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Abstract

Document-level relation extraction (DocRE) at-
tracts more research interest recently. While
models achieve consistent performance gains in
DocRE, their underlying decision rules are still
understudied: Do they make the right predic-
tions according to rationales? In this paper, we
take the first step toward answering this ques-
tion and then introduce a new perspective on
comprehensively evaluating a model. Specifi-
cally, we first conduct annotations to provide
the rationales considered by humans in DocRE.
Then, we conduct investigations and reveal the
fact that: In contrast to humans, the representa-
tive state-of-the-art (SOTA) models in DocRE
exhibit different decision rules. Through our
proposed RE-specific attacks, we next demon-
strate that the significant discrepancy in deci-
sion rules between models and humans severely
damages the robustness of models and renders
them inapplicable to real-world RE scenarios.
After that, we introduce mean average preci-
sion (MAP) to evaluate the understanding and
reasoning capabilities of models. According to
the extensive experimental results, we finally
appeal to future work to consider evaluating
both performance and the understanding ability
of models for the development of their appli-
cations. We make our annotations and code
publicly available1.

1 Introduction

Relation extraction (RE), aiming to extract rela-
tions between entities from texts, plays an impor-
tant role in constructing a large-scale knowledge
graph (Riedel et al., 2010; Hendrickx et al., 2010).
Most previous work extract relations from a single
sentence (Zelenko et al., 2002; Wei et al., 2020;
Shang et al., 2022), while recent studies adopt mul-
tiple sentences as a whole to harvest more relations
including inter-sentence relations (Yao et al., 2019),
i.e., document-level relation extraction (DocRE).

1https://github.com/Hytn/DocRED-HWE

Figure 1: An example from DocRED.

DocRE is more challenging because models are
required to synthesize all information of a given
document and then predict relations by reasoning
and language understanding (Yao et al., 2019; Nan
et al., 2020; Zeng et al., 2020).

Previous work obtains consistent performance
gains on DocRED (Yao et al., 2019), the proposal
of which has benefited the rapid development of
DocRE (Huang et al., 2022). However, the extent
to which their proposed methods possess language
understanding and reasoning capabilities is still un-
derstudied. A common evaluation method is to
measure average error across a test set, which ne-
glects the situations where models can make right
predictions according to wrong features. As shown
in Figure 1, the model accurately predicts the rela-
tion between Věra Čáslavská and Czech as humans
do. However, the evidence words considered by
models are incomprehensible to humans. Simi-
lar situations, where models improve their perfor-
mance by recognizing the spurious patterns, are
identified by parts of the AI community, includ-
ing annotation artifacts in natural language infer-
ence (NLI) (Poliak et al., 2018; Gururangan et al.,
2018; Glockner et al., 2018) and shallow template
matches in named entity recognition (NER) (Fu
et al., 2020). These learned spurious patterns can
severely damage their robustness and generaliza-
tion abilities in the corresponding tasks (Geirhos
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et al., 2020). To the best of our knowledge, this
is the first work to diagnose the decision rules of
models in DocRE.

In this paper, we analyze and characterize the
understanding ability of SOTA models in DocRE,
expose the bottleneck of the models, and then intro-
duce a new evaluation metric to select trustworthy
and robust models from those well-performed ones.
Our contributions are summarized as follows:

(1) We conduct careful and exhausting annota-
tions on DocRED to propose DocREDHWE, where
HWE denotes human-annotated word-level evi-
dence. The evidence words (decision rule) of hu-
mans are annotated in the dataset.

(2) We adopt a feature attribution method to ob-
serve the most crucial words considered by models
in their reasoning processes. We reveal that the
SOTA models spuriously correlate the irrelevant
(non-causal) information (e.g., entity names, some
fixed positions in any given documents, and irrel-
evant words) with their final predictions, forming
their own unexplainable decision rules.

(3) We demonstrate that the decision rules of
the SOTA models in DocRE are not reliable. We
delicately design six kinds of RE-specific attacks
to expose their bottleneck: Although they succeed
in achieving improved performance on the held-out
test set, they can strikingly fail under our designed
attacks. Both the severe lack of understanding abil-
ity and the learned spurious correlations exacerbate
the vulnerability of the models.

(4) Inspired by evaluation metrics in recom-
mender systems, we evaluate the understanding and
reasoning capability of models by our introduced
mean average precision (MAP). MAP enables us
to distinguish between the spurious-correlation-
caused and the understanding-ability-caused im-
provements in the performance of models. We ob-
serve that a model with a higher MAP will achieve
stronger robustness and generalization ability.

2 Related Work

Document-level Relation Extraction. Prevalent
effective methods on document-level RE can be
divided into two categories: graph-based meth-
ods and transformer-based methods (Huang et al.,
2022). Both of them are based on deep neural
networks (DNNs). Graph-based methods explore
the structure information in context to construct
various graphs and then model the process of multi-
hop reasoning through the paths in graphs. Ac-

cording to the classification mentioned in previ-
ous work (Huang et al., 2022), the SOTA graph-
based method is DocuNet (Zhang et al., 2021),
which constructs an entity-level relation graph, and
then leverages a U-shaped network over the graph
to capture global interdependency. Transformer-
based methods perform reasoning by implicitly
recognizing the long-distance token dependencies
via transformers. One of the most representative
transformer-based methods is ATLOP (Zhou et al.,
2020), which enhances the embeddings of entity
pairs by relevant context and introduces a learnable
threshold for multi-label classification. The tech-
niques proposed by ATLOP are widely adopted
by subsequent transformer-based work (Xie et al.,
2022; Tan et al., 2022a; Xiao et al., 2022), includ-
ing adaptive thresholding (AT) and localized con-
text pooling (LOP).

Analyzing Decision Rules of DNNs. With the
tremendous success and growing societal impact of
DNNs, understanding and interpreting the behav-
ior of DNNs has become an urgent necessity. In
terms of NLP, While DNNs are reported as having
achieved human-level performance in many tasks,
including QA (Chen et al., 2019), sentence-level
RE (Wang et al., 2020), and NLI (Devlin et al.,
2018), their decision rules found by feature attribu-
tion (FA) methods are different from that of humans
in many cases. For example, in argument detec-
tion, the widely adopted language model BERT
succeeds in finding the most correct arguments only
by detecting the presence of “not” (Niven and Kao,
2019). In VQA, dropping all words except “color”
in each question is enough for a DNN to achieve
50% of its final accuracy (Mudrakarta et al., 2018).
In NLI, DNNs can make the right predictions with-
out access to the context (Poliak et al., 2018). It
is demonstrated in these tasks that decision rules
of models should approach that of humans. Oth-
erwise, the difference will lead to a severe lack
of robustness and generalization ability (Agrawal
et al., 2016; Belinkov and Bisk, 2018; Fu et al.,
2020). It remains understudied whether the same
conclusion is established in DocRE. To the best of
our knowledge, this is the first work comprehen-
sively analyzing the decision rules of both models
and humans in DocRE.

