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Abstract

Collaborative stories, which are texts created
through the collaborative efforts of multiple
authors with different writing styles and inten-
tions, pose unique challenges for NLP models.
Understanding and generating such stories re-
mains an underexplored area due to the lack
of open-domain corpora. To address this, we
introduce STORYWARS, a new dataset of over
40,000 collaborative stories written by 9,400
different authors from an online platform. We
design 12 task types, comprising 7 understand-
ing and 5 generation task types, on STORY-
WARS, deriving 101 diverse story-related tasks
in total as a multi-task benchmark covering all
fully-supervised, few-shot, and zero-shot sce-
narios. Furthermore, we present our instruction-
tuned model, INSTRUCTSTORY, for the story
tasks showing that instruction tuning, in addi-
tion to achieving superior results in zero-shot
and few-shot scenarios, can also obtain the best
performance on the fully-supervised tasks in
STORYWARS, establishing strong multi-task
benchmark performances on STORYWARS.1

1 Introduction

Storytelling is crucial due to its vital role in hu-
man experience, history, and culture dating back to
the earliest days of humanity. Humans possess the
unique storytelling ability to structure a sequence
of events, whether factual, fictional or a mixture of
both, and create a coherent narrative that conveys
a big picture while also including intricate details.
Current story generation systems usually mimic
this ability by starting with a plot then crafting
the story. This can be done by linearly expand-
ing (Peng et al., 2018, Yao et al., 2019, Martin
et al., 2017) or hierarchically developing (Xu et al.,
2018, Fan et al., 2018, Fan et al., 2019, Rashkin
et al. 2020, Goldfarb-Tarrant et al., 2020) the story
based on the given plot. Collaborative storytelling

1We make our data, code, and models publicly available at
https://github.com/ylndu/storywars

These are a series of letters found in my basement. Not sure if this is a prank or
something but here they are, a warning though, it's pretty weird. 
Letter #1
Greetings!
You might not know me but I know you. I've been watching you. All the decisions you
made (even the bad ones) and all the roads you took to get here, but all good things
must come to an end. So, I'm here to wake you up! It's kind of the opposite of dying, in
fact, you get to live again! Only. you won't remember a thing. The friends you made, the
people you loved, the treasures you acquired over your lifespan, all will be gone. Your
life will be sort of the same? I guess? It's basically your life all over again, except for
one thing:
I will be making your decisions for you this time! How cool is that? Super cool right!
Right? 
Yeah! That's what I thought! Now, I have to warn you, I will be changing some things
drastically, but hey! I'll make sure you have fun! First things first:
Get you some new parents! Maybe some rich ones this time! Alright! I'm going to send
you off! Have fun!
Signed,
Deathly :)

Letter #2 
Hello again,
Despite my best intentions, you have failed to meet my expectations. Is it so hard to
follow the script? I have given you a pair of rich parents, you have a private jet now,
why are you still so miserable?
And did I not give you that lovely blonde twig name Jessica as arm candy? You seem
so ungrateful right now I am tempted to give you military parents instead.
Yes.
That is what I will do. Call it character training, you obviously need some.
Signed,
Deathly :(
PS: Try not to kill yourself this time okay?

Letter #7
Really? Well at least this time your premature death was "out of this world". Get it? Your
intellect was a little less than I expected though. Honestly, you should learn to keep
your helmet on in space. It is impossible to take a selfie, and plus there's no wifi. I don't
know what you were thinking. Well, I guess you were too busy partying to actually
attend the astronaut training sessions.
This time, I think I'll try something a little bit different. I don't think I'll even make you
human. So get ready to say hello to your new self, the cat.
Signed,
Deathly ;)

Title: Diaries of a Reaper
likes: 505, stars: 319, genres: [horror]

Chapter 2, Author: Ailyn Koay

Chapter 7, Author: Artemis

Chapter 1, Author: Jarno

... (4 chapters omitted)

... (5 chapters omitted; 12 Chapters in total)

... (somewhere in Chapter 3)... (somewhere in Chapter 6)

... (somewhere in Chapter 8)

Figure 1: An example story with 12 turns in the STORY-
WARS dataset. In each turn, the author leaves a "floor"
for the next author to continue collaboratively .

is distinctly challenging because there is no pre-
determined plot or story outline of events. Instead,
collaborative stories are created through the col-
lective efforts of multiple authors. Each author
contributes a section sequentially, while also at-
tempting to express their own personal intentions
within the context of the jointly crafted and jointly
owned story. It is a more challenging problem as
it requires not only the ability to generate text, but
also the capability to understand the previous con-
text and contributions written by other authors.
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Large Language Models (LLMs) (Devlin et al.
2019, Liu et al., 2019, Yang et al. 2019, Raffel et al.
2019, Brown et al. 2020, Zhang et al. 2022, Chowd-
hery et al. 2022, Touvron et al. 2023) have demon-
strated exceptional performance on various under-
standing and generation benchmarks, indicating
their potential in addressing natural language pro-
cessing (NLP) challenges related to collaborative
storytelling. This prompts an intriguing question
within the research community: How could LLMs
synergize both their understanding and generation
capabilities via multitask learning to address the
challenges of collaborative storytelling?

