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Abstract

Bootstrapping a neural morphological analyzer
from artificial data is not often feasible for lin-
guists who do not have specialized training. We
show that grammatical information in FLEx, a
software tool familiar to many linguists, can
be used to generate word forms and their mor-
phosyntactic descriptors. The results of a pilot
experiment with Lezgi [lez] indicates that the
grammatical information must be structured in
FLEx with data generation in mind to gener-
ate usable training data. Adjustments with this
goal in mind improved a neural morphological
analyzer trained on the generated data, from
.49 to .60 weighted average F1-score on the
morphological descriptor labels.

1 Introduction

Significant data is needed to train a machine learn-
ing natural language processing (NLP) model
but that training data is difficult to obtain for
low-resource languages. Therefore, training data
is sometimes synthesized from hand-crafted re-
sources such as a finite state transducer (FST),
using published grammatical descriptions. The
additional synthetic data allows NLP models to
generalize better to any data in the language.

Creating resources from which synthetic data
can be generated usually requires special training.
Linguists, who are most familiar with the grammar,
may not possess the necessary skills. FSTs, for
example, necessitate a rare combination of com-
puter programming and linguistic knowledge. NLP
training data for low-resource languages might be
generated more equitably if such barriers were re-
duced. Ideally, linguists could provide the neces-
sary grammatical information in a format that is
both machine- and human-readable and they could
enter the information in a familiar interface.

This paper describes a proof-of-concept for re-
ducing barriers for non-computationally trained
linguists. It will allow artificial training data to be

generated for low-resource languages with a tool
already familiar to many linguists. As such, this
paper asks two questions: 1) Can grammatical in-
formation already entered in Fieldworks Language
Explorer (FLEx), a popular software for linguis-
tic analysis and annotation, as part of a linguist’s
workflow be used “as is” to generate training data
for a morphological machine learning model? 2)
Is the quality of data generated with the limited
mechanisms of FLEx sufficient for training a us-
able morphological analyzer?

We show it is possible to synthesize inflected
word forms and their morphosyntactic labels using
the grammatical information provided in the Gram-
mar and Lexicon tools of FLEx. We also show that
to produce quality training data, the grammatical
information must be entered with data generation
in mind. Adjustments to a linguist’s approach to
using FLEx can improve the quality of generated
data.

2 Related Work

Morphology comprises word-building properties
and accompanying morphosyntactic phenomena.
Both NLP and general linguistics benefit from mor-
phological analysis (Cotterell et al., 2015). Mor-
phological analysis is foundational to deeper gram-
matical analysis and description. Parsing mor-
phologically complex languages is important to
NLP because the high number of inflected and
compound words in morphologically complex lan-
guages compound the out-of-vocabulary (OOV)
problem (Hammarström and Borin, 2011; Gold-
smith et al., 2017). Addressing this problem affects
downstream applications such as machine transla-
tion, voice recognition, and development of lan-
guage learning apps.

When naturally occurring annotated language
data is limited, generating synthesized or semi-
synthesized word forms for training data has im-
proved performance for tasks such as learning mor-



phology (Silfverberg et al., 2017) or word embed-
dings (Silva and Amarathunga, 2019). The data
can be used by itself to train morphological ana-
lyzers (Moeller et al., 2018) or as an augmentation
of natural data. For example, synthetic data aug-
mentation has been used successfully in nearly all
SIGMORPHON shared tasks (cf. Cotterell et al.,
2016).

Synthesized data for morphology usually results
in nonce words that have correctly inflected word-
forms and accompanying morphosyntactic descrip-
tive labels (e.g. affixes glosses). Synthesized mor-
phological data can be generated from resources
that incorporate the language’s morphological rules
and grammatical information, such as found in
spell checkers, dictionaries, Wiktionary tables, or
Unimorph (Ahlberg et al., 2014; Bergmanis and
Goldwater, 2019; Cotterell et al., 2015; Durrett and
DeNero, 2013). FST-generated synthetic data has
been used to train or augment neural morphological
analyzers (Hämäläinen et al., 2021; Lane and Bird,
2019; Moeller et al., 2019; Schwartz et al., 2019;
Silfverberg and Tyers, 2019). However, develop-
ing a robust FST model for a given language is
time-consuming and requires in-depth knowledge
of both the language and of finite state modeling
tools (Maxwell, 2015a,b).

