
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3819–3834

July 9-14, 2023 ©2023 Association for Computational Linguistics

Small Pre-trained Language Models Can be Fine-tuned as Large Models
via Over-Parameterization

Ze-Feng Gao1 , Kun Zhou2,3 , Peiyu Liu1,3 , Wayne Xin Zhao1,3∗ and Ji-Rong Wen1,2,3

1Gaoling School of Artificial Intelligence, Renmin University of China
2School of Information, Renmin University of China

3Beijing Key Laboratory of Big Data Management and Analysis Methods
{zfgao,francis_kun_zhou,liupeiyustu,jrwen}@ruc.edu.cn, batmanfly@gmail.com

Abstract

By scaling the model size, large pre-trained
language models (PLMs) have shown remark-
able performance in various natural language
processing tasks, mostly outperforming small
PLMs by a large margin. However, due to the
high computational cost, the huge number of
parameters also restricts the applicability of
large PLMs in real-world systems. In this paper,
we focus on scaling up the parameters of PLMs
only during fine-tuning, to benefit from the
over-parameterization, while without increas-
ing the inference latency. Given a relatively
small PLM, we over-parameterize it by employ-
ing a matrix product operator, an efficient and
almost lossless decomposition method to factor-
ize its contained parameter matrices into a set
of higher-dimensional tensors. Considering the
efficiency, we further propose both static and
dynamic strategies to select the most important
parameter matrices for over-parameterization.
Extensive experiments have demonstrated that
our approach can significantly boost the fine-
tuning performance of small PLMs and even
help small PLMs outperform 3× parameterized
larger ones. Our code is publicly available at
https://github.com/zfgao66/OPF.

1 Introduction

Due to the remarkable performance, fine-
tuning large-scale pre-trained language mod-
els (PLMs) (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020; Zhao et al., 2023) has become
the de facto method in the natural language pro-
cess (NLP) field. With the help of large-scale
pre-trained data and parameters, these large-scale
PLMs are able to process an extensive range
of world knowledge (Roberts et al., 2020; Jiang
et al., 2020) and generalize well on a variety of
tasks (Brown et al., 2020; Lester et al., 2021). Fol-
lowing this direction, more data and more param-
eters have been widely explored in improving the

∗Corresponding author.

model capacity of PLMs in recent years (Raffel
et al., 2020; Chowdhery et al., 2022; Chen et al.,
2022), leading to the expansion of PLM parameters
from millions to billions.

Despite the effectiveness, the huge model size
also limits the use of large PLMs in both research
and industry communities. Specifically, the com-
putational cost of pre-training and the efficiency
of utilizing large PLMs are often unaffordable
for researchers as well as resource-limited appli-
cations. Therefore, as a compromise, a number
of studies (Gururangan et al., 2020; Chang et al.,
2020; Zhang et al., 2020) focus on pre-training rel-
atively smaller language models (e.g., BERT-base-
uncased) on the domain-specific or task-specific
corpus. However, small PLMs are not highly
over-parameterized as larger models. As a re-
sult, their generalization capabilities are relatively
weaker (Brown et al., 2020), leading to a sub-
optimal fine-tuning performance on downstream
tasks.

In order to narrow the performance gap between
small and large PLMs, this work seeks to over-
parameterize small PLMs as large models during
fine-tuning, in pursuit of improving their general-
ization capability. In the essential form, PLMs are
based on the Transformer architecture (Vaswani
et al., 2017), and most of their parameters are
stored as matrices. According to the matrix de-
composition techniques (Tucker, 1966; Henry and
Hofrichter, 1992; Oseledets, 2011) (e.g., Singular
Value Decomposition), each matrix can be factor-
ized as the multiplication of a set of matrices. In
this way, the total number of parameters would
be enlarged during fine-tuning. While, after con-
vergence, the factorized matrices can be merged
to re-organize the parameter matrix of the small
PLMs. Such a paradigm effectively harnesses the
advantages of over-parameterization, without in-
curring any additional inference latency for small
PLMs during the fine-tuning process.

3819

https://github.com/zfgao66/OPF

Although it is promising to incorporate the
matrix decomposition to over-parameterize small
PLMs, there are two major concerns remaining to
be investigated. First, the potential information
loss caused by the matrix decomposition strategy
should be greatly reduced, since small computa-
tion errors might be exponentially accumulated
and propagated in the stacked multiple Transformer
layer of PLMs. Second, small PLMs are comprised
of multiple parameter matrices, although they may
not always fulfill pivotal roles in fine-tuning var-
ious downstream tasks (Voita et al., 2019; Zhang
et al., 2022). Thus, it is costly and unnecessary to
over-parameterize all of them during fine-tuning.
Therefore, there is a need to select the proper ma-
trix decomposition method and leverage it to over-
parameterize these selected (more important) pa-
rameter matrices.

To address the above issues, we introduce the
technique of matrix product operator (MPO) (Gao
et al., 2020) as the matrix decomposition strategy.
MPO has been widely used in the quantum many-
body physics area, as it can efficiently factorize
any matrix with arbitrary dimensions into a set of
higher-dimensional tensors with arbitrary scales,
and the factorized tensors can reconstruct the origi-
nal matrix in almost lossless condition (Liu et al.,
2021a; Gao et al., 2022b). Such merits make MPO
a potentially good method for over-parameterizing
small PLMs during fine-tuning. Based on MPO,
we also devise static and dynamic strategies to
adaptively select important parameter matrices for
over-parameterization. Specially, the static strat-
egy estimates the importance of each parameter
matrix based on the variation of the loss values
after removing it from a fine-tuned model (Voita
et al., 2019) and then over-parameterizes the top-N
important ones. The dynamic strategy computes
the variation of gradients within several fine-tuning
steps, which is the approximation of the above loss
variation (Hou et al., 2020), which can dynamically
guide the matrix over-parameterization process dur-
ing fine-tuning.

To this end, in this paper, we propose a general
Over-Parameterization Framework, namely OPF
to improve the fine-tuning performance of small
PLMs. Given the pre-trained parameter matrices
of a small PLM, we first utilize the static or dy-
namic strategies to select the most important ones
and then over-parameterize them by the MPO de-
composition. Such a framework does not affect the

fine-tuning process, hence it is general to various
small PLMs and NLP tasks. We conduct extensive
experiments on the GLUE benchmark (Wang et al.,
2019), a widely-used natural language understand-
ing benchmark. Experimental results show that our
OPF can boost the performance of small PLMs on
GLUE significantly, e.g., improving BERT-base by
+2.64 in average, improving T5-base by +2.41 in
average. Besides, our approach also helps small
PLMs outperform 3× parameterized ones, e.g.,
BERT-base+Ours (83.68) v.s. BERT-large (83.60)
in average metrics on GLUE.

