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Abstract

Current cross-prompt automated essay scor-
ing (AES) is a challenging task due to the
large discrepancies between different prompts,
such as different genres and expressions. The
main goal of current cross-prompt AES sys-
tems is to learn enough shared features be-
tween the source and target prompts to grade
well on the target prompt. However, because
the features are captured based on the origi-
nal prompt representation, they may be lim-
ited by being extracted directly between es-
says. In fact, when the representations of
two prompts are more similar, we can gain
more shared features between them. Based
on this motivation, in this paper, we propose
a learning strategy called "prompt-mapping"
to learn about more consistent representations
of source and target prompts. In this way,
we can obtain more shared features between
the two prompts and use them to better repre-
sent the essays for the target prompt. Experi-
mental results on the ASAP++ dataset demon-
strate the effectiveness of our method. We
also design experiments in different settings
to show that our method can be applied in
different scenarios. Our code is available at
https://github.com/gdufsnlp/PMAES.

1 Introduction

Automated Essay Scoring (AES) aims to evalu-
ate the quality of essays automatically. Compared
with human grading process, a robust AES sys-
tem can not only reduce the work of teachers, but
also improve the consistency of grading (Hearst,
2000;Weigle, 2002) and make it broadly available
to language learners.

AES has been studied for many years. Early
studies focus more on handcrafted features, such as
lexical features (Rudner and Liang, 2002;Attali and
Burstein, 2006;Yannakoudakis et al., 2011). With
the rise of deep learning, many studies based on
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Figure 1: A summary of our motivations. The green
circle represents the source prompt’s representations,
while the red circle represents the target prompt’s repre-
sentations. The yellow area reflects the features shared
by both prompts.

neural networks for prompt-specific settings have
been proposed and achieved better results (Dong
et al., 2017; Tay et al., 2018; Liao et al., 2021;Xie
et al., 2022). These studies follow the same setting,
that is, both rated training essays and unrated test
essays belong to the same prompt.

Another type of work is cross-prompt AES. In
this setting, labeled training essays are from source
prompts and unlabeled test essays are from a differ-
ent target prompt. Existing studies mainly focus on
obtaining sufficient shared features between source
and target prompts to grade the target prompt es-
says effectively. Some of them obtain shared fea-
tures by extracting handcrafted features (Phandi
et al., 2015; Ridley et al., 2020; Ridley et al., 2021)
while others learn shared features by optimizing ad-
ditional training objectives, such as the multi-task
learning (Cummins et al., 2016), two-stage strategy
(Jin et al., 2018; Li et al., 2020) and self-supervised
learning task (Cao et al., 2020). Although these
methods can effectively capture shared features
between different prompts, we argue that these fea-
tures are captured based on the original representa-
tions of the essays from source and target prompts.
It may be limited by directly extracting the shared
features among them.

Intuitively, when the representations of the es-
says from the source and target prompts are more
consistent, they can share more knowledge between
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them. To this end, we propose a prompt represen-
tation learning framework for cross-prompt AES
(PMAES) in which we design a prompt-mapping
contrastive learning strategy to effectively learn
about more consistent representations of source and
target prompts. To do this, we design a mapping
operation to project each essay from the source
prompt to the target prompt and get its mapping
representation specific to the target prompt. For
each essay on the source prompt (let’s say rs), we
first determine how similar it is to all the essays in
the target prompt by their original representations
(e.g., by taking the dot product with the inverse
matrix of the representations of all the essays in the
target prompt) as the weights of the rs to each tar-
get essay. Then, we employ a learnable parameter
matrix (specifically, a prompt-mapping matrix) to
acquire the weighted representation of the source
prompt essay projected on the target prompt to
express the mapping representation of the source
essay rs (let’s say r̂s). These source essay rep-
resentations and source mapping representations
are treated as the source-to-target mapping pairs
(rs, r̂s). By decreasing the distance between the
essays in these mapping pairs, we may gradually
reduce the discrepancy between the source and tar-
get prompts and finally make the representations
of the two prompt essays more consistent. It is
worth noting that the above description is about
mapping from source to target. Naturally, we also
perform target-to-source prompt mapping opera-
tions to further learn a more consistent representa-
tions of the two prompts, which will be described
in Section 3.4.

As demonstrated in Figure 1, given the origi-
nal essay representations of a source and a target
prompt (which we marked in green and red, respec-
tively), there are very few shared features between
them under the original representations (which we
marked in yellow). When we train the model using
our proposed prompt-mapping approach, the rep-
resentations of the two prompts may become more
similar, which enables more shared features across
the two prompts. We show them in Figure 1(b)
and Figure 1(c). As the shared features increase,
we can get more accurate representations of target
prompt essays and grade them more accurately. To
summarize, the main contributions of our work are
as follows:

1) To the best of our knowledge, this is the first
attempt to explore the learning of consistent rep-

resentations of different prompts by introducing a
prompt-mapping learning strategy in order to ob-
tain more shared features between the source and
target prompts.

2) We conduct comprehensive experiments on
the ASAP++ dataset, and the results show that our
approach outperforms the state-of-the-art model
on both single-overall and multi-attribute scoring
tasks. Also, the prompt consistency experiments
show that our method can make source and target
prompts much more similar to each other.

3) We further design three types of source-target
settings. The results show that our approach can be
adapted to multiple scenarios.