3 Morphology in FLEx Software

Field linguists use specially designed software to
analyze data, annotate texts, build lexicons, and de-
duce the structure of a language. One such software
is Fieldworks Language Explorer (FLEx)1.

Users can specify morphological and lexical in-
formation in FLEx. The mechanisms in FLEx
for describing the morphological patterns of a lan-
guage include elements in the Lexicon area of its
interface:

• Entries that specify the underlying form of
a morpheme (roots/stems or affixes) (called
Lexeme Form)

• Lists of each morpheme’s allomorphs

• Environments (either phonological or lexical)
for allomorphs

• Morphological process rules (e.g., infixes,
reduplication, metathesis)

1https://software.sil.org/fieldworks/

Figure 1: A FLEx Lexicon entry showing the morpheme,
its gloss, and its allomorphs with the phonological envi-
ronments that constrain their realization.

• Specification of lexical category information
for roots/stems and affixes

as well as items in the Grammar:

• Lists of phonemes, natural classes, inflection
features, and environments

• Morphology position class charts specifying
the relative position and complementary dis-
tribution of inflectional affixes

An example of a lexical entry with information
about allomorphs and their environments in the
FLEx Lexicon is shown in Figure 1. An example
of a morphological template is shown in Figure 2.

Also, users can add morphological annotation to
texts in the Texts & Words interface of FLEx. As
shown in Figure 3, users may label words with their
lexical category (part of speech or POS), segment
words into morphemes, gloss the morphemes, and
link those morphemes and glosses to the Lexicon.

3.1 Morphological Parser

In FLEx, a user may set up a rule- and lexicon-
based morphological parser2. The parser provides
automated assistance by presenting all possible
parses (segmentations and glosses) for words in
texts based on the grammatical information spec-
ified in the Lexicon and Grammar. The parser
cannot “learn” to parse unspecified morphological
patterns, but can only process novel forms if all the
word’s morphemes have an entry in the Lexicon and
all relevant constraints are specified. The linguist
can refine the lexical categories of morphemes and

2There are two automatic parsers in FLEx. For this experi-
ment, the XAMPLE parser was used.

https://software.sil.org/fieldworks/


Figure 2: An example FLEx morphological template for Lezgi [lez] nouns. The chart shows the type of affixes,
their complementary distribution, and position in relation to the stem.

Figure 3: Interlinearized glossed texts for Lezgi [lez] in FLEx. Morpheme segment annotations are on the second
line, morpheme glosses on the third, and word glosses on the fourth. POS tags are below the word glosses.

specify allomorph environments in the Lexicon or
edit the position class morphology templates in the
Grammar. These adjustments can constrain the
parser to only offer valid suggestions.

3.2 Tools for Data Generation

With the help of a few additional tools, the gram-
matical information provided in FLEx to set up the
morphological parser can also be used to gener-
ate synthetic morphological data. Currently, these
tools produce synthesized word forms and their
inflectional parses.

The additional tools needed for data generation
are FlexTools, our custom Python modules, and
STAMP (Weber et al., 1990). FLExTools3 is a soft-
ware workbench that runs Python scripts that can
directly read and manipulate the FLEx data store,
thus achieving capability not built into FLEx itself.
We enhanced some existing FlexTools modules4 to
generate inflectional parses, using the information
in FLEx. STAMP is a tool that can synthesize sur-
face word forms from information produced by the
parser in FLEx. Our package containing FlexTools,
our custom modules, and STAMP is download-
able.5

4 Generating Synthetic Data from FLEx

The two modules we created for FlexTools are
called Generate all parses and Run STAMP6. In

3https://github.com/cdfarrow/flextools
4We started with modules from the FLExTrans (Lockwood,

2015) package and customized them for our purposes.
5https://github.com/shengyu-liao/Morp

hological-Data-Generation-from-FLEx
6The Run STAMP module is based on one of the core

modules of the FLExTrans package. It was modified only

FlexTools, the Generate all parses module accesses
the FLEx data store and generates morphosyntac-
tic parses for all combinations of affixes that the
Grammar allows for all specified root morphemes
in the Lexicon. These parses include the gloss of
every affix taken from their lexical entries and the
POS tag of the root morpheme:

[baby]<N>{PL}{OBL}{DAT}

In a later step, this parse output could be cus-
tomized to include the information needed for vari-
ous experiments. Our model is intended to analyze
inflectional information, so the Generate all parses
module was customized to also output a version
with only the POS tag and affix glosses but no stem
glosses, resulting in: N;PL;OBL;DAT.