2 Related Work

Pre-trained Language Models. Pre-trained lan-
guage models (PLM) (Devlin et al., 2019; Liu et al.,
2019; Zhao et al., 2023) have yielded state-of-the-
art performance on a wide range of natural lan-
guage processing tasks. Based on the Transformer
architecture (Vaswani et al., 2017), BERT (Devlin
et al., 2019) incorporated the “pre-training + fine-
tuning” paradigm and has significantly improved
the performance on a variety of NLP benchmarks,
e.g., GLUE (Wang et al., 2019). Following this way,
the T5 model (Raffel et al., 2020) and RoBERTa
model (Liu et al., 2019) leveraged more data, more
parameters and more pre-training steps, further im-
proving the fine-tuning performance. Moreover,
GPT-3 (Brown et al., 2020) showed that scaling
up language models can greatly improve few-shot
performance. In our approach, we improve the per-
formance of PLMs by just scaling up the model
during fine-tuning, which would not increase the
inference latency.

Over-parameterization in Neural Network.
Over-parameterization has shown the superiority
on providing better model initialization (Arpit and
Bengio, 2019), improving model convergence (Du
et al., 2019; Allen-Zhu et al., 2019b; Gao et al.,
2022a) and generalization (Allen-Zhu et al., 2019a).
After the lottery theory hypothesis (Frankle and
Carbin, 2019) was introduced, a surge of works
pointed out that over-parameterization might be
helpful to enhance the training efficiency (Malach
et al., 2020; Pensia et al., 2020) and improve
the model performance (Chen et al., 2020; Brix
et al., 2020; Prasanna et al., 2020). Among
them, Liu et al. (2021b) employed in-time over-
parameterization to narrow the performance gap be-
tween sparse and dense training. Our study aimed
to use the over-parametrization strategy to better

3820

inspire the potentiality of PLMs, enhancing their
fine-tuning performance.

Tensor Decomposition in Neural Network.
Tensor decomposition methods have been widely
applied in a neural network for efficient training
and inference, e.g., model compression (Gao et al.,
2020; Sun et al., 2020; Gao et al., 2022c) and
lightweight fine-tuning (Liu et al., 2021a). There
are a surge of typical applications using the ten-
sor decomposition methods on the parameter ma-
trices of deep models to compress the linear lay-
ers (Novikov et al., 2015) and convolutional ker-
nels (Garipov et al., 2016). Besides, existing works
also apply the MPO method for the lightweight fine-
tuning of ALBERT (Liu et al., 2021a) and the effi-
cient expansion for the MoE framework (Gao et al.,
2022b). Unlike existing methods, our approach fo-
cuses on the property that tensor decomposition can
be used to map parameters from low-level spaces to
high-dimensional spaces for over-parameterizing
PLMs during fine-tuning, making PLMs benefit
from more parameters.

3 Preliminary

Tensor. A tensor Ti1,i2,...,im can be viewed as an
array with m indices, where {i1, i2, . . . , im} de-
notes the dimensions of the m indices, respectively.
In this way, a vector (i.e., v) and a matrix (i.e., W)
can be regarded as a 1-order tensor and 2-order
tensor, respectively.

Tensor Product. Suppose {ψ1, . . . , ψp} and
{ϕ1, . . . , ϕq} are the orthonormal basis of tensors
T (1) and T (2), respectively. The tensor product
can be derived by contraction of T (1) and T (2),
denoted as ⊗. Formally, the tensor contraction of
T (1) =

∑p
i=1 aiψi1 and T (2) =

∑q
j=1 bjϕi2 is

defined as follow:

T (1) ⊗ T (2) =

{
p∑

i=1

aiψi1

}
⊗





q∑

j=1

bjϕi2





=

p∑

i=1

q∑

j=1

aibjψi1 ⊗ ϕi2 . (1)

Tensor Decomposition Tensor decomposition
can be seen as the inverse operation of the ten-
sor product. A widely-used way is the singular
value decomposition (SVD) algorithm. Given a
Tensor T ∈ Ri1×···×im , the m times SVD opera-
tion can decompose this tensor into m local tensors

Transformer Layer 1

Transformer Layer N

…

Feed Forward
Network

�2 ∈ ℝ3072×768��=0.95

��=0.1

Unselected Structure

…
MPO Decomposition

SVD
�(�) �(�) �(�)�(�)

…

Multi-Head Attension

Embedding Layer

PLM (e.g. BERT)

�1 ∈ ℝ768×3072

����

����

Reshape

�(�) �(�) �(�)

Reshape

Parameter Matrix Seleciton

Figure 1: The overview of over-parameter fram-
work (OPF) in fine-tuning PLMs. IW denotes the es-
timated important score of parameter matrices. We
present an illustrative example of how a parameter ma-
trix W is selected for over-parameterization and is de-
composed into a set of high-order tensors {T (k)}mk=1.

{T (k)}mk=1. Conversely, the decomposed tensors
can also reconstruct the original tensor by sequen-
tially performing the tensor product operator. The
details of tensor decomposition are shown in Sup-
plementary Materials A.1

4 Approach

In this part, we describe our proposed over-
parameterization framework for improving the fine-
tuning performance of small PLMs. We first
give an overview of our approach, and then in-
troduce the details of matrix decomposition and
over-parameterized matrices selection strategies.

4.1 Overview

Existing work mostly requires compressing a large
PLM into a small one for benefiting from over-
parameterization (Sun et al., 2019; Shen et al.,
2020). Different from them, our approach can scale
up the number of parameters of arbitrary small
PLMs during fine-tuning without using large ones.
To achieve it, we leverage a matrix decomposi-
tion method, to factorize the important parameter
matrices from the small PLM into a sequence of
high-order tensors. These high-order tensors can
be utilized to reconstruct the original matrix, while
greatly increasing the number of trainable parame-
ters during fine-tuning. After reconstruction, in the
inference phase, the number of parameters in the
fine-tuned PLM will remain the same as the orig-
inal one, without increasing the inference latency
and model size.

In our proposed OPF, we incorporate an MPO-

3821

based matrix decomposition strategy to scale up
the parameter matrices in PLMs and devise both
static and dynamic selection strategies to determine
important matrices for over-parameterization (Sec-
tion 4.2). During fine-tuning, the static strategy
first decides the important parameter matrices from
the PLM based on the variation of training loss
after removing each matrix and then relies on MPO
to over-parameterize the selected top-N ones. The
dynamic strategy computes the variation of gradi-
ents to estimate the importance of each matrix once
a few steps and dynamically selects important ma-
trices for over-parameterization (Section 4.3). The
overview of our approach is presented in Figure 1.
We also present a detailed algorithm for our OPF
in Algorithm 1.

4.2 Over-parameterizing PLMs via Matrix
Product Operator

To make small PLMs benefit from the over-
parameterization during fine-tuning, our approach
employs Matrix Product Operator (MPO), a matrix
decomposition technique to expand the number of
model parameters. In this part, we first introduce
the details of the MPO method and then describe
how to adapt it for over-parameterizing PLMs.