2 Related Work

2.1 Prompt-specific AES

Prompt-specific AES aims to train and test essays
on the same prompt. Early studies (Rudner and
Liang, 2002;Attali and Burstein, 2006; Mohler and
Mihalcea, 2009; Persing and Ng, 2013; Sakaguchi
et al., 2015; Sultan et al., 2016) rate essays by
extracting handcrafted features to train a machine
learning model. Recently, with the rise of deep
learning, a growing number of studies (Taghipour
and Ng, 2016; Dong and Zhang, 2016; Dong et al.,
2017; Dasgupta et al., 2018; Li et al., 2018; Tay
et al., 2018; Uto et al., 2020; Hussein et al., 2020;
Ma et al., 2021; Liao et al., 2021; Wang et al., 2022;
Xie et al., 2022) propose scoring models based on
neural networks and achieve promising results.

2.2 Cross-prompt AES

Cross-prompt AES aims to train models from la-
beled source prompt essays and rate target prompt
essays. Phandi et al. (2015) train the Bayesian
linear ridge regression algorithm from the source
prompt using manual features, then test it directly
on the target prompt. Cummins et al. (2016)
adopt multi-task learning to address the problem of
prompt adaptation. Jin et al. (2018) propose a two-
stage approach for the problem of cross-prompt
AES. In the first stage, they train a RankSVM
on prompt-independent features to obtain pseudo-
labels for target prompt essays. In the second
stage, a neural network model learns more prompt-
dependent features in the pseudo-labeled essays.
Li et al. (2020) also adopts a two-stage approach
to train a model to learn common knowledge and
provide pseudo labels for target prompt essays in
the first stage, then use a Siamese framework to
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learn more prompt-dependent features in the sec-
ond stage. Cao et al. (2020) train sentence reorder-
ing and noise identification tasks with adversarial
training to improve the domain adaptability of the
model. Ridley et al. (2020) utilize the handcrafted
features to provide prompt agnostic information
and achieve good results. Ridley et al. (2021) ex-
pand this prompt-agnostic information for multi-
attribute scoring tasks.

2.3 Contrastive Learning

Contrastive learning is an unsupervised learning
method originally used in computer vision (Had-
sell et al., 2006). The main idea is to gradually
bring the anchor and its positive samples closer
together in a shared semantic space while distin-
guishing the anchor from other samples, such as
the work of Chen et al. (2020). Recently, con-
trastive learning has shown satisfactory results in
textual representation learning. Data augmentation
is a general strategy for obtaining positive samples,
such as translation (Han et al., 2022), synonym re-
placement (Wang et al., 2021), word repetition (Wu
et al., 2022) or textual representation perturbation
(Gao et al., 2021; Yan et al., 2021).

3 Our Approach

The whole architecture of our approach is shown
in Figure 2. It contains three components: shared
encoder, scorer and prompt-mapping contrastive
learning. The shared encoder provides a shared
representation for the other two components, the
scorer is used to predict the score, and the prompt-
mapping contrastive learning is used to maximize
the consistency of source and target prompts.

3.1 Task Definition

Given source prompt data Ds = {(xsi , ysi )}Pi=1 and
target prompt data Dt = {xti}Qi=1, where xs/ti is the
i-th essay in source/target prompt, P and Q are the
number of essays in the source and target prompts.
For single-overall scoring task, ysi is the overall
score of source prompt essay xsi , and for multi-
attribute scoring task, ysi = {ys1i , ys2i , ..., ysKi } is
the set of attribute scores, and ys1i is the overall
score. The task of our approach is to train a model
with Ds and Dt as inputs and output the score of
all target prompt essays. The complete algorithm
is shown in Algorithm 1.

Algorithm 1: Procedure of our approach

Input: {(xsi , ysi )}Pi=1, {xti}Qi=1

Output: shared encoder F , scorer G
1 Calculate Is and It using Eq. 14;
2 for sampling mini-batch do
3 rsi = F(xsi ), r

t
i = F(xti);

4 Calculate r̂si and r̂ti using Eq. 15;
5 Calculate Ls→t and Lt→s using Eq. 16

and Eq. 17 ;
6 Lpm = Ls→t + Lt→s;
7 if single-overall scoring task then
8 Calculate zsi using Eq. 5;
9 Calculate ŷsi using Eq. 6;

10 Calculate Laes_so using Eq. 7;
11 if epoch=1 then
12 Update F and G minimizing

Laes_so;
13 else
14 Update F and G minimizing

Lpm and Laes_so;

15 if multi-attribute scoring task then
16 Calculate {zski }Kk=1 using Eq. 8;
17 Calculate {ŷski }Kk=1 using Eq. 9;
18 Calculate Laes_ma using Eq. 10;
19 Calculate Lcor using Eq. 13;
20 Update F and G minimizing

Laes_ma, Lpm and Lcor;

3.2 Shared Encoder
To better encode essays, we use the hierarchical
structure proposed by Dong et al. (2017) as a shared
encoder, in which the sentence-level representation
is extracted by CNN and attention pooling from
words, and LSTM and another attention pooling
are used to capture essay-level representation from
all sentences. In this paper, as with Ridley et al.
(2021), we use POS embedding1 to represent the
essay text due to their ability to obtain better gen-
eralized representations. Suppose each essay is
composed of n sentences, and each sentence con-
tains m words. We use wi to denote the POS em-
bedding of each word for convenience. Then, the
sentence-level representation is captured by CNN
with attention pooling:

ci = CNN([wi : wi+l−1]), i = 1, 2, ...,m (1)

st = attention([c1 : cm]) (2)
1We use the NLTK (http://www.nltk.org)
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Figure 2: Overview of our model. Image on the left shows the whole architecture of our model and image on the
right shows the operation of prompt-mapping contrastive learning.

where l is the kernel size of CNN, ci is the output
of the convolution operation applied to i-th POS
embedding, and st is the representation of t-th sen-
tence.