The Run STAMP FLExTools module then builds
the necessary input for synthesis, using the mor-
phological information in FLEx and the mor-
phosyntactic parses created by the Generate all
parses module. It runs the background program
STAMP (Weber et al., 1990) on these files, to
generate inflected word forms. For instance,
from [baby]<N>{PL}{OBL}{DAT}, STAMP gen-
erates the Lezgi word form: “балайриз” which
corresponds to our customized inflectional tags:
N;PL;OBL;DAT.

Currently, the files that are produced with the in-
flected words and morphosyntactic parses require
additional processing.7 Several issues must be
taken into consideration. First, obvious “ungram-

slightly for this experiment. The Generate all parses module
is also based on a module written by Lockwood that is not
part of the FLExTrans package.

7Our post-processing code can be obtained in our GitHub
repository linked in footnote 5.

https://github.com/cdfarrow/flextools
https://github.com/shengyu-liao/Morphological-Data-Generation-from-FLEx
https://github.com/shengyu-liao/Morphological-Data-Generation-from-FLEx


Issue Consequence Solution
Template slot has no affixes Generation script halted Correct the template
Space in affix gloss Gloss appears in word Remove space in Lexicon
Stem/affix has no POS Skipped in generation Add POS in Lexicon
Space in POS Abbreviation Gloss appears in word form Remove space
Multiple morphemes in Lexi-
con

Both appear in word Create separate entries in Lex-
eme Form field

Table 1: Issues that may be encountered when generating inflected word forms and parses from FLEx grammatical
information, along with suggested solutions.

matical” words should be removed. These words
are usually indicated by non-alphabetic characters.
For example, when a synthetic surface word form
fails some constraints in the synthesis process, the
STAMP program inserts a “%” at the beginning of
the generated string. When the stem has no gloss
in the Lexicon, a “1.1” is added in the string. Other
examples of non-alphabetic characters generated
during the process and which should be eliminated
include “,” (i.e. a comma was used in the Lexicon
gloss) and “{” and “}” (i.e. the stem morpheme is
missing a gloss in the Lexicon).

A second issue is that word forms must be
“cleaned” by removing generated symbols that rep-
resent null affixes. This step cannot be generalized
with a single Python script in the online package be-
cause the symbols may be specific to each database.
For example, the symbol “*0” indicates null affixes
in the Lezgi FLEx database. Others might use “∅”
or “ø” (Unicode codepoint U+2205 and U+00F8,
respectively).

A third issue that must be considered during
the generation process and post-processing stage
is whether uninflected words should be included.
If all the affix slots in a template in the Grammar
are optional, then the bare root will be generated
as the word form but its parse will include only a
POS tag. If these bare roots are not desired, the
templates must be constructed so that at least one
affix column is non-optional.

Finally, any FLEx database is likely to contain
issues that need to be corrected or eliminated be-
fore the information can serve as quality training
data. Some issues that we encountered, along with
ideal solutions, are described in Table 1. Most
can be avoided if users follow consistent conven-
tions when entering information in the Lexicon and
Grammar. For example, when multiple English
words or grammatical tags are used to gloss a sin-
gle morpheme, separating them by a period “.” in-

stead of a space (e.g. ‘1SG.PAST’ rather than ‘1SG

PAST’) resolves the issue on the second line of the
table.

5 Case Study: Lezgi

The Lezgi FLEx database that was used in our pilot
experiment contained one morphological grammar
template for nouns, a lexicon of root morphemes,
and ten oral texts.8 The FLEx database was com-
piled and partially annotated as a basis for a mas-
ter’s thesis in Linguistics.

Access to this data comes from linguists who
gathered the data with informed consent for re-
search purposes by the speaker community. One
co-author (Moeller) acted as a consultant for Lezgi
community members during a dictionary workshop
and also trained a non-linguist native speaker to
use FLEx and do some initial morphological seg-
mentation and glossing.