Matrix Product Operator. MPO is an efficient
algorithm that can factorize a parameter matrix
W ∈ RI×J into a sequential product of multiple
tensors (Gao et al., 2020), denoted as:

MPO(W) = T (1) ⊗ · · · ⊗ T (m), (2)

where {T (k)}mk=1 are the set of 4-order tensors
with size [dk−1, ik, jk, dk], in which

∏m
k=1 ik = I ,∏m

k=1 jk = J , and dk is calculated by:

dk = min(
k∑

l=1

il × jl,
m∑

l=k

il × jl). (3)

Given the parameter matrix W, the tensor sizes
{dk}mk=1, {ik}mk=1 and {jk}mk=1, MPO can be re-
garded as a determined mapping process from W
to multiple high-order tensors {T (k)}mk=1. Con-
cretely, the MPO process consists of m-turn iter-
ative matrix reshaping and SVD decomposition
operations (Henry and Hofrichter, 1992), where
the parameter matrix will gradually shrink and the
decomposed tensor will be generated one by one.
In the k-th turn, given the output parameter ma-
trix Wk−1 from the last turn, we first reshape it
into a new matrix W

′
k−1 whose first dimension

is dk−1 × ik × jk. Then, we perform the SVD
decomposition on it as:

UλV⊤ = SVD (W
′
k−1) (4)

where U and V are complex unitary matrices, λ is
a rectangular diagonal matrix with non-negative
real numbers on the diagonal. Following trun-
cated SVD methods (Henry and Hofrichter, 1992;
Hansen et al., 1992), we extract the first dk columns
of U corresponding to the dk largest singular val-
ues to compose the decomposed tensor T (k), and
reshape it to the size [dk−1, ik, jk, dk]. Besides, we
adopt λV⊤ as the output parameter matrix Wk for
the decomposition in the following turns. After m-
turn iterations, we can obtain the decomposed mul-
tiple high-order tensors {T (k)}mk=1, and the con-
traction of these tensors in order would reconstruct
the original parameter matrix W in almost lossless
condition (Gao et al., 2020) (See Algorithm 2 in
Appendix A.1).

Over-parameterizing PLMs. Based on the
MPO method, we aim to expand the parame-
ter scale of small PLMs during fine-tuning, for
benefiting from over-parameterization. Gener-
ally, PLMs are based on the Transformer archi-
tecture (Vaswani et al., 2017), consisting of an em-
bedding layer, stacked multi-head attention layers,
and feed-forward networks. These modules con-
tain necessary parameter matrices that have been
pre-trained on large-scale corpus, e.g., the query
projection matrices in the multi-head attention lay-
ers. Therefore, we can utilize the MPO method to
decompose part of the parameter matrices into mul-
tiple tensors as Eq. (2). After the MPO decomposi-
tion, the parameter number of the matrix W would
be increased according to the values of {dk}mk=1,
{ik}mk=1 and {jk}mk=1. The detailed added parame-
ter number Padd can be calculated as follows:

Padd =

m∑

k=1

ikjkdk−1dk −
m∏

k=1

ikjk. (5)

According to Eq. (8), {dk}mk=1 are determined by
{ik; jk}mk=1. Hence we can adjust the values of
{ik; jk}mk=1 to control the number of added param-
eters by the MPO decomposition strategy. There-
fore, during fine-tuning, we can adopt MPO on
several selected parameter matrices from the PLM
to generate their corresponding multiple tensors.
In this way, we can scale up the total parameter

3822

the number of the PLM. After fine-tuning the over-
parameterized PLM to convergence, we will per-
form tensor contraction on these decomposed ten-
sors, to reconstruct the parameter matrices of the
PLM. This new PLM owns the same parameter
number and inference latency as the original one
and has benefited from over-parameterization dur-
ing fine-tuning.

4.3 Over-parameterized Matrices Selection
Despite the efficiency and flexibility of the MPO
method, it is still costly to utilize it for over-
parameterizing all the parameter matrices in small
PLMs. To concentrate the benefits of over-
parameterization on the most important parame-
ters, we only select the most important parameter
matrices from PLMs for decomposition. In partic-
ular, we propose a static selection strategy as well
as a dynamic selection strategy, which pre-selects
the important parameter matrices or dynamically
chooses the ones during fine-tuning, respectively.

Static Selection Strategy. The proposed static
selection strategy requires to pre-compute the
importance scores of all parameter matrices be-
fore fine-tuning and then leverages MPO to over-
parameterize the top-N ones. After that, the ar-
chitecture of the over-parameterized PLM would
be static during fine-tuning. Inspired by network
pruning methods (Molchanov et al., 2017; Voita
et al., 2019), we utilize the change of the training
loss LW after removing each parameter matrix W,
to measure the importance scores since important
parameters would play a key role to predict the
correct label (Voita et al., 2019). Therefore, the
importance score IW of a parameter matrix W can
be computed as:

IW = |LW − LW=0|, (6)

where LW=0 denotes the value of loss after ze-
roing W and the symbol || represents the opera-
tion of taking the absolute value. To calculate the
loss, we need to fine-tune a small PLM using the
same pre-trained parameter as ours before. Gener-
ally, the parameter matrices from different modules
of the PLM (e.g., multi-head attention layer and
feed-forward network) may have different sizes and
functions, making it inappropriate to directly com-
pare them. Thus, we first categorize all parameter
matrices by module, where each group contains
one module for L layers. Then we pick the top-N
ones from each group for over-parameterization.

Algorithm 1 Fine-tuning a PLM with our OPF.
Input: Parameters matrices set of a PLM {W}.
1: Divide {W} into several groups by module.
2: if is Static Strategy then
3: Fine-tuning the PLM until converged.
4: Compute IW for {W} using Eq. (6).
5: Sort {W} in each group according to IW.
6: Perform MPO on the top-N matrices.
7: Train the other PLM until converged.
8: else
9: Define S = {}

10: while Len(S) < N do
11: Train the PLM for t steps.
12: Compute IW for {W} using Eq. (7).
13: Sort {W} in each group according to IW.
14: Add top-n matrices into S, and perform MPO.
15: end while
16: Continually train the PLM until converged.
17: end if

Dynamic Selection Strategy Our proposed dy-
namic selection strategy aims to dynamically cal-
culate the importance scores and choose the im-
mediate important parameter matrices for over-
parameterization during fine-tuning. Such a way
can dynamically capture the importance of change
w.r.t. the optimization of the whole PLM. Follow-
ing Hou et al. (2020), we perform the first-order
Taylor expansion on Eq. (6) to obtain the approxi-
mation of the importance score as:

IW = |LW−(LW− ∂L
∂W

(W−0)+RW=0)| ≈ | ∂L
∂W

W|,
(7)

where once the remaining part RW=0 is omitted,
the important score can be estimated by the abso-
lute values of the gradients of the parameter matrix.
In practice, we accumulate the absolute values of
the gradients for all the parameter matrices during
fine-tuning. We dynamically calculate the impor-
tance score using Eq. (7) and over-parameterize
the top-n parameter matrices from the categorized
groups once t steps. The above process will be per-
formed multiple times until N parameter matrices
from each group have been selected.

5 Experiments

In this section, we first set up the experiments, then
report the results and give a detailed analysis.