3 Data Collection

Our ultimate goal is to provide all of the evi-
dence words (decision rules) that humans rely on
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during the reasoning process in DocRE. Since it
is not feasible for annotators to label relations
and evidence from scratch in DocRE (Yao et al.,
2019; Huang et al., 2022), we select DocRED
to further annotate our fine-grained decision rule
(word-level evidence). Our proposed dataset is
named DocREDHWE, where HWE denotes human-
annotated word-level evidence. In the following
two sections, we first elaborate on the underlying
reasons why we conduct word-level evidence an-
notation and why on DocRED, and then introduce
the details of our annotation.

3.1 Motivations

Motivation for Human Annotation. Current hu-
man annotations on DocRED are still insufficient
to support our research: the evidence for each rela-
tional fact is sentence-level instead of word-level.
If we base our study on the coarse-grained deci-
sion rules (sentence-level evidence) to analyze the
reasoning behaviors of humans and models, the
results will be misleading. For example, as shown
in Figure 1, the sentence-level evidence of models
and humans overlaps with each other (and Věra
Čáslavská and their nation come from the same
sentence), while their word-level evidence is to-
tally different. Therefore, annotation of word-level
evidence is of the essence. we conduct careful and
exhausting word-level evidence annotation on Do-
cRED and propose DocREDHWE. Our proposed
dataset significantly benefits more comprehensive
analyses of DocRE, which will be discussed in
Section 5.

Motivation for Selecting DocRED. While there
are a few candidate datasets in DocRE, only one
of them named DocRED (Yao et al., 2019) satis-
fies the urgent need of studying the understanding
and reasoning capabilities of general-purpose mod-
els in real-world DocRE. Specifically, Quirk and
Poon (2017) and Peng et al. (2017) leverage distant
supervision to construct two datasets without hu-
man annotation, which hurts the reliability of the
evaluation. Li et al. (2016) and Wu et al. (2019)
proposed two human-annotated document-level RE
datasets named CDR and GDA, respectively. Both
of them serve specific domains and approaches
(biomedical research) and contain merely one to
two kinds of domain-specific relations. Different
from other datasets in DocRE, the proposal of Do-
cRED has significantly promoted the rapid devel-
opment of the task in the past two years (Huang

et al., 2022). The large-scale human-annotated
dataset is constructed from Wikipedia and Wiki-
data, which serves general-purpose and real-world
DocRE applications (Yao et al., 2019). Among var-
ious improved versions of DocRED (Huang et al.,
2022; Tan et al., 2022b), we select the original ver-
sion with annotation noise because it presents one
of the most general circumstances faced by RE
practitioners: having limited access to entirely ac-
curate human-annotated data due to the extremely
large annotation burden and difficulty. For example,
human-annotated DocRED and TACRED (Zhang
et al., 2017) are discovered to have labeling noise.
As to distantly supervised datasets NYT (Mintz
et al., 2009) and DocRED-distant, the amount of
noise becomes larger.

3.2 Human Annotation Generation

Challenges and Solutions. We randomly sample
718 documents from the validation set of DocRED.
Annotators are required to annotate all the words
they rely on when reasoning the target relations.
Note that we annotate the pronouns that can be an-
other kind of mentions for each entity, which are
crucial for logical reasoning but neglected in Do-
cRED. Our annotation faces two main challenges.
The first challenge comes from the annotation ar-
tifacts in the original dataset: Annotators can use
prior knowledge to label the relations through en-
tity names, without observing the context. For
example, given a document with a cross-sentence
entity pair “Obama” and “the US”, annotators tend
to label “president of” despite the lack of rationales.
The issue is naturally solved by annotating the fine-
grained word-level evidence. Consequently, de-
spite the intensive workload, we annotate the words
in reasoning paths for each relation. The second
challenge lies in multiple reasoning paths for a sin-
gle relation: Annotators are required to annotate
the words in all reasoning paths. While annota-
tors succeed in reasoning a certain relation through
the corresponding evidence words, those words in
other reasoning paths can often be neglected. To
solve the issue, we adopt multiple (rolling) annota-
tions for each document and propose the checking
rule: Given a document and the previously anno-
tated relation with its evidence words masked, the
annotator will not be able to reason the relation.
If the rule is violated, new evidence words will
be annotated. The update will be checked by the
next annotator until no update occurs. All of the
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annotated evidence words are verified at least two
times.

Quality of Annotation. To ensure the quality of
the dataset, we provide principle guidelines and
training to the annotators. We examine the annota-
tors if they understand the principle. Meanwhile,
we regularly inspect the quality of annotations pro-
duced by each annotator. Our inspection exerts a
positive effect on the quality. On one hand, we filter
out 18 out of 718 documents that present low an-
notation accuracy. Through the rolling annotation
strategy, annotators also inspect the annotations
from each other. On the other hand, annotators cor-
rect three kinds of annotation errors in the original
DocRED: 1) relation type error where annotators
wrongly annotate a relation type between an en-
tity pair, 2) insufficient evidence error where an
annotated relation can not be inferred from the cor-
responding document, and 3) evidence error where
the sentence-level evidence of a relation is wrongly
annotated. The number of errors in the three cat-
egories is 4, 44, and 90, respectively. We exhibit
more details in the appendix.

4 Task, Methods, and Datasets

4.1 Task Description
Given a document d and an entity set E = {ei}ni=1

in d, the target of document-level relation extrac-
tion is to predict all of the relations between entity
pair (ei, ej)i,j=1...n;i ̸=j among R∪{NA}. R is the
predefined relations set . NA indicates that there is
no relation between an entity pair. ei and ej denote
subject and object entities. An entity may appear

many times in a document, we use set
{
mi

j

}Ni

j=1
to

distinguish the mentions of each entity. We finally
build the extracted relation triples into the form of
{(ei, rij , ej) | ei, ej ∈ E , rij ∈ R}.

4.2 Methods
We choose one of the most representative models
from each category of document-level RE models
(DocuNet from graph-based methods and ATLOP
from transformer-based methods) to produce attri-
butions by feature attribution (FA) methods. We
choose Integrated Gradient (IG) as our attribution
method due to its verified simplicity and faithful-
ness (Sundararajan et al., 2017), which renders IG
applicable in other text-related tasks (Mudrakarta
et al., 2018; Liu and Avci, 2019; Bastings and Fil-
ippova, 2020; Hao et al., 2021; Liu et al., 2022).