We present STORYWARS, a dataset of over
40,000 stories gathered from an online collabo-
rative storytelling platform2. Figure 1 shows an
example story in the STORYWARS dataset. Each
story contains rich information including its title,
genres given by the initial author, chapters written
by different authors, and human ratings including
stars and likes. Each chapter was written by exactly
one author and the previous author might leave a
collaborative floor (Coates, 1997) for the next au-
thor to continue. Therefore, for a model to generate
a continuing chapter, it needs to understand the pre-
ceding context, including the title, genres, and the
writing styles and intentions of previous authors
conveyed in the collaborative floor.

Due to the multitask nature of collaborative sto-
rytelling and the rich information of the STORY-
WARS, we design 12 task types, including both
understanding and generation task types, as a mul-
titask benchmark for an initial probe of collabo-
rative storytelling. We follow the task definition
from FLAN (Wei et al., 2021), where each task
type contains multiple tasks. In the end, our bench-
mark contains 101 tasks in total, split such that
it covers all fully-supervised, few-shot, and zero-
shot learning application scenarios. It is important
to note that prevailing multitask NLP benchmarks
are either focusing on understanding (e.g. Wang
et al., 2018, Wang et al., 2019) or generation (e.g.
Gehrmann et al., 2021, Khashabi et al., 2021, Liu
et al., 2021) alone, or only a subset of the learn-
ing scenarios. To our knowledge, we are the first
to propose a story benchmark that contains both
understanding and generation in all three scenarios.

Large language models have been shown to not
only be fully-supervised, few-shot, and zero-shot

2www.storywars.net Unfortunately, the website has closed
down by the time of writing this paper. Some stories could be
recovered from https://archive.md/sAOOq

learners but also multitask ones. Instruction Tuning
(Wei et al., 2021, Sanh et al., 2022, Chung et al.,
2022) has been the state-of-the-art approach for
zero-shot and few-shot scenarios. However, it has
not yet been applied in the fully-supervised setting.
We evaluated Instruction Tuning on the benchmark
and we found that in addition to achieving state-of-
the-art results in zero-shot and few-shot scenarios,
when combined with single-task fine-tuning, In-
struction Tuning can surpass single-task fine-tuning
alone, resulting in a consistent performance boost
of 1.53 points on average for all tasks.

Our contributions are as follows:
• We introduce a novel collaborative story

dataset STORYWARS that comprises 40k sto-
ries written by 9.4k different authors, with
rich information such as genres and human
ratings, to promote research in the field of
collaborative storytelling.

• We propose a new benchmark based on STO-
RYWARS that consists of 7 understanding and
5 generation task types, totaling in 101 tasks
for testing the fundamental abilities of LLMs
to model collaborative stories. The bench-
mark covers the fully-supervised, few-shot,
and zero-shot scenarios.

• We present INSTRUCTSTORY, a instruction-
tuned model that demonstrates strong perfor-
mance on the STORYWARS benchmark in all
three learning scenarios. In addition, we show
for the first time that we could extend Instruc-
tion Tuning with a single-task finetuning stage
to achieve superior performance and obtain
robust performance boost.

2 Related Work

2.1 Story Datasets
The most popular story datasets that have been
widely used by many story generation systems in
the past are ROCStories (Mostafazadeh et al., 2016)
and WritingPrompts (Fan et al., 2018). ROCSto-
ries comprises five-sentence commonsense short
stories, and WritingPrompts includes 300k open-
domain prompt-story pairs, neither of which are
collaboratively written. On the other hand, Storium
(Akoury et al., 2020) and roleplayerguild (Louis
and Sutton, 2018), are collaborative and written by
multiple authors in turns, but in a game setting. The
key distinction of our STORYWARS dataset is that
the stories are both collaborative and open-domain.
For a comparison of these datasets, refer to Table 1.
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Dataset # Stories # Words Genres Human Open-Domain Multi-Turn User-Gen
per story Ratings Collab.