5.1 Experimental Setup

Datasets. To verify the effectiveness of our ap-
proach, we conduct experiments on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019), which consists of 8
datasets (MNLI, QQP, QNLI, RTE, MRPC, CoLA,

3823

SST-2, STS-B) to systematically evaluate the abili-
ties of similarity matching, sentiment classification,
linguistic acceptability estimation and natural lan-
guage inference. Since the labels of their original
test sets are not available, we randomly split their
original validation sets in half, and use one half
as the validation set and the other half as the test
set. For the evaluation metrics, following existing
works (Gao et al., 2022b), we use Matthews corre-
lation for CoLA, Spearman correlation for SST-B,
F1 for MRPC, and accuracy for other tasks. We
also compute the average score across all tasks.

Baseline Methods. We implement our approach
on the following PLMs, BERT (Devlin et al.,
2019), T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020). BERT is a widely-used PLM based
on the bidirectional Transformer architecture. We
select the publicly released BERT-small, BERT-
medium (Liu et al., 2021b), BERT-base and BERT-
large (Devlin et al., 2019) for comparison. T5
and BART adopt the sequence-to-sequence Trans-
former architecture, and we choose their base and
large versions. Besides, we also compare our ap-
proach with SVD (Henry and Hofrichter, 1992), a
classic matrix decomposition method that can also
be used for over-parameterizing PLMs. Concretely,
we leverage SVD to replace MPO in our frame-
work and perform over-parameterization on all the
parameter matrices of the PLM during fine-tuning.

5.2 Main Experimental Results
In this part, we report and analyze the experimental
results on BERT, T5 and BART.

Evaluation on BERT. We present the results on
BERT in Table 1. First, we can see that the BERT
models with more parameters perform consistently
better than smaller ones, i.e., BERT-large > BERT-
base > BERT-medium > BERT-small. It demon-
strates that more parameters are helpful for PLMs
to achieve better performance, showing the effec-
tiveness of over-parameterization. Second, after
combining PLMs with the over-parameterization
methods, their performances are most improved.
Although these methods just increase the model pa-
rameters during fine-tuning, they can also benefit
from over-parameterization to improve the general-
ization capacity. Between the two matrix decom-
position methods, we observe that SVD mostly
underperforms MPO. As SVD just performs the
matrix decomposition once in the 2D space based
on the singular value, it is hard to greatly increase

the number of the model parameters as our ap-
proach (e.g., 34M v.s. 81M in BERT-small). As
a comparison, MPO can factorize the matrix into
arbitrary scales by increasing the order, making it
more proper for over-parameterization.

Finally, by comparing our approach with dif-
ferent matrix selection strategies, we can see that
the dynamic strategy mostly outperforms the static
one, under the setting of the same parameter scale.
The reason may be that the dynamic strategy can
estimate the importance of immediate parameter
matrices w.r.t. the training steps. Such a way is
able to adapt to the change of parameter impor-
tance during fine-tuning, and better guides the over-
parameterization. Surprisingly, by using our frame-
work with the dynamic strategy, the BERT-base
model can be fine-tuned to achieve comparable
performance as the BERT-large model, where the
number of its parameters is just increased into a
similar scale during fine-tuning.

Evaluation on T5 and BART. We show the re-
sults on T5 and BART in Table 2. Similar to
BERT, we can also see that the large models consis-
tently outperform base models, and our proposed
over-parameterization method narrows this perfor-
mance gap. It indicates that our approach is general
to different model architectures and pre-training
tasks and can benefit from over-parameterization
to improve the fine-tuning performance of differ-
ent PLMs. Besides, the performance of T5 is im-
proved more than BART under a similar parameter-
increasing rate, and the over-parameterized T5-
base model also achieves comparable performance
with T5-large. A possible reason is that T5 has been
pre-trained using a much large corpus C4 (Raffel
et al., 2020), and over-parameterization can better
inspire its potentiality during fine-tuning.

5.3 Further Analysis
Next, we continue to investigate our proposed ap-
proach in a more detailed analysis.

Performance Comparison w.r.t. Parameter In-
creasing Rate. During fine-tuning, our approach
can increase the number of model parameters
for improving the over-parameterization of PLMs.
As our approach is a general and flexible way
to increase the model parameters into arbitrary
scales, here we investigate how the performance
changes w.r.t. a different number of increased
model parameters. Based on BERT-base and BERT-
medium, we expand their parameter scales after

3824

Datasets MNLI QNLI SST-2 RTE QQP CoLA STS-B MRPC Avg. #To (M) #To (M)
Acc. Acc. Acc. Acc. Acc. Mcc. Spear. F1 Train Test

BERT-small
None 77.60 86.40 89.70 61.80 87.00 27.80 77.00 83.40 73.84 28 28
+OPF-SVD 77.73 86.06 89.04 62.31 88.10 27.90 79.31 83.25 74.21 34 28
+OPF-MPOS 77.76 86.37 89.27 63.54 88.11 28.14 85.46 83.61 75.28 81 28
+OPF-MPOD 77.75 86.10 89.77 63.55 88.99 28.19 86.27 83.91 75.57 81 28

BERT-medium
None 80.00 87.70 89.60 62.20 87.90 38.00 78.40 86.60 76.30 41 41
+OPF-SVD 80.77 87.50 89.68 62.45 89.35 39.16 79.61 87.35 76.98 46 41
+OPF-MPOS 80.58 87.55 90.13 62.73 89.36 42.22 87.53 85.81 78.24 129 41
+OPF-MPOD 80.61 88.24 90.37 62.82 89.84 44.56 87.89 86.08 78.90 129 41

BERT-base
None 83.60 90.50 92.50 66.40 89.30 52.10 85.80 88.10 81.04 109 109
+OPF-SVD 83.62 90.59 92.54 66.79 89.31 55.21 88.45 87.88 81.80 134 109
+OPF-MPOS 83.78 90.87 92.55 68.87 89.30 56.12 88.53 88.40 82.30 341 109
+OPF-MPOD 84.08 91.54 92.52 72.32 89.40 60.62 89.03 89.95 83.68 341 109

BERT-large
None 85.70 92.70 93.90 70.10 90.10 60.50 86.50 89.30 83.60 335 335
+OPF-SVD 85.33 91.78 93.22 71.48 90.12 56.82 88.04 88.74 83.19 410 335
+OPF-MPOS 85.90 92.73 93.69 72.64 90.60 63.56 89.03 91.01 84.90 828 335
+OPF-MPOD 85.96 92.85 93.82 72.94 90.69 62.63 89.63 91.08 84.95 828 335

Table 1: Performance comparison using BERT on GLUE benchmark (in percent). “# To (M)-Train” and “#
To (M)-Test” denote the number (in millions) of total parameters during training and test, respectively. “+OPF-SVD”
represents the use of SVD as the model over-parameterization method, whilst “+OPF-MPOS ” and “+OPF-MPOD ”
signify the use of MPO decomposition as the over-parameterization method with static and dynamic matrix selection
strategy, respectively. The best performance in each group is highlighted in bold. For all the results, we report the
mean values of five runs using different random seeds.