Integrated Gradient Integrated Gradient is a
reference-based method that calculates both the
model output on the input and that on a reference
point. The difference between the outputs is dis-
tributed as an importance score for each token.
Specifically, given an input x and reference point
x′, IG computes the linear integral of the gradients
gi along the ith dimension from x′ to x by,

gi =
(
xi − x′i

)
×
∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα,

where ∂F (x)
∂xi

indicates the gradient of an output
F (x) to x. As set in other text-related tasks (Wal-
lace et al., 2019), we set x′ as a sequence of em-
bedding vectors with all zero values.

4.3 Datasets

DocRED and DocREDScratch. DocRED con-
tains 56,354 human-annotated relational facts,
which can be categorized into 96 relation types.
Most of the relational facts (61.1%) can only be
identified by reasoning (Yao et al., 2019). Recently,
Huang et al. (2022) argue that the recommend-
revise scheme adopted by DocRED in annotation
leads to an obvious bias toward popular entities and
relations. They rectify the bias by re-annotating
96 randomly selected documents (from the vali-
dation set of DocRED) from scratch and propose
DocREDScratch. The distribution of DocREDScratch
shifts largely from the training set of DocRED,
which renders it applicable for testing the general-
ization ability of models trained on DocRED.

DocREDHWE We propose DocREDHWE with
the following features: 1) DocREDHWE con-
tains 699 documents with 27,732 evidence words
(10,780 evidence phrases) annotated by humans
for 7,342 relational facts among 13,716 entities. 2)
We annotate 1,521 pronouns referring to different
entities, which are necessary to predict correspond-
ing relations between entity pairs and neglected in
DocRED. 3) At least 3,308 out of 7,342 (45.1%)
relational facts require reading multiple sentences
for extraction.

5 Experiment and Analysis

5.1 Analyzing Decision Rules of Models

We employ IG as our attribution technique to char-
acterize the decision rules of models, which help us
observe some potential risks in the SOTA models.
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Figure 2: Mean attribution value distribution of
ATLOPRoBERTa on different positions of documents in
the validation set of DocRED. A similar shape of the
curve emerges when attributing DocuNet. We only ex-
hibit one of the curves due to the limited space.

Position Discrimination. After being encoded
by models, each token possesses its semantic mean-
ing (word embedding) and position information
(position embedding). Before analyzing the seman-
tic meaning, we first visualize the contribution of
position information to the predictions according
to the attribution values. As shown in Figure 2,
tokens in certain positions will affect final predic-
tions more significantly than the words in other
positions. In other words, models will discriminate
words according to their positions in a document,
even though the annotated rationales are almost uni-
formly distributed across the documents. We posit
two reasons: (1) models distort the features from
positions in the process of learning and spuriously
correlate certain positions with the final predictions;
(2) the position embeddings are wrongly trained
(unsupervised), deviating from their original func-
tion of representing the position information. Fur-
thermore, we observe more significant variances in
those positions, roughly from 450 to 500, because
the number of documents that are longer than 450
is small.

Note that the learned position discrimination
may happen to apply to the test set of DocRED.
However, the distributional shifts in real-world ap-
plications can render the spurious pattern no longer
predictive. The generalization ability of models
will be severely destroyed.

Narrow Scope of Reasoning. To observe the
words that are necessary for a model to infer the
right relations, we first investigate their number,
representing the reasoning scope of models. Specif-
ically, we design a template in the form of “A X

Figure 3: Performance based on top K attributed words

B”, where A and B denote the given entity pair
and X can be either a word sequence or a single
word. We regard X as necessary when models ac-
curately predict the relation rAB between A and B
according to the template. We set X to the top K
attributed tokens of rAB and the position order of
the tokens is the same as that in the original docu-
ment. The performance of models on the validation
set of DocRED is shown in Figure 3. Adding the
highest attributed words surprisingly results in a
performance decline. The contribution of position
is significant, which is consistent with the results
shown in Figure 2. Most importantly, we observe
that models can achieve 53% F1-score when only
given names of entity pairs without access to the
context, which remains at about 85% of their orig-
inal performance. Models perform reasoning in
a strikingly narrow scope. If the phenomenon is
reasonable, it indicates that such a few words are
enough to explain rationales for the right predic-
tions. To verify the assumption, We visualize these
words in the next paragraph.

Spurious Correlations. We select the top five
attributed words to visualize the evidence words
of models shown in Figure 4. The attributions re-
veal that the SOTA models on DocRED largely
rely on some non-causal tokens (e.g., entity name
and some punctuations) to make the right predic-
tions, which exerts a negative effect on learning
the rationales. We can observe that the full-stop to-
ken, for example, plays a pivotal role in the predic-
tions. Note that some special tokens (‘[SEP]’ and
‘[CLS]’) are demonstrated to serve as “no-op” oper-
ators (Clark et al., 2019). The reliance on these spe-
cial tokens may not be a problem because the two
tokens are guaranteed to be present and are never at-
tacked. However, the reliance on non-causal tokens
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Figure 4: Statistics of word-level evidence of
ATLOPRoBERTa. The signal ‘*’ denotes that the corre-
sponding token belongs to entity names. We observe a
similar phenomenon when counting the evidence words
of DocuNet. We only exhibit one result due to the lim-
ited space.

renders a model fragile, untrustworthy, and far from
being deployed into real-world scenarios as non-
causal tokens can easily be attacked through sub-
stitutions, paraphrasing, changes in writing style,
and so on. As shown in Table 1, if models learn to
predict according to non-causal tokens, then each
attack in these tokens will easily be successful.
This severely destroys the robustness of models.
The visualization indicates that models learn abun-
dant spurious correlations (e.g., entity names and
irrelevant words) to minimize the training error.
We further prove that the spurious correlations are
caused by selection bias in both pre-training and
finetuning procedures. The details of the proof are
given as follows.

Analysis of Underlying Causes. We shed some
light on the underlying causes of learning spurious
correlations. We argue that the common ground of
the highly attributed non-causal tokens is that they
are either high-frequency function tokens or tokens
that frequently co-occur with the corresponding
relations. Although most transformer-based pre-
trained language models (PLMs) are expected to
maximize the probability of current word Y given
its context X , which is represented by conditional
distribution P (Y |X), they have instead learned
P (Y |X,A), where A denotes the access to the
sampling process. The selection bias results in spu-
rious correlations between high-frequency function
tokens and current tokens. Specifically, we explain
the causal relationships between variables during
pre-training PLMs and represent it in a causal di-
rected acyclic graph (DAG) as shown in Figure 5.