The essay-level representation is captured by
LSTM with another attention pooling:

ht = LSTM(st−1, st), t = 1, 2, ..., n (3)

r = attention([h1 : hn]) (4)

where ht is the output of LSTM at the t-th time
step, and r is the final essay representation.

3.3 Scorer

In this paper, we evaluate our approach both on
single-overall scoring task and multi-attribute scor-
ing task. Therefore, we have two types of scorers,
corresponding to two forms of loss function. We
also use the same handcrafted features as Ridley
et al. (2021), denoted as f.

3.3.1 Single-overall Scorer
For single-overall scoring task, firstly, we concate-
nate the essay representation r and handcrafted
features f, denoted as [r; f]. Then, feeding it into a
tanh dense layer to get z. Finally, another dense
layer with sigmoid activation is applied to predict
the overall score ŷ. The corresponding equations
are as follows (Eq. 5 and Eq. 6):

z = tanh(Wz[r; f] + bz) (5)

ŷ = σ(Wyz + by) (6)

where Wz and Wy are the trainable weight matrices,
bz and by are the bias vectors, σ is the sigmoid
function. We use mean squared error (MSE) as the
loss function, defined as follows:

Laes_so =
1

N

N∑

i

(ŷi − yi)
2 (7)

where N is the number of essays in a batch.

3.3.2 Multi-attribute Scorer
For multi-attribute scoring task, we first input the
essay representation r into a specific relu dense
layer to get the representation zk of the k-th at-
tribute. Then, concatenating zk with f and feeding
into a specific sigmoid dense layer to predict the k-
th attribute score ŷk. The corresponding equations
are as follows (Eq. 8 and Eq. 9):

zk = relu(W k
z r + bkz) (8)

ŷj = σ(W k
y [z

k; f] + bky) (9)

where W k
z and W k

y are the trainable weight matri-
ces , bkz and bky are the bias vectors. Suppose the
total number of attributes is K, the multi-attribute
scoring loss is defined as follows:

Laes_ma =
1

NK

N∑

i

K∑

k

(ŷki − yki )
2 (10)

It should be noted that not all essays have all
attributes (as shown in Table 5). So we use the
mask mechanism proposed by Ridley et al. (2021)
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to account for the attributes without gold scores
when calculating the loss.

maskki =

{
1, if yki ∈ yi

0, otherwise
(11)

yi = yi ⊗ maski , ŷi = ŷi ⊗ maski (12)

In addition, we believe that when predicting one
attribute score, the other attributes can provide use-
ful information for it. Therefore, we propose an
inter-attribute correlation loss Lcor.

Lcor =
1

K

N∑

i

K∑

k

− log(
K∑

j,j ̸=k

g(zki , z
j
i )) (13)

where g(zki , z
j
i ) = exp(cos(zki , z

j
i )/ρ), cos(·) is

the cosine similarity function, and ρ is a hyper-
parameter. The goal of Lcor is to maximize the
mutual information among all attributes.

3.4 Prompt-mapping Contrastive Learning
In order to capture more shared features between
the source and target prompts, we propose a
prompt-mapping contrastive learning strategy to
learn about more consistent representations of
source and target prompts. For convenience, let’s
take the source-to-target prompt mapping as an ex-
ample to describe our method in detail. The target-
to-source prompt mapping is the same operation.

Firstly, we use shared encoder F to encode all
source and target prompt essays in training data to
obtain the source prompt representation Is ∈ RP∗u

and the target prompt representation It ∈ RQ∗u (as
shown in Eq. 14), where u is the number of LSTM
hidden units, P and Q are the number of source
and target prompt essays.

Is = F({xsi}Pi=1), It = F({xti}Qi=1) (14)

Next, we will obtain source-to-target mapping
pairs. First, we take each source essay represen-
tation, let’s say rsi , to dot product with I⊤t , where
I⊤t ∈ Ru∗Q is the transpose of It, which is used
to obtain how similar it is to all the essays in the
target prompt as the weights of the rsi to each target
prompt essay. After that, we use a learnable param-
eter matrix Ws ∈ RQ∗u to acquire the weighted
representations of the source prompt essays pro-
jected on the target prompt to express the source
mapping representation r̂si , as shown in Eq. 15. In
this way, rsi and r̂si can form the source-to-target
mapping pair (rsi , r̂si ).