The texts are transcribed in the language’s Cyril-
lic orthography. We adjusted the lexicon and gram-
mar templates with data generation in mind. We
also extracted word forms and glosses from the
texts to serve as a test dataset for the neural mor-
phological analyzer.

5.1 Lezgi Noun Morphology

Lezgi (Lezgian; ISO 639-3 code: lez; Glottolog
code: lezg1247) is a Nakh-Daghestanian (North-
east Caucasian) language spoken by over 600,000
speakers in Russia and Azerbaijan (Eberhard et al.,
2022). The FLEx data is from the endangered
Qusar dialect of Azerbaijan which differs from
standard written Lezgi in a few notable ways. It
borrowed a locative case morpheme from Azerbai-
jani which is used alongside the native inessive
case morpheme with the same meaning. Also, an
unusual stacking of the dative and directive cases

8The FLEx database will be deposited at SIL Language
and Culture Archives.



occurs occasionally in the texts to indicate move-
ment towards something.

Lezgi is a highly agglutinative language with
overwhelmingly suffixing morphology. Fourteen
noun cases are formed by case-stacking which is
a unique characteristic of Nakh-Daghestanian lan-
guages. Instead of a unique morpheme for each
case, case-stacking composes various case inflec-
tions by “stacking” sequences of case suffixes one
after each other.

itim SG.ABS ‘man’
itim-ar PL.ABS ‘men’
itim-ar-di PL-ERG ‘men’
itim-di-k OBL-AD.ESS ‘near a man’
itim-di-k-di OBL-AD-DIR ‘toward a man’
itim-ar-di-k-ay PL-OBL-AD-EL ‘from men’

Table 2: A simplified example of Lezgi case-stacking
on the noun root itim ‘man’.

A simplified example of Lezgi case-stacking is
shown in Table 2. Absolutive (ABS) and essive
(ESS) cases and singular number (SG) are marked
by null morphemes. The plural suffix (PL) attaches
directly to the noun stem. The ergative (ERG) and
the oblique (OBL) suffixes attach after the num-
ber. The adessive case (AD.ESS) attaches to the
oblique suffix. The elative (EL) and directive (DIR)
cases are added in the fourth slot after the root.
In the longest possible sequences (e.g. adelative
and addirective cases), the final suffixes indicate
directed-motion meaning. In the second-to-longest
sequences (e.g. adessive case), locative meaning is
indicated by one suffix after the oblique affix. The
oblique affix is identical in form with the ergative
morpheme but serves a purely grammatical func-
tion of forming the oblique stem onto which other
cases may be “stacked”.

5.2 Test Data

To create a set of grammatically correct word forms
and morphological descriptive labels for testing,
100 root morphemes were randomly chosen from
the 541 noun roots in the Lexicon. The 441 roots
were set aside to generate synthesized data. Using
the FLEx concordance, words in the texts that were
formed from these 100 roots were included in the
test set. Any derived nouns in the texts that were
not formed from either the 100 test noun roots or
the 441 training noun roots were also included in
the test set. See Table 3 for the final training and

test set sizes.

5.3 Modifying the Grammar and Lexicon

The original training data was generated from the
grammatical information that had been entered by
the linguist during their routine analysis and anno-
tation work. Generating data from this “as-is” ver-
sion produced over 300k training instances but pre-
sented two issues. First, allomorph environments
had not been specified, resulting in a large propor-
tion of invalid strings where root morphemes were
combined with the first allomorph rather than the
correct allomorph, as constrained by morphophono-
logical rules. Second, the grammar template had
been constructed as a comprehensive picture of
Lezgi noun morphology and this resulted in many
invalid morpheme co-occurrences.

In the Lexicon, constraints had to be added that
specified the phonological environments of each
allomorph listed in the lexical entries. Lexically de-
termined allomorphs could sometimes be specified
by creating a new lexical entry and ad hoc allo-
morphy rules. There are mechanisms in FLEx for
constraining lexically determined allomorphy but
the generation code we used did not yet implement
those constraints9. During generation, allomorphs
are tested in order, selecting the first one where
the constraints are met. The “head” Lexeme Form
functions as the “elsewhere” or default allomorph.
Therefore, the allomorphs needed to be re-ordered
to reflect a decreasing scope of specificity for the
environments that trigger them.