As the high-frequency function words H possess
grammatical meaning (e.g.,‘.’ and ‘the’), they are
more possible to be sampled either in training cor-
pus or context, while other words U are relatively
less likely to access the sampling process or context.

H

Y

A

X

U

Figure 5: Causal graph of
the sampling process.

The phenomenon
is represented by
H → A and U → A,
where directed edges
denote causal rela-
tionships between
variables. However,
the semantic meaning
(word embedding) of
the current word Y
largely depends on
the words carrying
an explicit semantic meaning, which is depicted by
U → Y . In linguistics, content words contribute to
the meaning of sentences where they occur, and
function words express grammatical relationships
among other words. Their combinations, which
are implicit and hard to be intervened, form
natural language expressions. The process can be
described by A → X , where A determines the
word distribution over contexts.

Existing PLMs are pre-trained on a given corpus,
indicating that A is given. Conditioning on A, the
unconditionally independent variables H and U
become dependent, which is described as collider
bias (Pearl, 2009). Due to the causal relationship
between U and Y , H and Y are spuriously cor-
related. That is to say, models tend to spuriously
correlate high-frequency function words with any
word, including word-level evidence which causes
relations. Therefore, spurious correlations between
high-frequency function words and relations are
learned by models and represented in Figure 4.

Meanwhile, we can also observe spurious cor-
relations between entity names and relations. Our
analysis of the underlying causes is roughly the
same as we mentioned before. We regard H as
high-frequency entities from the relation-specific
documents in Wikipedia, U as evidence words that
causally determine the relation, Y as predictions,
and X as documents. Given X and A, models learn
spurious correlations between H and Y .

5.2 Attacks on the SOTA DocRE Models

In this section, we propose several RE-specific at-
tacks to reveal the following facts: (1) The decision
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Model Mask. ASA SSA EM ES ER Val HWE Scratch
P2N UP UP P2N UP F1 F1 F1 F1 F1 F1

ATLOPBERT (Zhou et al., 2020) 20.21 79.43 90.38 6.47 93.46 6.39 6.08 14.16 61.09 57.69 40.56
ATLOPRoBERTa (Zhou et al., 2020) 16.51 82.98 90.42 3.85 96.02 27.29 7.35 17.50 63.18 58.43 42.12
DocuNetRoBERTa (Zhang et al., 2021) 16.49 83.19 91.48 2.82 97.17 8.62 8.08 18.55 63.91 59.58 42.78
SSANRoBERTa (Xu et al., 2021) 13.68 85.48 91.23 1.73 98.26 35.41 6.09 22.72 62.08 58.37 48.74
EIDERRoBERTa (Xie et al., 2022) 14.24 85.36 92.78 2.12 97.88 35.45 8.46 23.00 64.28 60.62 49.95

KD†
RoBERTa (Tan et al., 2022a) 10.77 88.69 95.46 1.28 98.72 29.74 7.57 20.35 67.12 62.87 45.82

Table 1: Results of different attacks. Model denoted by † is trained by extensive distantly supervised data. Val,
HWE, and Scratch denote the validation set of DocRED, DocREDHWE, and DocREDScratch. To observe the ratios of
changed predictions in various attacks based on human-annotated word-level evidence, we propose P2N and UP.
They denote the ratio of “negative predictions changed from positive predictions” to “original positive predictions”,
and “unchanged positive predictions” to “original positive predictions”, respectively.

rules of models are largely different from that of hu-
mans. (2) Such a difference will severely damage
the robustness and generalization ability of models:
If a certain model always neglects the rationales
in DocRE, it can hardly be aware of the tiny but
crucial modifications on rationales. We introduce
more details of our proposed attacks as follows.

Word-level Evidence Attacks. We present three
kinds of attacks according to our proposed word-
level evidence annotation: (1) Masked word-level
evidence attack where all of the human-annotated
word-level evidence (HWE) is directly masked; (2)
Antonym substitution attack (ASA) where a word
in HWE is replaced by its antonyms; (3) Synonym
substitution attack (SSA) where a word in HWE is
replaced by its synonyms. Since some evidence
words do not have antonyms or synonyms in Word-
Net (Miller, 1995), we attack the rest of the words
in HWE. Note that we only attack the HWE of
those relation facts that have a single reasoning
path to make sure our antonym/synonym substitu-
tion will definitely change/keep the original label.
Specifically, in ASA, we first select the first suitable
word in HWE that either possesses its antonym in
WordNet or belongs to different forms of the verb
“be”. We generate the opposite meaning either by
adding “not” after the “be” verbs or substituting the
word with its antonym. In SSA, the first suitable
word in HWE will be replaced by its synonyms.
We conduct ASA and SSA on 2,002 and 5,321
relational facts, respectively.

The results of the three kinds of attacks are
shown in Table 1. Under the masked word-level
evidence attacks, the evidence supporting the re-
lational facts is removed. The relations between
entity pairs are supposed not to exist. However,
we can observe that, as to the best performance,
no more than 21% of predictions is even changed.

Models still predict the same relations even if they
are erased, which leads to at least a 79% decline
in the performance of models. As to ASA, the se-
mantic meanings of evidence are changed to the
opposite. Models are expected to alter their predic-
tions. However, the SOTA models alter no more
than 10% predictions after the attack, which indi-
cates that the performance of models will sharply
drop by at least 90% under ASA. The results of
SSA are roughly the same as ASA. According to
the experimental results of previous attacks, we
can attribute the good performance of models un-
der SSA to the fact that models are hardly aware
of rationales. All three kinds of attacks confirm
the conclusion that the decision rules of models are
largely different from that of humans. The differ-
ence severely damages the robustness of models.

Entity Name Attacks As shown in Section 5.1,
we observe that models rely largely on tokens in
entities. To further investigate the extent to which
models depend on entity names to improve their
performance, we design a few attacks to exhibit
their bottleneck. We propose (1) mask entity at-
tack (EM) where we directly mask all entity names,
(2) randomly shuffled entity attack (ER) where we
randomly permute the names of entities in each
document, and (3) out-of-distribution (OOD) entity
substitution attack (ES) where we use entity names
that have never occurred in training data to sub-
stitute the entity names in an input document. As
shown in Table 1, we observe significant declines
in the F1 scores from all models. The experimental
results are shown in Table 1. The most signifi-
cant performance decline occurs when attacking
KDRoBERTa by ES, where the F1-score drops from
67.12% to 7.57%.