Similarly, for the target-to-source mapping pairs,
r̂ti can be obtained by using rti , I

⊤
s ∈ Ru∗P and

Wt ∈ RP∗u, and finally get the target-to-source
mapping pair (rti , r̂

t
i).

r̂si = Ws · (rsi ⊗ I⊤t ), r̂ti = Wt · (rti ⊗ I⊤s ) (15)

where ⊗ is the dot product operation.
Finally, we take the mapping pairs (rsi , r̂si ) and

(rti , r̂
t
i) as the positive pairs. For the selection of

negative samples, we follow the work of SimCLR
(Chen et al., 2020) which takes the other samples
in the same batch as the negative samples. The con-
trastive learning loss functions of mapping from
source to target and from target to source are de-
fined as follows:

Ls→t =

Ns∑

i

− log
f(rsi , r̂

s
i )

Ns∑
j
f(rsi , r

s
j ) + f(rsi , r̂

s
j )

(16)

Lt→s =

Nt∑

i

− log
f(rti , r̂

t
i)

Nt∑
j
f(rti , r

t
j) + f(rti , r̂

t
j)

(17)

where f(a, b) = exp(cos(a, b)/τ), cos(·) is co-
sine similarity function, τ is temperature hyper-
parameter, Ns and Nt are the batch size of source
prompt essays and target prompt essays. The
prompt-mapping contrastive learning loss is de-
fined as:

Lpm = Ls→t + Lt→s (18)

The total loss of single-overall scoring task is:

Lso = Laes_so + λ1Lpm (19)

The total loss of multi-attribute scoring task is:

Lma = Laes_ma + λ1Lpm + λ2Lcor (20)

where λ1 and λ2 are weighted hyper-parameters.

4 Experiments

4.1 Datasets and Evaluation Metrics
We conduct the experiments on the ASAP++ (Math-
ias and Bhattacharyya, 2018) dataset, which is an
extension of the ASAP2 dataset. Each essay has
an overall score and multiple attribute scores. The
statistics are provided in Appendix A.

2https://www.kaggle.com/c/asap-aes/data

1493

https://www.kaggle.com/c/asap-aes/data


Model P1 P2 P3 P4 P5 P6 P7 P8 Avg.
Single-overall scoring task
Hi att † 0.372 0.465 0.432 0.523 0.586 0.574 0.514 0.323 0.474
PAES † 0.746 0.591 0.608 0.641 0.727 0.609 0.707 0.635 0.658
PMAES (ours) 0.758 0.674 0.658 0.625 0.735 0.578 0.749 0.718 0.687
Multi-attribute scoring task
Hi att ‡ 0.315 0.478 0.317 0.478 0.375 0.357 0.205 0.265 0.349
AES aug ‡ 0.330 0.518 0.299 0.477 0.341 0.399 0.162 0.200 0.341
PAES ‡ 0.605 0.522 0.575 0.606 0.634 0.545 0.356 0.447 0.536
CTS no att ‡ 0.619 0.539 0.585 0.616 0.616 0.544 0.363 0.461 0.543
CTS ‡ 0.623 0.540 0.592 0.623 0.613 0.548 0.384 0.504 0.553
PMAES (ours) 0.656 0.553 0.598 0.606 0.626 0.572 0.386 0.530 0.566

Table 1: Main results of single-overall scoring task and multi-attribute scoring task for each prompt. The results of
multi-attribute scoring task is the average QWK score across all attribute for each prompt. † refers to the results of
rerunning the code. ‡ refers to the results from Ridley et al. (2021).

Model Overall Cont Org WC SF Conv PA Lan Nar Avg.
Hi att ‡ 0.453 0.348 0.243 0.416 0.428 0.244 0.309 0.293 0.379 0.346
AES aug ‡ 0.402 0.342 0.256 0.402 0.432 0.239 0.331 0.313 0.377 0.344
PAES ‡ 0.657 0.539 0.414 0.531 0.536 0.357 0.570 0.531 0.605 0.527
CTS no att ‡ 0.659 0.541 0.424 0.558 0.544 0.387 0.561 0.539 0.605 0.535
CTS ‡ 0.670 0.555 0.458 0.557 0.545 0.412 0.565 0.536 0.608 0.545
PMAES (ours) 0.671 0.567 0.481 0.584 0.582 0.421 0.584 0.545 0.614 0.561

Table 2: Main results of multi-attribute scoring task. This table shows the average QWK score across all prompts
for each attribute. ‡ refers to the results from Ridley et al. (2021).

We use Quadratic Weighted Kappa (QWK) as
the evaluation metric to measure the consistency
between the real scores and the predicted scores,
which is the general evaluation metric in AES tasks
(Jin et al., 2018;Li et al., 2020;Ridley et al., 2021).

4.2 Implementation Details

We use the same data partition as the current state-
of-the-art model (Ridley et al., 2021), that is for
each prompt as target prompt, then the rest of
prompts are set to be source prompt. For exam-
ple, assume the target prompt is P8, then the source
prompt consists of P1∼P7. We use labeled source
prompt essays and unlabeled target prompt essays
as training data, and the same unlabeled target
prompt essays as test data. The validation data
is from labeled source prompt essays.

We use the same handcrafted features proposed
by (Ridley et al., 2020) in single-overall and multi-
attribute scoring task, including features of Length-
based, Readability, Text Complexity, Text Variation
and Sentiment. We use the length of the longest
essay in the dataset as the padding length to ensure

that the essay information can be retained as much
as possible. We use 50-dimension POS embedding
as input and train all models for 50 epochs. We
report the average results across five random seeds.
More details are provided in Appendix B.

