’

A.11 Stative_nominal_predicative

The type of construction in which a temporary state
concept is predicated. In pt-br, the copula ‘estar’
is not exclusively but usually used for a stative
construal of the SUBJECT. Being sad or hungry are
very prototypical temporary states, but it is possible
to have attribute-like states construed as temporary.

(23) Os
The

gravetos
sticks

estavam
be.PST.3PL

todos
all

molhados.
wet

‘The sticks were all wet.’

(24) Ele
He

fica
stay.PRS.3SG

desconfiado.
suspicious

‘He gets suspicious.’
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B The 11 argument structure as a subgraph of the FN-Br Ccn

Figure 4: A subgraph of the FN-Br Constructicon containing all of the 11 argument structure selected for this paper.
Their nodes are indicated in yellow, while other related constructions are green. Squares represent connections to
frames, as discussed in the manuscript. Arrows in red are used for construction inheritance relations and the blue
ones for frame evokation.

109