The results of entity name attacks show that mod-
els spuriously correlate entity names with the final
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predictions. In other words, they make predictions
according to entity names. The poorer the perfor-
mance, the more spurious correlations are learned.
The differences are: (1) EM removes original entity
name information to detect spurious correlations;
(2) ER modifies original entity name information
to attack the learned spurious correlations, making
them misleading to further test the robustness of
models; (3) OOD-ES removes original entity name
information and introduces new OOD entity name
information, evaluating the generalization ability
of models on tackling the unseen entity name infor-
mation without the help of spurious correlations.

5.3 Evaluation Metric

In Section 5.2, we demonstrate that the decision
rules of models should approach that of humans to
improve the understanding and reasoning capabil-
ities of models. The desiderata of the capabilities
and the similar conclusions are also presented in
other NLP tasks (Jia and Liang, 2017; Wang et al.,
2022). However, how do we measure the extent to
which models possess these capabilities? In other
words, how to measure the distance between the
decision rules of models and that of humans? In
previous work, they calculate F1-score over the ev-
idence sentences. Models are trained to recognize
the corresponding right evidence sentences when
they extract a relational fact. Despite the plausible
process, the recognized holistic evidence sentences
fail to provide fine-grained word-level evidence,
resulting in unfaithful observations discussed in
Section 3.1. Furthermore, models’ performance
of predicting evidence sentences can not represent
their understanding and reasoning capabilities: the
blackbox process of learning how to predict evi-
dence may introduce other new problems in the
newly learned decision rules.

To solve the issue, we introduce mean average
precision (MAP) (Zhu, 2004) to evaluate the perfor-
mance of models and explain their reliability. We
also visualize the MAP values of the models.

MAP is a widely adopted metric to evaluate
the performance of models, including Faster R-
CNN (Ren et al., 2015), YOLO (Redmon et al.,
2016), and recommender systems (Ma et al., 2016).
We note that evaluating recommender systems and
measuring the capabilities of models share a com-
mon background. Intuitively, we can consider “the
human-annotated evidence words” as “the relevant
items for a user”, and “the most crucial words con-

Figure 6: MAP curves of different models.

sidered by a certain model” as “the recommended
items of a recommender system”. Consequently,
given top K words with the highest attribution val-
ues, the formula of MAP over T relational facts
can be written by,

MAP(K) =
1

T

T∑

t=1

APt(K) =
1

T

T∑

t=1

1

K

K∑

i=1

Pt(i) ·1t(i),

(1)

where 1t(i) denotes the indicator function of the
i-th important word for predicting the t-th rela-
tional fact. The output value of 1t(i) equals 1 if
the word is in the human-annotated word-level evi-
dence. Else it equals 0. The selection of K, similar
to the evaluation metrics in recommender systems,
depends on the demand of RE practitioners and
is often set to 1, 10, 50, and 100. Also, we can
select all the possible values of K to form a MAP
curve and measure the AUC to holistically evalu-
ate the understanding ability of models. For each
relational fact, words “recommended” by models
will be evaluated according to 1) how precise they
perform the human-annotated word-level evidence,
and 2) the “recommending” order of these impor-
tant words determined by their attribution values.
Based on MAP, we measure the extent to which the
decision rules of models differ from that of humans.
Due to the mechanism of EIDER where documents
and the predicted sentences from documents are
combined together to predict by truncation, it is
impractical to attribute EIDER by gradient-based
methods. We compute MAP for other SOTA mod-
els. The results are shown in Figure 6. We can
observe that the MAP values of SOTA models are
all below 10%, which is far less than the average
level of normal recommender systems. Obviously,
existing models fail to understand the documents
as humans do, which explains the reason why they
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are vulnerable to our proposed attacks.
In this section, we use MAP to evaluate to which

extent a model makes decisions like a human,
which indicates the brittleness and robustness of a
model. Models can explore many ways to achieve
a good performance on the test set (represented by
F1 score), including greedily absorbing all corre-
lations found in data, recognizing some spurious
patterns, etc., but MAP will tell us which model
is trustworthy or robust and can be deployed in
real-world applications.

5.4 Discussion

In this section, we discuss the connections be-
tween some experimental results to give some
instructive advice. First, we can observe that
for the models whose MAP value is larger, their
performance under word-level evidence-based at-
tacks will be better. MAP curve reflects the
extent to which models possess understanding
and reasoning abilities. As shown in Figure 6,
the various extents can be described from high
to low by ATLOPBERT > ATLOPRoBERTa >
DocuNetRoBERTa > KDRoBERTa ≈ SSANRoBERTa,
which is consistent with the performance lev-
els under mask word-level evidence attack and
antonym substitution attack represented from high
to low by ATLOPBERT > ATLOPRoBERTa >
DocuNetRoBERTa > KDRoBERTa ≈ SSANRoBERTa.
Furthermore, if the decision rules of models largely
differ from that of humans (MAP value is small), it
will be ambiguous to identify which kind of attack
the models will be vulnerable to. According to the
results in Table 1, the performance of models are
irregular under entity name attacks. The underly-
ing causes can be any factors that can influence the
training effect on a model.

Although training on extensive distantly super-
vised data can lead to the performance gain on the
validation set of DocRED and DocREDHWE, it also
renders the poor understanding and reasoning capa-
bilities of KDRoBERTa according to Figure 6, which
makes it be the most vulnerable model under mask
word-level evidence attack and antonym substitu-
tion attack. As shown in Table 1, the generaliza-
tion ability of KDRoBERTa is also weakened when
compared with EIDERRoBERTa on DocREDScratch,
which does not use any extra training data and
predicts through evidence sentences annotated by
humans. EIDERRoBERTa simultaneously enhances
the performance, generalization ability, and robust-

ness of models. We can observe its stronger ro-
bustness under entity name attacks, outstanding
performance on the validation set of DocRED and
DocREDHWE, and stronger generalization ability
on DocREDScratch. The success of EIDERRoBERTa
indicates that rationales considered by humans are
of the essence in DocRE.

All the results indicate that guiding a model to
learn to predict by the evidence of humans can
be the essential way to improve the robustness of
models, thus making models trustworthy in real-
world applications.

6 Limitation

In this paper, we propose DocREDHWE and intro-
duce a new metric to select the most robust and
trustworthy model from those well-performed ones
in DocRE. However, all data in DocRED are sam-
pled from Wikipedia and Wikidata, which indi-
cates that training and test data in DocRED can
be identically and independently distributed (i.i.d.
assumption). The i.i.d. assumption impedes our
demonstration of the intuition: A model with a
higher MAP will obtain a higher F1 score on the
test set. Due to the i.i.d. assumption, models can
succeed in obtaining a higher F1 score by greed-
ily absorbing all correlations (including spurious
correlations) in the training data. To strictly demon-
strate the intuition, we need a test set that exhibits
different and unknown testing distributions. In ad-
dition, expanding the research scope to a cleaner
Re-DocRED and analyzing the role of unobserv-
able wrong labels are also crucial and interesting
ideas. We leave them as our future work.