1 2 3 4
Scale Factor

0.8

0.85

0.9

Sp
ea

r.

BERT-base
BERT-medium

(a) Performance on STS-B.

1 2 3 4
Scale Factor

0.35

0.4

0.45

0.5

0.55

0.6

M
cc

.

BERT-base
BERT-medium

(b) Performance on CoLA.

Figure 2: Comparison of different scale factors of
parameter number after over-parameterizing BERT-
medium and BERT-base in STS-B and CoLA tasks.

over-parameterizing from 1× to 4×, reporting the
performance on STS-B and CoLA tasks. As shown
in Figure 2, we can see that the model performance
is consistently improving w.r.t. the increasing of
parameter scales. Comparing the improved per-
formance between BERT-base and BERT-medium,
BERT-medium has gained more boost. It indicates
that a small PLM is much more hungry for more pa-
rameters. Besides, after reaching the 4× parameter
scale, the improvement becomes relatively smaller.
It shows that the 4× parameter scale seems to be
the limit that can significantly improve the model
performance via over-parameterization.

3 6 9 12
N

0.66

0.68

0.7

0.72

0.74

Ac
c.

BERT-base
BERT-base+ours

(a) Performance w.r.t N .

1 2 4 8
n

0.66

0.68

0.7

0.72

0.74

Ac
c.

BERT-base
BERT-base+ours

(b) Performance w.r.t n.

Figure 3: Comparison of the different total parameter
matrices selection number N and the selection number
n at one time in each parameter matrix. We conduct
experiments on RTE using BERT-base.

Hyper-parameters Tuning. For our OPF using
the dynamic strategy, the numbers of total selected
parameter matrices N and the selection number
at one time n in each parameter matrix group
are important hyper-parameters that require tun-
ing. Larger N means that more parameter matrices
are selected and over-parameterized and larger n
denotes that more matrices are over-parameterized
at one time. To investigate the effect of their values
on the model performance, we conduct experiments
on the CoLA task using BERT-base as the back-
bone. As shown in Figure 3, we can see that the

3825

Datasets MNLI QNLI SST-2 RTE QQP CoLA STS-B MRPC Avg. #To (M) #To (M)
Acc. Acc. Acc. Acc. Acc. Mcc. Spear. F1 Train Test

T5-Base
None 87.78 93.82 94.72 71.74 91.11 53.49 91.16 89.16 84.12 220 220
+OPF-MPOS 87.95 93.27 92.88 74.64 89.89 62.72 91.21 90.76 85.42 663 220
+OPF-MPOD 88.78 93.91 95.14 77.42 91.08 63.51 91.11 91.30 86.53 663 220

T5-large
None 89.32 94.03 96.20 83.94 91.54 55.10 91.90 90.15 86.51 770 770
+OPF-MPOS 88.15 93.98 96.21 83.98 89.88 66.38 91.91 92.38 87.86 1426 770
+OPF-MPOD 88.91 94.11 96.05 84.12 91.67 66.51 91.85 92.41 88.20 1426 770

BART-base
None 85.78 93.15 92.54 69.31 91.00 44.72 91.08 90.58 82.27 140 140
+OPF-MPOS 85.84 93.62 93.58 67.57 91.16 45.78 91.07 90.32 82.36 418 140
+OPF-MPOD 85.89 93.94 93.81 71.56 90.64 46.75 91.11 90.31 83.07 418 140

BART-large
None 88.60 93.98 95.76 79.92 91.08 59.56 91.23 90.14 86.28 407 407
+OPF-MPOS 88.75 94.21 95.18 79.81 90.67 61.69 91.15 90.16 86.45 1198 407
+OPF-MPOD 89.09 94.12 95.35 82.31 91.16 62.55 91.08 91.31 87.12 1198 407

Table 2: Performance comparison using T5 and BART on GLUE benchmark (in percent). “# To (M)-Train” and “#
To (M)-Test” denote the number (in millions) of total parameters during training and test, respectively. The best
performance in each group is highlighted in bold. For all the results, we report the mean values of five runs using
different random seeds.

Learning Rate 5e-6 1e-5 3e-5 5e-5 1e-4

RTE 71.08 72.24 72.12 72.31 70.25
CoLA 59.86 60.44 60.54 60.61 59.31
STS-B 88.32 88.89 89.01 88.95 88.14

Table 3: Comparison of different learning rates on RTE,
CoLA and STS-B tasks using our approach on BERT-
base (in percent).

performance steadily improves as N increases and
eventually reaches a plateau as a result. The reason
may be that over-parameterizing too few matrices is
not able to sufficiently over-parameterize the PLM.
Besides, we can see that too large n would degrade
the performance. A possible reason is that too large
n will over-parameterize too many parameter ma-
trices at one time, causing the dynamic strategy
to degrade into the static one. Whereas, we can
see that our approach consistently outperforms the
baseline method. It shows that our approach is not
very sensitive to the above hyper-parameters.

Sensitivity Analysis. As our approach is based
on the matrix decomposition method to over-
parameterize the PLM, once a small error arises
during performing decomposition, it would accu-
mulate into an extremely large value that may ruin
the PLM. To avoid it, our approach incorporates
the MPO method, which can factorize the param-
eter matrix in almost lossless conditions. Such
a way could stabilize the performance of our ap-

proach and make it less sensitive to perturbation
on hyper-parameters. To validate it, we select a
commonly-used hyper-parameter, the learning rate
to evaluate the sensitivity of our approach on RTE,
CoLA and STS-B tasks using BERT-base, and re-
port the performance change w.r.t. tuning it in the
set {5e-6, 1e-5, 3e-5, 5e-5, 1e-4} in Table 3. We
can observe that the performance of our approach
consistently stables around certain values, i.e., 72.0
for RTE, 60.0 for CoLA, and 88.5 for STS-B. It
indicates that our approach is not sensitive to the
learning rate during fine-tuning. Besides, setting
the learning rate to a commonly-used value 3e-
5 is enough for our approach to achieving good
performance, no longer requiring time-consuming
parameter tuning.

6 Conclusion

In this paper, we proposed OPF, a novel over-
parameterization framework to scale up the number
of parameters for PLMs just during fine-tuning, for
benefiting from more parameters. In our OPF, we
incorporated the matrix product operator method,
which decomposes the parameter matrices in PLMs
into high-order tensors for increasing the param-
eter number, and also devised the static and dy-
namic strategies to select the most important param-
eter matrices for over-parameterization. Extensive
experiments have demonstrated that our OPF ap-
proach can boost the performance of small PLMs

3826

significantly, and even help small PLMs outper-
form big ones.

In future work, we will investigate more efficient
and effective tensor decomposition methods for
PLM over-parameterization. In addition, we will
also apply OPF to other important backbone mod-
els in computer vision and multimodal domains.