The original morphology template lacked co-
occurrence constraints needed to prevent overgen-
erated morpheme combinations. The linguist had
rapidly set up the template for recognition of forms
found in the text, not with the rigor needed to de-
scribe all and only the valid forms. The original
single, comprehensive template was converted into
multiple smaller templates that allow all possible
morpheme combinations but no invalid combina-
tions. For example, the original template had a
column for the ergative and the oblique cases, fol-
lowed by an optional column that included the
adessive case. This generates an ungrammatical
word form with both the ergative case and the
adessive case. To correctly depict the correct forms
in Table 2, two templates were needed. One tem-
plate allows the ergative suffix but no additional

9This feature has now been implemented and is included
in the modules available for download.



suffixes, and a second template has a non-optional
column for the oblique affix followed by a non-
optional column for the adessive case.

After adjusting the Lezgi Lexicon and Grammar
with data generation in mind, the number of gener-
ated pairs of word forms and glosses was greatly
reduced, as shown in Table 3, while the overall
grammaticality of the data was increased. The ad-
justed dataset contains (a) a higher percentage of
word forms that are phonologically valid and (b)
fewer instances that have invalid co-occurrences of
affixes.

6 Experiment

We tested the quality of data generation from FLEx
by training two neural morphological analyzers
using only the word forms and morphosyntactic la-
bels synthesized from the grammatical information
specified in the FLEx interfaces.

The morphological analysis task is treated as a
problem of converting an input sequence of char-
acters x⃗ = (x1, . . . , xn) to an output sequence
of labels y⃗ = (y1, . . . , yn). The output sequence
of labels are morphosyntactic descriptors indicat-
ing part-of-speech and inflectional information
(i.e. affix glosses). An example input-output in-
stance is shown below. We selected the Trans-
former (Vaswani et al., 2017), a stateless encoder-
decoder model that uses additional attention layers
to boost speed and performance, and implemented
the fairseq (Ott et al., 2019) version with modifi-
cations that have been shown to be successful in
low-resource character-level morphological tasks
(Wu et al., 2021).10

INPUT (word): б а л а й р и з

OUTPUT (parse): N PL OBL DAT

We trained two models in order to compare the
efficacy of adding morphophonological constraints
to the Lexicon and adjusting the morphology tem-
plates in the FLEx Grammar. One model is trained
on the “as-is” grammatical information originally
provided by the linguist. The second model is
trained on the adjusted grammatical information. A
9/1 split of the generated data was used for training
and development. The test data for both models
is the same. The models were tested on naturally

104 encoder-decoder layers, 4 self-attention heads, 256 em-
bedding size, 1024 hidden size of feed-forward layer, layer
normalization before self-attention, decoding left-to-right in a
greedy fashion.

Version Training Test
original 216,000

2,125
adjusted 38,784

Table 3: Total number of Lezgi training and test in-
stances. Training data is generated data. Test data are
naturally occurring words formed from roots that were
not used to generate training data. The two rows show
the training data generated before and after the informa-
tion in the Lexicon and Grammar areas was adjusted
with data generation in mind.

Original Adjusted
word acc. 6% 29%
weighted P 0.57 0.63
weighted R 0.49 0.63
weighted F1 0.49 0.60
macro P 0.13 0.34
macro R 0.11 0.46
macro F1 0.10 0.36

Table 4: Results comparing models trained only on
original grammatical information and grammatical in-
formation adjusted for data generation. The accu-
racy reports the percentage of test words for which
all glosses/labels were correctly predicted. The mi-
cro P(recision), R(ecall), and F1 scores are the average
scores weighted by the distribution of labels. Macro
scores are unweighted.

occurring tokens that had been manually annotated
with the morphosyntactic glosses/labels.

The performance of the two models is shown
in Table 4. Performance is compared on two mea-
sures: per token and per label. The adjusted ap-
proach to preparing grammatical information in
FLEx improved all the results. The accuracy of
per word analyses is a little less than 30%. The
highest average F1 score of .6 is weighted by the
distribution of the gloss labels and indicates that
the adjusted model did reasonably well recognizing
inflectional affixes. The greatest improvement is
seen in the macro scores which are not weighted by
the number of instances of each label. The increase
from .10 to .36 F1 indicates that the biggest effect
made by the adjustments and additional constraints
in the Grammar and Lexicon was an improvement
in recognizing the less common inflectional forms.