7 Conclusion

Based on our analysis of the decision rules of exist-
ing models on DocRE and our annotated word-level
evidence, we expose the bottleneck of the existing
models by our introduced MAP and our proposed
RE-specific attacks. We also extract some instruc-
tive suggestions by exploring the connections be-
tween the experimental results.

We appeal to future research to take understand-
ing and reasoning capabilities into consideration
when evaluating a model and then guide models to
learn evidence from humans. Based on proper eval-
uation and guidance, significant development can
be brought to the document-level RE, where the
performance, generalization ability, and robustness
of models are more likely to be improved.
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A Details of Attacks

We give an example to illustrate our proposed three
kinds of word-level evidence attacks. The example
is shown in Figure 7

B Annotation Errors in DocRED

We provide the details of all our corrected errors
in our selected 699 documents from the validation
set of the original DocRED. All the error descrip-
tions are shown in Table 2, Table 3, and Table 4.
Annotators correct three kinds of annotation er-
rors, which are exhibited in Table 5 and Table 6.
“Err.1” denotes relation type error where annota-
tors wrongly annotate a relation type between an
entity pair. “Err.2” denotes insufficient evidence er-
ror where an annotated relation can not be inferred
from the corresponding document. “Err.3” denotes
evidence error where the sentence-level evidence
of a relation is wrongly annotated.
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Document Title Rel. Error Description
The Time of the Doves 2 The relation can only be inferred by the first sentence.
The Time of the Doves 4 The relation is not P150.
Hélé Béji 8 No evidence can be found for this relation.
Hélé Béji 1 We can’t infer relation P569 from the first evidence sentence.
Ne crois pas 1 The only evidence sentence of P27 is the sentence 5 instead of 0.
Ne crois pas 9 The only evidence sentence of P27 is the sentence 5 instead of 2.
Ne crois pas 14 The only evidence sentence of P1344 is the sentence 7 instead of 2.
Asian Games 5 No evidence can be found for this relation.
Asian Games 7 No evidence can be found for this relation.
The Longest Daycare 10 The second sentence does not clearly indicate that David is the director

and only the third sentence indicates it, so the evidence is [0,3]
The Longest Daycare 28 the zeroth sentence can’t infer that Simpsons are from the United States

and Only the seventh sentence indicates it, so the evidence is [0,7]
South Gondar Zone 1 P150 can not be inferred, evidence is null, can’t find evidence
South Gondar Zone 4 P17 can not be inferred according to the given document.
South Gondar Zone 16 P403 can not be inferred according to the given document.
South Gondar Zone 3 Evidence of the third relation(P27) in labels is [0,1] instead of [0,1,2]
Milton Friedman ... 1 "Evidence of the first relation(P31) in labels is [0] instead of [0,3]"
Milton Friedman ... 8 Evidence of the eighth relation(P108) in labels is [8] instead of [7,8]
Fedor Ozep 2 Evidence of the second relation(P20) in labels is [6] instead of [0,6]
TY.O 1 Evidence of P264 is [1] instead of [0,1]
TY.O 3 Evidence of P175 is [3] instead of [0, 3, 4]
TY.O 10 Evidence of P175 is [0] instead of [0, 4]
TY.O 13 Evidence of 162 is [0,3] instead of [0, 3, 4]
TY.O 14 Evidence of P175 is [0,3] instead of [0, 3, 4]
TY.O 20 Evidence of P175 is [0,3] instead of [0, 3, 4]
TY.O 29 Evidence of P175 is [0,3] instead of [0, 3, 4]
Front of Islamic ... 1 Evidence of P1412 is [0,2] instead of [0, 2, 4]
Front of Islamic ... 2 Evidence of P1412 is [0,2] instead of [0, 2, 4]
Front of Islamic ... 3 Evidence of P37 is [0,3] instead of [0, 3, 4]
Front of Islamic ... 4 Evidence of P1412 is [0,2] instead of [0, 2, 4]
Front of Islamic ... 5 Evidence of P1412 is [0,3] instead of [0, 3, 4]
Rufus Carter 7 P131 represents "located in the administrative territorial entity",but it

can not be inferred according to the given document.
Rufus Carter 8 P150 can not be inferred according to the given document.
Smoke Break 1 Evidence of P577 is [1] instead of [1,8]
Smoke Break 2 Evidence of P264 is [1] instead of [1,2]
Smoke Break 3 Evidence of P162 is [2] instead of [0,2]
Bambi II 6 P17 can not be inferred according to the given document.
Bambi II 8 P272 can not be inferred according to the given document.
Bambi II 13 P272 can not be inferred according to the given document.
Bambi II 15 P272 can not be inferred according to the given document.
Assassin’s Creed Unity 1 P178 can not be inferred according to the given document.
Assassin’s Creed Unity 1 P178 can not be inferred according to the given document.
Assassin’s Creed Unity 16 P577 can not be inferred according to the given document.
Assassin’s Creed Unity 13 P179 can not be inferred according to the given document.
Assassin’s Creed Unity 3 P123 can not be inferred according to the given document.
Mehmet Çetingöz 1 P17 can not be inferred according to the given document.
Mehmet Çetingöz 2 P17 can not be inferred according to the given document.
Mehmet Çetingöz 9 P17 can not be inferred according to the given document.
Mehmet Çetingöz 12 P17 can not be inferred according to the given document.
Mehmet Çetingöz 10 P17 can not be inferred according to the given document.
Baltimore and ... Evidence of P17 is [0,2,3] instead of [0,2]
Baltimore and ... Evidence of P279 is [2] instead of [2,4]
Dante Alighieri Society 6 Evidence of P571 is [0,2] instead of [0,2,5]
Osaka Bay 25 Evidence of P17 is [0,3,11] instead of [0,11]
Osaka Bay 36 Evidence of P17 is [0,3,11] instead of [0,11]
Osaka Bay 38 Evidence of P17 is [0,3,11] instead of [0,11]
Liang Congjie 8 relation can not be inferred from the context