Limitations

Further research is needed to understand the ro-
bustness of our over-parameterization framework
properly. The results given in this study are con-
strained by the natural language processing tasks
and datasets used for evaluation. Even though we
employ standard classifications from the literature,
the choice of downstream tasks and datasets is still
subjective. Furthermore, due to computing limita-
tions, we could not investigate the scaling behavior
of the Large PLMs. Additional study is needed in
this area. In addition, as our approach is based on
PLMs that may learn biased information from pre-
trained corpus, a potential risk is that our approach
may also be affected by it and generates improper
texts.

Acknowledgments

This work was partially supported by National Nat-
ural Science Foundation of China under Grants
No. 62206299 and 62222215, Beijing Outstand-
ing Young Scientist Program under Grant No.
BJJWZYJH012019100020098 and CCF-Zhipu AI
Large Model Fund. Xin Zhao is the corresponding
author.

References
Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang.

2019a. Learning and generalization in overparam-
eterized neural networks, going beyond two layers.
Advances in neural information processing systems,
32.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. 2019b.
A convergence theory for deep learning via over-
parameterization. In International Conference on
Machine Learning, pages 242–252. PMLR.

Devansh Arpit and Yoshua Bengio. 2019. The benefits
of over-parameterization at initialization in deep relu
networks. arXiv preprint arXiv:1901.03611.

Christopher Brix, Parnia Bahar, and Hermann Ney. 2020.
Successfully applying the stabilized lottery ticket hy-
pothesis to the transformer architecture. In Proceed-
ings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 3909–3915, On-
line. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training tasks
for embedding-based large-scale retrieval. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. Advances in neural informa-
tion processing systems, 33:15834–15846.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Pier-
giovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas
Beyer, et al. 2022. Pali: A jointly-scaled mul-
tilingual language-image model. arXiv preprint
arXiv:2209.06794.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and
Shun-ichi Amari. 2009. Nonnegative Matrix and
Tensor Factorizations - Applications to Exploratory
Multi-way Data Analysis and Blind Source Separa-
tion. Wiley.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Simon S. Du, Xiyu Zhai, Barnabás Póczos, and Aarti
Singh. 2019. Gradient descent provably optimizes
over-parameterized neural networks. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

3827

https://doi.org/10.18653/v1/2020.acl-main.360
https://doi.org/10.18653/v1/2020.acl-main.360
https://openreview.net/forum?id=rkg-mA4FDr
https://openreview.net/forum?id=rkg-mA4FDr
https://doi.org/10.1002/9780470747278
https://doi.org/10.1002/9780470747278
https://doi.org/10.1002/9780470747278
https://doi.org/10.1002/9780470747278
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

Tianxiang Gao, Hailiang Liu, Jia Liu, Hridesh Ra-
jan, and Hongyang Gao. 2022a. A global conver-
gence theory for deep relu implicit networks via
over-parameterization. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Ze-Feng Gao, Song Cheng, Rong-Qiang He, Zhi-Yuan
Xie, Hui-Hai Zhao, Zhong-Yi Lu, and Tao Xiang.
2020. Compressing deep neural networks by ma-
trix product operators. Physical Review Research,
2(2):023300.

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-Yi
Lu, and Ji-Rong Wen. 2022b. Parameter-efficient
mixture-of-experts architecture for pre-trained lan-
guage models. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3263–3273, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Ze-Feng Gao, Xingwei Sun, Lan Gao, Junfeng Li, and
Zhong-Yi Lu. 2022c. Compressing lstm networks by
matrix product operators.

Timur Garipov, Dmitry Podoprikhin, Alexander
Novikov, and Dmitry Vetrov. 2016. Ultimate ten-
sorization: compressing convolutional and fc layers
alike. arXiv preprint arXiv:1611.03214.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Per Christian Hansen, Takashi Sekii, and Hiromoto
Shibahashi. 1992. The modified truncated svd
method for regularization in general form. SIAM
Journal on Scientific and Statistical Computing,
13(5):1142–1150.

ER Henry and J Hofrichter. 1992. [8] singular value de-
composition: Application to analysis of experimental
data. Methods in enzymology, 210:129–192.

Frank L Hitchcock. 1927. The expression of a tensor or
a polyadic as a sum of products. Journal of Mathe-
matics and Physics, 6(1-4):164–189.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic BERT
with adaptive width and depth. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Tamara G Kolda and Brett W Bader. 2009. Ten-
sor decompositions and applications. SIAM review,
51(3):455–500.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Zhi-Yuan
Xie, Zhong-Yi Lu, and Ji-Rong Wen. 2021a. En-
abling lightweight fine-tuning for pre-trained lan-
guage model compression based on matrix product
operators. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 5388–5398. Association for Computa-
tional Linguistics.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu,
and Mykola Pechenizkiy. 2021b. Do we actually
need dense over-parameterization? in-time over-
parameterization in sparse training. In International
Conference on Machine Learning, pages 6989–7000.
PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz,
and Ohad Shamir. 2020. Proving the lottery ticket
hypothesis: Pruning is all you need. In International
Conference on Machine Learning, pages 6682–6691.
PMLR.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2017. Pruning convolutional
neural networks for resource efficient inference. In
5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Alexander Novikov, Dmitry Podoprikhin, Anton Os-
okin, and Dmitry P. Vetrov. 2015. Tensorizing neural
networks. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 442–450.

Ivan V Oseledets. 2011. Tensor-train decomposition.
SIAM Journal on Scientific Computing, 33(5):2295–
2317.

3828

https://openreview.net/forum?id=R332S76RjxS
https://openreview.net/forum?id=R332S76RjxS
https://openreview.net/forum?id=R332S76RjxS
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288
http://arxiv.org/abs/2012.11943
http://arxiv.org/abs/2012.11943
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.418
https://doi.org/10.18653/v1/2021.acl-long.418
https://doi.org/10.18653/v1/2021.acl-long.418
https://doi.org/10.18653/v1/2021.acl-long.418
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://proceedings.neurips.cc/paper/2015/hash/6855456e2fe46a9d49d3d3af4f57443d-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/6855456e2fe46a9d49d3d3af4f57443d-Abstract.html

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vish-
wakarma, and Dimitris Papailiopoulos. 2020. Opti-
mal lottery tickets via subset sum: Logarithmic over-
parameterization is sufficient. Advances in Neural
Information Processing Systems, 33:2599–2610.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When BERT plays the lottery, all tickets are winning.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 3208–
3229. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332.

Xingwei Sun, Ze-Feng Gao, Zhong-Yi Lu, Junfeng Li,
and Yonghong Yan. 2020. A model compression
method with matrix product operators for speech
enhancement. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28:2837–2847.

Ledyard R Tucker. 1966. Some mathematical notes
on three-mode factor analysis. Psychometrika,
31(3):279–311.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting,

the rest can be pruned. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 5797–5808.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022. Platon: Pruning large transformer mod-
els with upper confidence bound of weight impor-
tance. In International Conference on Machine
Learning, pages 26809–26823. PMLR.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Wein-
berger, and Yoav Artzi. 2021. Revisiting few-sample
BERT fine-tuning. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and William B Dolan. 2020. Dialogpt: Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 270–278.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223.