4.3 Baseline Models

We compare with the existing models on single-
overall scoring task and multi-attribute scoring
task. For single-overall scoring task, we use Hi att
(Dong et al., 2017) and PAES (Ridley et al., 2020)
as baseline models, which are both the single-
overall scoring models. For multi-attribute scoring
task, we use Hi att (Dong et al., 2017), AES aug
(Hussein et al., 2020), PAES (Ridley et al., 2020),
CTS no att (Ridley et al., 2021) and the current
state-of-the-art model CTS (Ridley et al., 2021)
as the comparison models. The details of baseline
models are described as follow:

(1) Hi att: Dong et al. (2017) propose a hierar-
chical structure with attention pooling for single-
overall scoring task, which scores essays by extract-
ing the sentence- and essay-level features.
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Model P1 P2 P3 P4 P5 P6 P7 P8 Avg.
Single-overall scoring task
PMAES 0.758 0.674 0.658 0.625 0.735 0.578 0.749 0.718 0.687
w/o Lpm 0.602 0.551 0.621 0.646 0.727 0.602 0.745 0.665 0.645
Multi-attribute scoring task
PMAES 0.656 0.553 0.598 0.606 0.626 0.572 0.386 0.530 0.566
w/o Lcor 0.646 0.539 0.592 0.611 0.630 0.580 0.373 0.509 0.560
w/o Lpm 0.650 0.545 0.589 0.606 0.620 0.578 0.383 0.453 0.553
w/o Lpm & Lcor 0.625 0.525 0.594 0.607 0.637 0.557 0.377 0.469 0.549

Table 3: Ablation results of single-overall scoring task and multi-attribute scoring task for each prompt. The results
of multi-attribute scoring task is the average QWK score across all attributes for each prompt.

Model Overall Cont Org WC SF Conv PA Lan Nar Avg.
PMAES 0.671 0.567 0.481 0.584 0.582 0.421 0.584 0.545 0.614 0.561
w/o Lcor 0.669 0.562 0.461 0.573 0.569 0.405 0.583 0.546 0.619 0.554
w/o Lpm 0.666 0.546 0.450 0.573 0.573 0.385 0.578 0.538 0.614 0.547
w/o Lpm & Lcor 0.664 0.553 0.432 0.548 0.554 0.398 0.583 0.539 0.614 0.543

Table 4: Ablation results for multi-attribute scoring task, this table shows the average QWK score across all prompts
for each attribute.

(2) AES aug: Hussein et al. (2020) convert the
model proposed by Taghipour and Ng (2016) into
a multi-task architecture, which can be used to rate
the multi-attribute scores at the same time.

(3) PAES: Ridley et al. (2020) apply a neural
model with handcrafted features for single-overall
scoring.

(4) CTS: Ridley et al. (2021) propose the first
model for the cross-prompt multi-attribute scoring
task, in which they develop a trait-attention mech-
anism to establish interactions between different
attributes.

(5) CTS no att: This model (Ridley et al., 2021)
has the same shared- and private-layers as CTS,
and removes the trait-attention mechanism.

5 Results and Analysis

5.1 Main Results

We report the main results on single-overall scoring
task and multi-attribute scoring task.

For single-overall scoring task, we use Hi att and
PAES as baseline models, which are both single-
overall scoring models. As shown in Table 1, com-
pared with Hi att and PAES, PMAES achieves the
best results, improving the average QWK score by
21.3% and 2.9%, respectively, which proves the
effectiveness of our approach on this task.

For multi-attribute scoring task, following Rid-

ley et al. (2021), we report the results from two
dimensions. For the average QWK score across all
attributes for each prompt (Table 1), we can see
that our approach achieves 0.566 average QWK
score, which outperforms all baseline models. For
the average QWK score across all prompts for each
attribute (Table 2), PMAES not only achieves the
state-of-the-art average performance but also gets
best performance on all prompts, which shows the
significant improvement of PMAES for this task.
Based on the above results, we can see that PMAES
is suitable for both grading a single overall score
and multiple attribute scores.

Meanwhile, we discover that PMAES fails to per-
form well in P4 and P6 as target prompts. Through
analysis, we find that essays in P4 and P6 are
source-dependent types and were written by 10th
graders. Their writing requirements are relatively
difficult. P4 requires students to write a response
to figure out the source author’s thoughts, while P6
requires students to summarize academic excerpts.
We believe that P4 and P6 share a few features with
other prompts. In this case, the way our method
maps P4/P6 and the source prompt to each other
may lead to a low-scoring performance.

5.2 Ablation Studies

We conduct the ablation experiments both on
single-overall scoring task and multi-attribute scor-
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ing task, which are shown in Table 3 and Table 4.
For single-overall scoring task, as shown in

Table 3, we can see that if training model with-
out Lpm, the average QWK score drops by 4.2%,
and the QWK scores of the majority of prompts
also drop significantly. Especially in P1 and P2,
the QWK scores drop by 15.6% and 12.3%. It
proves that our proposed prompt-mapping con-
trastive learning is effective in this task.

For multi-attribute scoring task, we also show the
results from two dimensions. Firstly, as shown in
Table 3, it can be seen that the average QWK score
drops by 0.6% after removing Lcor and by 1.3%
after removing Lpm, which demonstrates that both
Lpm and Lcor contribute to improve the scoring
performance, and Lpm contributes more. When we
remove these two components (w/o Lpm & Lcor),
the average QWK score drops by 1.7%. This shows
that Lpm and Lcor can promote each other and fur-
ther improve the scoring performance. Secondly,
for the dimension of the average QWK score across
all prompts for each attribute, we show the results
in Table 4. The average QWK score drops by 0.7%
after removing Lcor, by 1.4% after removing Lpm

and by 1.8% after removing both components. It
further demonstrates the effectiveness of our model.
We also can see that when we remove both of them,
the QWK scores drop on almost all attributes. Es-
pecially on Organization, after removing Lpm and
Lcor, the QWK score drops significantly (by 4.9%).