Table 2: Wrong annotations in the original DocRED.
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Document Title Rel. Error Description
University (album) 18 Evidence of P264 should be [3,4]
University (album) 19 Evidence of P175 should be [3]
University (album) 24 Evidence of P527 should be [3]
University (album) 25 Evidence of P475 should be [0]
Lappeenranta 2 Evidence of P131 is [1,2,3] instead of [1,3]
Lappeenranta 12 Evidence of P17 is [0,2,4,5,7,9] instead of [0,2,4,7,9]
Lappeenranta 13 Evidence of P131 is [1] instead of [0,1]
Lappeenranta 18 Evidence of P131 is [1,3] instead of [1,2,3]
Ali Abdullah Ahmed 4 Evidence of P3373 is [6] instead of [3,6]
Ali Abdullah Ahmed 8 Evidence of P3373 is [6] instead of [3,6]
Ali Abdullah Ahmed 9 Evidence of P570 is [7] instead of [6,7]
Joseph R. Anderson 9 P571 can not be inferred according to the given document.
Ramblin’ on My Mind 1 Evidence of P175 is [5] instead of [0,2]
Ramblin’ on My Mind 2 P86 can not be inferred according to the given document.
Christopher Franke 3 Evidence of P463 is [1,3,4,5] instead of [0,1,3,5]
Christopher Franke 4 P159 can not be inferred according to the given document.
Christopher Franke 5 P577 can not be inferred according to the given document.
Statue of Jan Smuts 3 Evidence of P27 is [5] instead of [4,5]
Statue of Jan Smuts 4 Evidence of P27 is [5] instead of [4,5]
Robert Taylor 1 Evidence of P108 is [1] instead of [0,1]
Robert Taylor 2 Evidence of P27 is [2] instead of [4,5]
Robert Taylor 3 Evidence of P27 is [3] instead of [4,5]
Robert Taylor 4 Evidence of P27 is [4] instead of [4,5]
Sycamore Canyon 1 P17 can not be inferred according to the given document.
Amos Hochstein 9 P194 can not be inferred according to the given document.
Paul Pfeifer 3 P69 can not be inferred according to the given document.
Mega Man Zero 8 P155 can not be inferred, Virtual Console is Wii U
Soldier (song) 1 Evidence of P577 is [1] instead of [0,1]
Soldier (song) 3 Evidence of P495 is [2] instead of [0,2]
Gloria Estefan Albums
Discography

4 P156 can not be inferred. Let It Loose and Cuts Both Ways are two
albums published one after another instead of two songs from an album.
They are independent of each other. There is no evidence in the context.

Anthony G. Brown 3 Evidence of P27 is [0,4] instead of [0,3].
Harbour Esplanade 3 P17 can not be inferred according to the given document.
Harbour Esplanade 5 P17 can not be inferred according to the given document.
Harbour Esplanade 6 P17 can not be inferred according to the given document.
Henri de Buade 3 The relation between France and New France is colony instead of P495.
The Reverent Wooing of
Archibald

5 P577 should be P580.

This Little Girl of Mine 6 The third sentence should be removed from the evidence of P136.
This Little Girl of Mine 9 The zeroth sentence should be removed from the evidence of P175.
This Little Girl of Mine 13 The zeroth sentence should be removed from the evidence of P175.
This Little Girl of Mine 15 The zeroth sentence should be removed from the evidence of P264, it

only refers to the name of the head entity.
This Little Girl of Mine 19 The zeroth sentence should be removed from the evidence of P175 it

only refers to the name of the tail entity.
This Little Girl of Mine 20 "The zeroth sentence should be removed from the evidence of P175, it

only refers to the name of the performer and can’t infer the relation
between two sides."

Ali Akbar Moradi 1 Evidence of P569 should be [0].
Ali Akbar Moradi 2 The zeroth sentence should be removed from the evidence of P19, it only

refers to the name of the head entity.
Ali Akbar Moradi 3 The zeroth sentence should be removed from the evidence of P27, it only

refers to the name of the head entity.
I Knew You Were Trouble 2 The zeroth sentence should be removed from the evidence of P264,

because no words related to two entities can be found in it.
I Knew You Were Trouble 4 The zeroth sentence should be removed from the evidence of P175 it

only refers to the name of the head entity.
I Knew You Were Trouble 5 The zeroth sentence should be removed from the evidence of P577 it

only refers to the name of the head entity.

Table 3: Wrong annotations in the original DocRED.
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Document Title Rel. Error Description
I Knew You Were Trouble 6 The zeroth sentence should be removed from the evidence of P495 it

only refers to the name of the head entity.
I Knew You Were Trouble 7 The zeroth sentence should be removed from the evidence of P264 it

only refers to the name of the head entity.
I Knew You Were Trouble 8 The zeroth sentence should be removed from the evidence of P162 it

only refers to the name of the head entity.
I Knew You Were Trouble 9 The zeroth sentence should be removed from the evidence of P361 it

only refers to the name of the head entity.
Mohammed Abdel Wahab 6 P86 can not be inferred according to the given document.
Mohammed Abdel Wahab 8 P86 can not be inferred according to the given document.
Mohammed Abdel Wahab 10 P86 can not be inferred according to the given document.
Elbląg County 5 Evidence of P150 is [0,2] instead of [0,2,3].
The Crazy World of
Arthur Brown (album)

1 P264 represents “brand and trademark associated with the marketing of
subject music recordings and music videos”, but here the head entity is

the same name as music, instead of a music album.
The Crazy World of
Arthur Brown (album)

6 P264 represents “brand and trademark associated with the marketing of
subject music recordings and music videos”, but here the head entity is

the same name as music, instead of a music album."
The Crazy World of
Arthur Brown (album)

7 P264 represents “brand and trademark associated with the marketing of
subject music recordings and music videos”, but here the head entity is

the same name as music, instead of a music album.
The Crazy World of
Arthur Brown (album)

8 P264 represents “brand and trademark associated with the marketing of
subject music recordings and music videos”, but here the head entity is

the same name as music, instead of a music album.
The Crazy World of
Arthur Brown (album)

9 P264 represents “brand and trademark associated with the marketing of
subject music recordings and music videos”, but here the head entity is

the same name as music, instead of a music album.
Flag of Prussia 1 Evidence of P155 is [0] instead of [2,4].
Flag of Prussia 3 P155 should be P6.
Flag of Prussia 7 Evidence of P156 is [0] instead of [2,4].
Flag of Prussia 11 P156 represents “immediately following item in a series of which the

subject is a part”, but here both entities are the same.
John Alexander Boyd 11 Evidence of P17 is [0] instead of [0,5].
John Alexander Boyd 12 Evidence of P17 is [0] instead of [0,5,6].
Municipal elections in
Canada

5 Evidence of P17 is [8] instead of [8,11].

Municipal elections in
Canada

7 Evidence of P131 is [11] instead of [0,8,11].

House of Angels 7 Evidence of P495 is [0,8] instead of [0,6,8].
William James Wallace 7 Evidence of P17 is [0,1] instead of [1,3].
William James Wallace 8 P17 can not be inferred according to the given document.
William James Wallace 10 P27 can not be inferred according to the given document.
William James Wallace 11 P17 can not be inferred according to the given document.
Black Mirror (song) 7 Evidence of P264 is [2] instead of [0,2].
Michael Claassens 5 Evidence of P264 is [4] instead of [0,4].
Michael Claassens 12 Evidence of P264 is [6] instead of [0,6].
Lark Force 13 the zeroth sentence can’t infer that HMAT Zealandia is from Australia.
Washington Place (West
Virginia)

9 the zeroth sentence can’t infer that Annie Washington is from the United
States.