3829

https://doi.org/10.18653/v1/2020.emnlp-main.259
https://doi.org/10.1109/TASLP.2020.3030495
https://doi.org/10.1109/TASLP.2020.3030495
https://doi.org/10.1109/TASLP.2020.3030495
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/v1/p19-1580
https://doi.org/10.18653/v1/p19-1580
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
http://arxiv.org/abs/2303.18223

Appendices

A More Details about Tensors

A.1 Tensor and Matrix Product Operator

As introduced in (Cichocki et al., 2009), a tensor
can be defined as follows.

Tensor. Let D1, D2..., DM ∈ M denote the in-
dex upper bounds. A tensor T ∈ RD1,...,DM

of order M is an M -way array where ele-
ments T [d1, d2, ..., dM] are indexed by dm ∈
{1, 2, ..., DM} for 1 ≤ m ≤M .

Matrix Product Operator. The k-th or-
der (Kolda and Bader, 2009) and k ∈ {1, . . . , D}.
The bond dimension dk is defined by:

dk = min

(k∏

m=1

im × jm,

n∏

m=k+1

im × jm

)
. (8)

From Eq. (8), we can see that is going to be large
in the middle and small on both sides. Algorithm 2
presents a thorough algorithm for MPO decompo-
sition.

Algorithm 2 MPO decomposition procedure.
Input: matrix W ∈ RI×J , the number of local tensor m
Output : local tensor set {T (k)}mk=1

1: for k = 1, . . . ,m− 1 do
2: W[dk−1 × ik × jk,−1]← Reshape(W[I, J])
3: UλV⊤ ← SVD (W)

4: T (k)[dk−1, ik, jk, dk]← Reshape(U)
5: Calculate W = λV⊤

6: end for
7: Let T (m) ←W
8: Normalization
9: return local tensor set {T (k)}mk=1

The MPO representation of W is obtained by
factorizing it into a sequential product of local ten-
sors. The algorithm has been depicted in Section
4.2 of the main text. With the MPO decomposition
technique, we can get local tensor as follows:

Wi1···in,j1···jn = T (1)[i1, j1] · · · T (m)[im, jm] (9)

where T (k)[jk, ik] is a Dk−1 × Dk matrix with
Dk the virtual basis dimension on the bond link-
ing T (k) and T (k+1) with D0 = Dm = 1. With
Eq. (9) we can decompose an original matrix W to
a sequential product of the derived local tensors.

A.2 Theorem

Theorem 1. Suppose that the tensor W(k) of matrix
W that is satisfy

W = W(k) +E(k), D(W(k)) = dk,

where ||E(k)||2F = ϵ2k, k = 1, ..., d− 1. (10)

Then MPO(W) with the k-th bond dimension dk
upper bound of truncation error satisfy:

||W −MPO (W)||F ≤

√√√√
d−1∑

k=1

ϵ2k (11)

Proof. The proof is by induction. For n = 2
the statement follows from the properties of the
SVD. Consider an arbitrary n > 2. Then the first
unfolding W(1) is decomposed as

W(1) = U1λ1V1+E(1) = U1B
(1)+E(1), (12)

where U1 is of size r1 × i1 × j1 and ||E(1)||2F =
ϵ21. The matrix B1 is naturally associated with
a (n − 1)-dimensional tensor B(1) with elements
B(1)(α, i2, j2, ..., in, jn), which will be decom-
posed further. This means that B1 will be approx-
imated by some other matrix B̂1. From the prop-
erties of the SVD it follows that UT

1 E
(1) = 0, and

thus

||W − B(1)||2F
= ||W1 −U1B̂1||2F
= ||W1 −U1(B̂1 +B1 −B1)||2F
= ||W1 −U1B1||2F + ||U1(B̂1 −B1)||2F (13)

and since U1 has orthonormal columns,

||W − B(1)||2F ≤ ϵ21 + ||B1 − B̂1||2F . (14)

and thus it is not difficult to see from the orthonor-
mality of columns of U1 that the distance of the
k-th unfolding (k = 2, ..., dk − 1) of the (d − 1)-
dimensional tensor B(1) to the dk-th rank matrix
cannot be larger than ϵk. Proceeding by induction,
we have

||B1 − B̂1||2F ≤
d−1∑

k=2

ϵ2k, (15)

combine with Eq. (14), this complets the proof.

3830

Experiments N n Feed-forward Network Multi-head Attention LR

BERT-small
OPF+SVD - - T 32,32

32,16 (D) T 16,32
32,16 (D) 3e-5

OPF+MPOS 4 4 T 32,1,1,1,1,1,1,1,1,1,32
32,1,1,1,1,1,1,1,1,1,16 (D) T 16,1,1,1,1,1,1,1,1,1,32

32,1,1,1,1,1,1,1,1,1,16 (D) 3e-5
OPF+MPOD 4 2 T 32,1,1,1,1,1,1,1,1,1,32

32,1,1,1,1,1,1,1,1,1,16 (D) T 16,1,1,1,1,1,1,1,1,1,32
32,1,1,1,1,1,1,1,1,1,16 (D) 3e-5

BERT-medium
OPF+SVD - - T 32,32

32,16 (D) T 16,32
32,16 (D) 3e-5

OPF+MPOS 12 12 T 32,1,1,1,1,1,1,1,1,1,32
32,1,1,1,1,1,1,1,1,1,16 (D) T 16,1,1,1,1,1,1,1,1,1,32

32,1,1,1,1,1,1,1,1,1,16 (D) 3e-5
OPF+MPOD 12 2 T 32,1,1,1,1,1,1,1,1,1,32

32,1,1,1,1,1,1,1,1,1,16 (D) T 16,1,1,1,1,1,1,1,1,1,32
32,1,1,1,1,1,1,1,1,1,16 (D) 3e-5

BERT-base
OPF+SVD - - T 32,24

64,48 (D) T 24,32
32,24 (D) 3e-5

OPF+MPOS 8 8 T 32,1,1,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,1,1,48 (D) T 32,1,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,1,48 (D) 3e-5
OPF+MPOD 8 2 T 32,1,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,1,48 (D) T 32,1,1,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,1,1,48 (D) 3e-5

BERT-large
OPF+SVD - - T 32,32

64,64 (D) T 32,32
32,32 (D) 3e-5

OPF+MPOS 24 24 T 32,1,1,1,1,1,1,1,1,1,32
64,1,1,1,1,1,1,1,1,1,64 (D) T 32,1,1,1,1,1,1,1,1,1,32

64,1,1,1,1,1,1,1,1,1,64 (D) 3e-5
OPF+MPOD 24 4 T 32,1,1,1,1,1,1,1,1,1,32

64,1,1,1,1,1,1,1,1,1,64 (D) T 32,1,1,1,1,1,1,1,1,1,32
64,1,1,1,1,1,1,1,1,1,64 (D) 3e-5

Table 4: The experiments setting in various BERT models.“LR” denote the learning rate.