Based on the above results, it can be found that
our proposed approach can effectively improve the
model scoring performance in the single-overall
scoring task and the multi-attribute scoring task.

5.3 Analysis of Prompt Consistency

To further investigate the effectiveness of prompt-
mapping contrastive learning on prompt consis-
tency, we present our analysis using two methods:
1) Measuring the distance between source and tar-
get prompts using the Maximum Mean Discrep-
ancy (MMD, Gretton et al., 2012). 2) Visualiz-
ing the essay representations of source and target
prompts by using t-SNE (Van der Maaten and Hin-
ton, 2008) to observe the degree of the consistency
of prompts.

5.3.1 MMD for Prompt Consistency
Maximum Mean Discrepancy (MMD) is a kernel-
based method that measures the distance between
two matrices based on their respective mean em-
beddings. Inspired by previous work (Thota and

Figure 3: Visualization of prompt representations after
training with PMAES w/o Lpm and PMAES. (a) and
(b) represent the change of source and target prompt
representations with P1 and P2 as target prompts.

Leontidis, 2021; Yue et al., 2022), we quantify
the degree of consistency by calculating the MMD
distance between the source and target prompt es-
say representation matrices. A smaller distance
indicates a greater degree of consistency between
the source and target prompts, whereas a larger
distance indicates a lesser degree of congruence.
More details are provided in Appendix C

5.3.2 Visualization for Prompt Consistency
We use the t-SNE (Van der Maaten and Hinton,
2008) toolkit to visualize the representations of all
essays on source and target prompts in training data
to demonstrate prompt representations, which are
generated by shared encoder under random initial-
ization (original), training with PMAES w/o Lpm

and PMAES, respectively.
Firstly, as shown in Figure 3(a) and Figure 3(b),

we show the visualization results of source and tar-
get prompt essay representations with P1 and P2 as
target prompts. Taking Figure 3(a) for example, we
can see that a clear discrepancy exists in the orig-
inal representations of source prompt (green) and
target prompt (red). After training with PMAES
w/o Lpm, the prompt representations become more
discrete, while prompt representations generated
by PMAES are undoubtedly more consistent and
close to each other. The same phenomenon occurs
in Figure 3(b).

Secondly, to further show how the prompt repre-
sentations change as the number of training epochs
increases, we visualize the essay representations
generated by the epochs 0 (original), 4, 14, 34 and
50 during training w/o Lpm and PMAES with P1
as the target prompt. As shown in Table 4, the
top row shows the results of training with PMAES
w/o Lpm, and the bottom row shows the results of
training with PMAES. The results show that the
representations generated by these two models are
relatively divergent at the beginning of training. As
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Figure 4: Visualization of changes in prompt representations during training with PMAES w/o Lpm (top) and
PMAES (bottom), when P1 is the target prompt. (a), (b), (c), (d) and (e) represent the visualization of essay
representations at epoch 0 (original), 4, 14, 34 and 50, respectively.

the training epochs increase, PMAES makes the
prompt representations gradually consistent, while
PMAES w/o Lpm makes them gradually discrete.

Based on the results of MMD and visualization
analysis, it can be seen that w/o Lpm not only fails
to maintain the consistency of source and target
prompts, but also damages it. In contrast, our ap-
proach can significantly make these two prompts
more consistent to improve scoring performance.

5.4 Results of Different Source-target Settings

Most of the current cross-prompt AES studies train
on multiple prompts (source prompt) and test on a
single prompt (target prompt), namely the many-
to-one setting, which is the general setting in cross-
prompt AES and is shown in Section 5.1. To verify
the performance of our approach in many practical
settings, we conduct comprehensive experiments
for different source-target settings. More details
are provided in Appendix D.

6 Conclusions

In this paper, we propose a new method for
cross-prompt AES that aims to capture more
shared features between the source and target
prompts. Specifically, we design prompt-mapping
contrastive learning to decrease the distance be-
tween the mapping pairs from source-to-target and
target-to-source simultaneously and finally make
the representations of the two prompts more consis-
tent. Experimental results demonstrate that our ap-
proach achieves the state-of-the-art on both single-
overall scoring task and multi-attribute scoring task.
We further design experiments for three source-
target settings, which proves that our approach can
be adapted to multiple scenarios.

Limitations

Our approach achieves promising results in cross-
prompt AES by enhancing the consistency between
source and target prompts. We believe that this idea
can also be used to other cross-domain or domain
adaptation tasks. In addition, as can be seen from
Table 1, our approach fails to perform well in some
cases. We think that forcing the representations of
two prompts to be closer during model training may
result in more errors when the prompts’ grading
rubrics, writing genres, and writing requirements
are quite different. Therefore, there are two possi-
ble directions can be explored for future research:
1) More fine-grained shared features can be ex-
tracted to improve scoring performance. 2) Score-
aware information can be integrated into model to
improve source and target prompts consistency.
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A Statistics of Datasets

The ASAP++ dataset includes 12,978 English writ-
ings in response to eight prompts. Table 5 displays
the statistics for both ASAP and ASAP++.