Battle of Chiari 2 Evidence of P276 is [0,2] instead of [0,3].
Battle of Chiari 6 Evidence of P607 is [1,2] instead of [1].
Woodlawn, Baltimore
County, Maryland

18 Evidence of P131 is [0,5] instead of [0,4,5].

Wagner–Rogers Bill 1 Evidence of P27 is [0,1] instead of [0].

Table 4: Wrong annotations in the original DocRED.
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Document Title Rel. Err. 1 Err. 2 Err. 3
The Time of the Doves 2 ✓
The Time of the Doves 4 ✓
Hélé Béji 8 ✓
Hélé Béji 1 ✓
Ne crois pas 1 ✓
Ne crois pas 9 ✓
Ne crois pas 14 ✓
Asian Games 5 ✓
Asian Games 7 ✓
The Longest Daycare 10 ✓
The Longest Daycare 28 ✓
South Gondar Zone 1 ✓ ✓
South Gondar Zone 4 ✓
South Gondar Zone 16 ✓
South Gondar Zone 3 ✓
Milton Friedman ... 1 ✓
Milton Friedman ... 8 ✓
Fedor Ozep 2 ✓
TY.O 1 ✓
TY.O 3 ✓
TY.O 10 ✓
TY.O 13 ✓
TY.O 14 ✓
TY.O 20 ✓
TY.O 29 ✓
Front of Islamic ... 1 ✓
Front of Islamic ... 2 ✓
Front of Islamic ... 3 ✓
Front of Islamic ... 4 ✓
Front of Islamic ... 5 ✓
Rufus Carter 7 ✓
Rufus Carter 8 ✓
Smoke Break 1 ✓
Smoke Break 2 ✓
Smoke Break 3 ✓
Bambi II 6 ✓
Bambi II 8 ✓
Bambi II 13 ✓
Bambi II 15 ✓
Assassin’s Creed Unity 1 ✓
Assassin’s Creed Unity 16 ✓
Assassin’s Creed Unity 13 ✓
Assassin’s Creed Unity 3 ✓
Mehmet Çetingöz 1 ✓
Mehmet Çetingöz 2 ✓
Mehmet Çetingöz 9 ✓
Mehmet Çetingöz 12 ✓
Mehmet Çetingöz 10 ✓
Baltimore and ... ✓
Baltimore and ... ✓
Dante Alighieri Society 6 ✓
Osaka Bay 25 ✓
Osaka Bay 36 ✓
Osaka Bay 38 ✓
Liang Congjie 8 ✓
University (album) 18 ✓
University (album) 19 ✓
University (album) 24 ✓
University (album) 25 ✓
Lappeenranta 2 ✓
Lappeenranta 12 ✓
Lappeenranta 13 ✓
Lappeenranta 18 ✓
Ali Abdullah Ahmed 4 ✓
Ali Abdullah Ahmed 8 ✓
Ali Abdullah Ahmed 9 ✓
Joseph R. Anderson 9 ✓
Ramblin’ on My Mind 1 ✓
Ramblin’ on My Mind 2 ✓

Table 5: The category of each error in the original Do-
cRED.

Document Title Rel. Err. 1 Err. 2 Err. 3
Christopher Franke 3 ✓
Christopher Franke 4 ✓
Christopher Franke 5 ✓
Statue of Jan ... 3 ✓
Statue of Jan ... 4 ✓
Robert Taylor 1 ✓
Robert Taylor 2 ✓
Robert Taylor 3 ✓
Robert Taylor 4 ✓
Sycamore Canyon 1 ✓
Amos Hochstein 9 ✓
Paul Pfeifer 3 ✓
Mega Man Zero 8 ✓
Soldier (song) 1 ✓
Soldier (song) 3 ✓
Gloria Estefan ... 4 ✓
Anthony G. Brown 3 ✓
Harbour Esplanade 3 ✓
Harbour Esplanade 5 ✓
Harbour Esplanade 6 ✓
Henri de Buade 3 ✓
The Reverent ... 5 ✓
This Little ... 6 ✓
This Little ... 9 ✓
This Little ... 13 ✓
This Little ... 15 ✓
This Little ... 19 ✓
This Little ... 20 ✓
Ali Akbar Moradi 1 ✓
Ali Akbar Moradi 2 ✓
Ali Akbar Moradi 3 ✓
I Knew You ... 2 ✓
I Knew You ... 4 ✓
I Knew You ... 5 ✓
I Knew You ... 6 ✓
I Knew You ... 7 ✓
I Knew You ... 8 ✓
I Knew You ... 9 ✓
Mohammed A. W. 6 ✓
Mohammed A. W. 8 ✓
Mohammed A. W. 10 ✓
Elbląg County 5 ✓
The Crazy World ... 1 ✓
The Crazy World ... 6 ✓
The Crazy World ... 7 ✓
The Crazy World ... 8 ✓
The Crazy World ... 9 ✓
Flag of Prussia 1 ✓
Flag of Prussia 3 ✓
Flag of Prussia 7 ✓
Flag of Prussia 11 ✓
John Alexander Boyd 11 ✓
John Alexander Boyd 12 ✓
Municipal elections ... 5 ✓
Municipal elections ... 7 ✓
House of Angels 7 ✓
William James Wallace 7 ✓
William James Wallace 8 ✓
William James Wallace 10 ✓
William James Wallace 11 ✓
Black Mirror (song) 7 ✓
Michael Claassens 5 ✓
Michael Claassens 12 ✓
Lark Force 13 ✓
Washington Place 9 ✓
Battle of Chiari 2 ✓
Battle of Chiari 6 ✓
Woodlawn, Baltimore ... 18 ✓
Wagner–Rogers Bill 1 ✓

Table 6: The category of each error in the original Do-
cRED.
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ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

6

�7 A2. Did you discuss any potential risks of your work?
Our work can cause no potential risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
55

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
3

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
3

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
3

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
3

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
3

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
3
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