B Additional Experimental Details

Experimental Details in Pre-trained Language
Modeling In this paper, the MPO decomposition
is proposed for enlarging model parameters. In
order to show the process of incorporating several
MPO structures into BERT, T5, and BART respec-
tively. Moreover, we denote an MPO, defined by
Eq. (2), as:

T j1,j2,...,jm
i1,i2,...,im

(D) (16)

BERT-small and BERT-medium models were re-
leased by Google Research in (Turc et al., 2019),
which have 4 and 8 Transformer layers respectively,
and each of the layers has 512 hidden nodes. We
perform the pre-compute stage, which would com-
pute the importance scores of all parameter matri-
ces before fine-tuning and then leverages MPO to
over-parameterize the top-N ones. The important
score can be computed by Eq. (6) and Eq. (7). In
our main experiments, the detail hyper-parameter
setting was shown in Table 4.

We have conducted sufficient trials for both the
T5 and the BART models using the following par-
ticular experimental parameter configurations in
Table 5.

Hardware We trained our model on one machine
with 8 NVIDIA V100 GPUs. For our base mod-

els, we adopt all these models released by Hug-
gingface 1. The hyperparameters are described in
Table 6.

Optimizer We used the Adam optimizer and vary
the learning rate over the course of training. The
vary formula (Vaswani et al., 2017) follows in our
work. We also used the warmup_steps = 1000.

Details of Fine-tuning Datasets GLUE bench-
mark covers multiple datasets (MNLI, QNLI, SST-
2, RTE, QQP, CoLA, STS-B, MRPC) 2.

Details of Evaluation Metrics Following Gao
et al. (2022b), the metrics that we use for the
GLUE benchmark are Matthew’s correlation for
CoLA (Mcc.), Spearman for STS-B (Spear.), F1
for MRPC, and accuracy (Acc.) for the remaining
tasks. We compute and report the average scores
for all of the aforementioned metrics based on all of
the test samples taken into consideration. Since the
original test sets are not accessible, we divide the
original validation set in half and use one half for
validation and the other for the test for datasets with
fewer than 10,000 samples (RTE, MRPC, STS-B,
CoLA) (Zhang et al., 2021).

1https://huggingface.co/
2In line with Raffel et al. (2020), we do not test WNLI due

to its adversarial character with respect to the training set.

3831

Experiments N n Feed-forward Network Multi-head Attention LR

T5-base
OPF+MPOS 8 8 T 32,1,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,1,48 (D) T 32,1,1,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,1,1,48 (D) 3e-5

OPF+MPOD 8 2 T 32,1,1,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,1,1,48 (D) T 32,1,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,1,48 (D) 3e-5

T5-large
OPF+MPOS 16 16 T 32,1,1,1,1,1,1,1,1,1,32

64,1,1,1,1,1,1,1,1,1,64 (D) T 32,1,1,1,1,1,1,1,1,1,32
64,1,1,1,1,1,1,1,1,1,64 (D) 3e-5

OPF+MPOD 16 4 T 32,1,1,1,1,1,1,1,1,1,32
64,1,1,1,1,1,1,1,1,1,64 (D) T 32,1,1,1,1,1,1,1,1,1,32

64,1,1,1,1,1,1,1,1,1,64 (D) 3e-5

BART-base
OPF+MPOS 8 8 T 32,1,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,1,48 (D) T 32,1,1,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,1,1,48 (D) 3e-5

OPF+MPOD 8 2 T 32,1,1,1,1,1,1,1,1,1,24
64,1,1,1,1,1,1,1,1,1,48 (D) T 32,1,1,1,1,1,1,1,1,1,24

64,1,1,1,1,1,1,1,1,1,48 (D) 3e-5

BART-large
OPF+MPOS 16 16 T 32,1,1,1,1,1,1,1,1,1,32

64,1,1,1,1,1,1,1,1,1,64 (D) T 32,1,1,1,1,1,1,1,1,1,32
64,1,1,1,1,1,1,1,1,1,64 (D) 3e-5

OPF+MPOD 16 4 T 32,1,1,1,1,1,1,1,1,1,32
64,1,1,1,1,1,1,1,1,1,64 (D) T 32,1,1,1,1,1,1,1,1,1,32

64,1,1,1,1,1,1,1,1,1,64 (D) 3e-5

Table 5: The experiments setting in T5 and BART models.“LR” denotes the learning rate.

Model dhead dff L Nsl

BERT-small 512 2048 4 128
BERT-medium 512 2048 8 128
BERT-base 768 3072 12 128
BERT-large 1024 4096 24 128
T5-base 768 3072 12 128
T5-large 1024 4096 24 128
BART-base 768 3072 12 128
BART-large 1024 4096 24 128

Table 6: The hyperparameter in experiments of the main
text mentioned models. “L” denotes the number of
Transformer layers. “Nsl” denotes the sequence length.

C Additional Discussion

Different Tensor Decompostion In the field of
mathematics, the MPO-based approximation may
be seen as an alternative form of the low-rank ap-
proximation approach. Now we will evaluate it in
light of many other low-rank approximation tech-
niques, such as SVD (Henry and Hofrichter, 1992),
CPD (Hitchcock, 1927), and Tucker decomposi-
tion (Tucker, 1966).

We present the categorization of these methods
in Table 7. Because the work of low-rank decom-
position only needs to be done once, and it does
not take a long time, thus we mainly focus on the
forward propagation time in practical use. In point
of fact, each of the techniques may either be based
on a tensor-based decomposition (that is, a list of
tensors for factorization) or a matrix-based decom-

Category Method Inference Time

MPO MPO(m>2) O(mID3)
MPO(m=2)(SVD) O(2ID3)

Tucker Tucker(D>1) O(mID +Dm)
Tucker(D=1)(CP) O(mID2)

Table 7: The amount of time and complexity that various
low-rank approximation algorithms need for inference.
Here, m denotes the number of the tensors, I denotes
max({ik}mk=1) means the largest ik in input list, and D
denotes max({D′

k}mk=0) means the largest dimension
D′

k in the truncated dimension list.

position, and we quantify the amount of time each
approach requires using standard parameters. In-
deed, MPO and Tucker are examples of two differ-
ent classes of low-rank approximation algorithms.
In most cases, the capacity of the algorithm will
rise in proportion to the value of m (more tensors).
When m is more than three, the temporal complex-
ity of MPO is lower than that of Tucker decompo-
sition. It is clear that SVD may be thought of as
a special example of MPO when the dimension of
the tensor is equal to two, and that CPD is a partic-
ular case of Tucker when the super-diagonal matrix
is the core tensor. Both of these relationships can
be observed here.

3832

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section-Limitations

�3 A2. Did you discuss any potential risks of your work?
Section-Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section-Abstract; Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 5.

�3 B1. Did you cite the creators of artifacts you used?
Section 5.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Not applicable. Left blank.

C �3 Did you run computational experiments?
Section-Experiments(Section 5)

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section-Experiments(Section 5)

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

3833

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section-Experiments(Section 5.1); Appendix B

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5.2, we report the mean of 5 runs using different random seeds.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

3834