B Implementation Details

The implementation details of our model are pre-
sented as follows:

For single-overall scoring task, we optimize only
the Laes_so in the first epoch, which is used to ini-
tialize the model weights, and optimize the Laes_so
and Lpm in the rest epochs. We set the kernel size
as 3, the number of filters as 100 for CNN and the
number of hidden units as 50 for LSTM. We use
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Prompt ID No. of Essays Avg. Len. Attributes Score Range
Overall Attribute

1 1,783 350 Cont, Org, WC, SF, Conv 2 - 12 1 - 6
2 1,800 350 Cont, Org, WC, SF, Conv 0 - 6 1 - 6
3 1,726 150 Cont, PA, Lan, Nar 0 - 3 0 - 3
4 1,772 150 Cont, PA, Lan, Nar 0 - 3 0 - 3
5 1,805 150 Cont, PA, Lan, Nar 0 - 4 0 - 4
6 1,800 150 Cont, PA, Lan, Nar 0 - 4 0 - 4
7 1,569 300 Cont, Org, Conv 0 - 30 0 - 6
8 723 650 Cont, Org, WC, SF, Conv 0 - 60 2 - 12

Table 5: Statistics of ASAP and ASAP++ Datasets. Cont: Content, Org: Organization, WC: Word Choice, SF:
Sentence Fluency, Conv: Conventions, PA: Prompt Adherence, Lan: Language and Nar: Narrativity.

Model P1 P2 P3 P4 P5 P6 P7 P8 Avg.
original 0.902 0.968 0.378 0.475 0.331 0.277 0.187 2.016 0.692
w/o Lpm 2.366 1.778 0.868 1.249 0.570 0.759 0.343 2.542 1.309
PMAES 0.180 0.167 0.093 0.077 0.054 0.043 0.046 1.168 0.228

Table 6: MMD distance of single-overall scoring task under different settings. "original", "PMAES w/o Lpm" and
"PMAES" indicate the essay representations of source and target prompt essays generated by randomly initialized,
trained with PMAES w/o Lpm and trained with PMAES, respectively.

Adam (Kingma and Ba, 2015) as the optimizer with
the learning rate = 0.0001, τ = 0.1 and λ1 = 0.5.
We use the model with the highest QWK score in
the development set to evaluate the test set.

For multi-attribute scoring task, the detailed pa-
rameters are as follows: the kernel size is 5, the
number of filters is 100 for CNN and the number
of hidden units is 100 for LSTM. The optimizer is
RMSprop (Dauphin et al., 2015) with the learning
rate = 0.001, τ = 0.001, ρ = 0.1, λ1 = 0.5 and the
λ2 = 0.1. We take the model with the highest aver-
age QWK score of all attributes in the development
set to evaluate the test set.

C MMD for Prompt Consistency

The MMD distance can be calculated by the fol-
lowing equation:

MMD =

∥∥∥∥∥∥
1

P

P∑

i=1

φ(rsi )−
1

Q

Q∑

j=1

φ(rtj)

∥∥∥∥∥∥

2

H

(21)

where φ(·) denotes the function that is used to map
the original variable to the Reproducing Kernel
Hilbert Space (RKHS), P and Q are the number
of source and target prompt essays in the training
data, rsi and rtj are the representation of source and
target prompt essays.

Source→Target PMAES w/o Lpm

P1,P2→P3,P4 0.537 0.426
P3,P4→P1,P2 0.673 0.407
P5,P6→P7,P8 0.447 0.381
P7,P8→P5,P6 0.528 0.439
P1∼P4→P5∼P8 0.682 0.672
P5∼P8→P1∼P4 0.675 0.559

Table 7: Experiment results of the many-to-many setting
on the single-overall scoring task. This table shows the
average QWK scores of all prompts in target prompt.
P1,P2→P3,P4 refers to source prompt consists of P1
and P2, and target prompt consists of P3 and P4. The
same meaning to other source-target pairs.

We take the essay representation matrices of
source and target prompts generated by shared en-
coder to calculate the MMD distance. In order
to better show the effectiveness of our proposed
prompt-mapping contrastive learning in improving
the consistency of source and target prompts, we
use the shared encoding layer representations ob-
tained at three settings: random initialization (orig-
inal), training PMAES without Lpm (w/o Lpm),
and training with PMAES. We show the results in
Table 6. As can be seen, compared with PMAES,
w/o Lpm leads to an increase in MMD distance,
which indicates that the prompt consistency is bro-
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S
T

P1 P2 P3 P4 P5 P6 P7 P8 Avg.

One-to-many setting

P1 - 0.526 | 0.598 0.457 | 0.552 0.533 | 0.560 0.557 | 0.673 0.423 | 0.517 0.701 | 0.733 0.344 | 0.405 0.506 | 0.577
P2 0.354 | 0.450 - 0.192 | 0.426 0.325 | 0.485 0.210 | 0.434 0.144 | 0.269 0.222 | 0.451 0.488 | 0.552 0.276 | 0.438
P3 0.428 | 0.780 0.222 | 0.620 - 0.652 | 0.658 0.772 | 0.747 0.613 | 0.626 0.576 | 0.709 0.087 | 0.297 0.479 | 0.634
P4 0.436 | 0.742 0.220 | 0.542 0.639 | 0.656 - 0.745 | 0.735 0.635 | 0.629 0.601 | 0.532 0.153 | 0.348 0.490 | 0.598
P5 0.540 | 0.742 0.323 | 0.570 0.563 | 0.621 0.614 | 0.628 - 0.598 | 0.608 0.634 | 0.641 0.141 | 0.271 0.488 | 0.583
P6 0.655 | 0.592 0.438 | 0.558 0.396 | 0.505 0.406 | 0.575 0.448 | 0.535 - 0.477 | 0.407 0.320 | 0.565 0.449 | 0.534
P7 0.666 | 0.667 0.500 | 0.612 0.490 | 0.507 0.457 | 0.534 0.535 | 0.509 0.396 | 0.346 - 0.427 | 0.562 0.496 | 0.534
P8 0.408 | 0.416 0.313 | 0.466 0.404 | 0.441 0.459 | 0.502 0.062 | 0.155 0.029 | 0.099 0.390 | 0.497 - 0.295 | 0.368