7 Discussion

The first question this paper put forth was whether
grammatical information entered in FLEx as part
of a linguist’s workflow could be used “as is” to



generate synthetic training data for a morpholog-
ical model. By any measure, the quality of our
originally generated data is not sufficient to train
a high performing neural morphological analyzer.
However, the original grammatical information was
provided by a linguist with no idea of applying
NLP, but rather with the goal of implementing a
morphological parser within FLEx while expect-
ing the parser to be constrained by forms found
in naturally occurring data. In order to generate
new wordforms, adjustments had to be made in the
Lexicon and Grammar mechanisms that would con-
strain overgeneration. These adjustments improved
the quality of the artificial data.

We found that building the morphology tem-
plates in the Grammar is not difficult for someone
who is familiar with FLEx, but it is important to
understand, as the grammar and lexicon are built,
how and why overgeneration should be constrained.
We did discover, however, that knowing how and
where to specify complicated allomorphy rules and
lexically-determined constraints may require assis-
tance even for linguists who use FLEx on a regular
basis. The FLEx website has a long playlist of train-
ing videos but videos related to the parser setup are
minimal. The parser is the main mechanism for
generating synthetic training data.

The second question this paper put forth regards
the quality of the generated data as measured by
the performance level of the trained model. Once
the information was adjusted, the resulting model
has a weighted average F1 score of .6. This is
comparable to a threshold that “pre-annotation” by
a morphological NLP model has been shown to
improve human annotation (Felt, 2012). By that
measure, FLEx-generated data may be useful to
train an NLP model useful for human assistance.
For example, if a large amount of words need to
be morphologically analyzed, it may save time and
increase accuracy to pre-annotate the data with a
model trained on FLEx-generated data and then
have humans correct the labels. This situation as-
sumes that a small lexicon and a decent grammar
sketch are available.

The main aim of this pilot experiment is to re-
duce barriers that discourage “paper-and-pen” lin-
guists from being involved in NLP for low-resource
languages. Specifying grammatical information in
a familiar tool is one way linguists can help build
resources needed to train NLP models. The results
of this pilot project in FLEx are promising but ad-

ditional work is needed. Further work is needed to
develop the data generation mechanisms. We did
quite a bit of programming to make any data syn-
thesis possible, including modifying and enhancing
existing FlexTools modules. There is a potential
for independent programmers to contribute mod-
ules and improve the quality of the FLEx-generated
synthetic data.

Finally, there is an additional direct benefit to
a linguist who attempts to generate synthetic data
from FLEx. The steps to create and improve FLEx-
generated training data also improve the software’s
morphological parser. Even if the quality of the
generated data for a given language is too poor
to train a usable neural analyzer, users can bene-
fit from an improved automatic parser that anno-
tates new data in Texts & Words. The drawback
to the rule-based parsers in FLEx is that, unlike a
machine learning model, they cannot “guess” the
inflectional information of new forms. If a word’s
root (or affix) morphemes are not already entered
in the Lexicon by the user, the parser cannot do
anything with that word form. The benefit of gener-
ating training data to improve a probabilistic model
such as the one we tested, is that these models can
provide reasonable guesses at inflectional analyses
for word forms with previously unseen morphemes.
Even these automated hypotheses may be benefi-
cial when an annotator is faced with large numbers
of new words.

8 Conclusion

Generating artificial training data based on knowl-
edge of a language’s structure is one way to address
the low-resource language challenge. In previous
work, this has required special training for either
NLP researchers or language experts. We have
shown that it is possible to generate artificial data
using FLEx, a tool linguists are already familiar
with. This means an NLP expert does not need to
be a language domain expert and the linguist does
not need specialized training. However, the qual-
ity of the synthetic data and, therefore, the useful-
ness of the trained model depends on how well the
goal of data generation is understood by the FLEx
user. In the future, we would like to work more
closely with the linguist or a native speaker to un-
derstand the patterns of errors in the generated data
and determine what mechanisms either in FLEx
or the FlexTools modules could reduce them. Fu-
ture work should expand the type of generated data



to include morpheme boundaries and train models
that perform morpheme segmentation as well as
labeling of inflectional information. Training mor-
phological NLP models holds promise for language
documentation and description to automate the in-
terlinearization process and provide resources for
developing language technology that could benefit
the community such as language learning apps and
machine translation.
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