One-to-one setting

P1 - 0.371 | 0.483 0.477 | 0.553 0.529 | 0.531 0.608 | 0.659 0.470 | 0.513 0.736 | 0.731 0.362 | 0.421 0.507 | 0.556
P2 0.516 | 0.598 - 0.200 | 0.420 0.316 | 0.497 0.239 | 0.400 0.121 | 0.273 0.217 | 0.460 0.516 | 0.549 0.304 | 0.457
P3 0.458 | 0.782 0.382 | 0.519 - 0.656 | 0.657 0.758 | 0.759 0.597 | 0.633 0.599 | 0.716 0.088 | 0.265 0.506 | 0.619
P4 0.513 | 0.717 0.309 | 0.482 0.591 | 0.638 - 0.749 | 0.742 0.604 | 0.616 0.598 | 0.531 0.164 | 0.346 0.504 | 0.582
P5 0.424 | 0.750 0.275 | 0.606 0.583 | 0.627 0.608 | 0.637 - 0.599 | 0.612 0.601 | 0.555 0.113 | 0.325 0.458 | 0.588
P6 0.665 | 0.719 0.454 | 0.534 0.386 | 0.579 0.466 | 0.621 0.459 | 0.609 - 0.466 | 0.503 0.334 | 0.374 0.461 | 0.563
P7 0.633 | 0.660 0.461 | 0.607 0.485 | 0.452 0.460 | 0.505 0.510 | 0.512 0.463 | 0.343 - 0.428 | 0.574 0.491 | 0.522
P8 0.405 | 0.452 0.447 | 0.217 0.308 | 0.385 0.246 | 0.486 0.198 | 0.172 0.077 | 0.192 0.423 | 0.451 - 0.301 | 0.336

Table 8: Experiment results of one-to-many and one-to-one setting on single-overall scoring task. "a | b" refers
to the result of PMAES w/o Lpm and PMAES, respectively. "a | b" indicates that PMAES w/o Lpm outperforms
PMAES, and the rest is the opposite.

ken. In contrast, PMAES can significantly reduce
the MMD distance, which indicates that our ap-
proach is effective in improving prompt consis-
tency. These results prove that our approach can
effectively improve the consistency of source and
target prompts.

D Results of Different Source-target
Settings

We argue that there are different situations may
exist in practical settings. For example, source
prompt and target prompt are all containing mul-
tiple prompts (namely many-to-many), source
prompt contains only one prompt and target prompt
contains multiple prompts (namely one-to-many),
or source prompt and target prompt both contain
only one prompt (namely one-to-one). To this end,
we conduct comprehensive experiments for these
settings to verify the performance of our approach
in multiple scenarios.

D.1 Results of Many-to-many Setting

The experimental results of the many-to-many set-
ting are shown in Table 7. For convenience, we
design 6 source-target pairs for this setting. Since
each prompt has its own score range, we calculate
the QWK score for each prompt separately, and
report the average QWK score of all prompts in
target prompt. As shown in Table 7, PMAES out-
perform w/o Lpm in all source-target pairs with
the QWK scores increase by 11.1%, 26.6%, 6.6%,

8.9%, 1.0% and 11.6%. The results demonstrate
that our approach is suitable for many-to-many set-
ting.

D.2 Results of One-to-many Setting
Table 8 (top subtable) shows the experimental re-
sults of the One-to-many setting. Same as many-
to-many setting, we also calculate the QWK score
for each target prompt individually. In this setting,
source prompt contains only one prompt, and target
prompt consists of the remaining 7 prompts. Com-
pared with w/o Lpm, the average QWK scores of
PMAES increase by 7.1%, 16.2%, 15.5%, 10.8%,
9.5%, 8.5%, 3.8%, 7.3%, respectively. This proves
that our approach is also remarkable in one-to-
many setting.

D.3 Results of One-to-one Setting
The experimental results of the one-to-one setting
are shown in Table 8 (bottom subtable). For each
prompt, we take each of the remaining 7 prompt as
its corresponding target prompt to construct one-to-
one source-target pairs. We use "a|b" form to rep-
resent the performance of without using and using
prompt-mapping contrastive learning, where "a"
denotes QWK score of w/o Lpm and "b" denotes
QWK score of PMAES. It can be observed that
PMAES outperforms PMAES w/o Lpm in most
source-target pairs. The average QWK score for
each prompt as the source prompt are all improved,
it can be demonstrated that our approach is stable
and effective in one-to-one setting.
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be significant, while on small test sets they may not be.
Section 4.1

C �7 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 3.2 and Section 4.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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