ROCStories 98,156 88 ✘ ✘ ✔ ✘ ✘

WritingPrompts 303,358 735 ✘ ✘ ✔ ✘ ✔

roleplayerguild 1,439 3,079 ✘ ✘ ✘ ✔ ✔

Storium 5,743 19,278 ✘ ✘ ✘ ✔ ✔

STORYWARS 40,135 367 ✔ ✔ ✔ ✔ ✔

Table 1: Comparison of our STORYWARS dataset with previous story datasets.

2.2 Multitask NLP Benchmarks

Existing multitask NLP benchmarks tends to focus
on evaluating either understanding (Wang et al.,
2018, Wang et al., 2019) or generation (Gehrmann
et al., 2021, Khashabi et al., 2021, Liu et al.,
2021) capabilities of NLP models. There are task-
specific benchmarks that address both, such as
those for dialog (Mehri et al., 2020) and code (Lu
et al., 2021). For the task of storytelling, the LOT
benchmark (Guan et al., 2022) focuses on both
aspects but is limited to Chinese and has fewer
tasks than our proposed STORYWARS dataset. BIG-
bench (Srivastava et al., 2022), which includes 204
tasks for understanding and generation, only tests
zero-shot and few-shot abilities without finetun-
ing. STORYWARS provides a benchmark for story
understanding and generation with 101 tasks span-
ning all zero-shot, few-shot, and full-supervised
scenarios for various applications.

2.3 Multitask NLP and Instruction Tuning

Current multitask LLMs mainly follow two ap-
proaches. The first approach involves finetuning,
such as with ExT5 (Aribandi et al., 2022) and Mup-
pet (Aghajanyan et al., 2021), where the model is
made more generalized through multitask finetun-
ing and then fine-tuned again on downstream tasks.
The second approach focuses solely on zero-shot
and few-shot performance, with the goal of bridg-
ing the gap between finetuning and these perfor-
mance levels, as seen in FLAN (Wei et al., 2021),
T0(Sanh et al., 2022), FLAN-T5 (Chung et al.,
2022), and ZeroPrompt (Xu et al., 2022). These
models often utilize Instruction Tuning or similar
frameworks. In this paper, we extend Instruction
Tuning’s capabilities to achieve superior perfor-
mance in the full-supervised scenario as well.

3 Methodology

3.1 The STORYWARS Dataset

We obtained the STORYWARS dataset from story-
wars.net, an online collaborative storytelling plat-
form where users can pitch ideas and create stories.
However, once an initial chapter is published, the
story becomes part of the Story Wars community
and can be contributed to by other users. For a
continuing chapter to be officially recognized, it
must be voted in by other users, resulting in a high
quality of stories on the platform.

We scraped and parsed the stories on Story Wars,
ending up in obtaining 76k stories. We then used
FastText (Bojanowski et al., 2017) language iden-
tification to filter for English stories and further
cleaned the dataset by removing noisy stories based
on GPT-2 perplexity (Radford et al., 2019). We also
removed stories that are shorter than 30 words or
stories with chapters that are shorter than 10 words.
To further ensure the quality of the dataset, we also
remove stories that have very low human ratings,
such as likes and stars.

In consideration of ethical issues, we employed
OpenAI Content Moderation APIs3 and the Detox-
ify4 toxicity classifier to identify and remove po-
tentially harmful content, such as toxicity, obscen-
ity/sexual content, threats, insults, identity hate,
and self-harm posts from the dataset. Furthermore,
to safeguard user privacy, we replaced all URLs,
email addresses, and phone numbers with special
tokens <URL>, <EMAIL>, and <PHONE>.

After thorough data cleaning, we obtained a final
dataset of 40,135 stories written by 9,494 authors.
Due to the fact that the long tail of genres is very
noisy, we made the simplifying assumption that
each story contains a single dominant genre, if any.
Each story in the dataset was structured with sev-

3https://beta.openai.com/docs/api-reference/moderations
4https://github.com/unitaryai/detoxify
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eral key elements, including a title, a genre (which
could be empty), the numbers of likes and stars re-
ceived, the authors and the corresponding chapters.

We denote an arbitrary story in the dataset as
s ∈ S, where S = {(p, (ci, ai)ti=0, g, rl, rs)}. That
is, each story si is denoted by a 5-tuple of a title p,
chapter-author pairs (ci, ai) of t turns, a genre g, a
likes rating rl, and a stars rating rs.

3.2 The Multitask Benchmark

3.2.1 Story Understanding Tasks
Genre Classification Understanding the genre of
a story is essential for collaborative storytelling
models to comprehend the context. The genre clas-
sification task involves identifying the genre of a
story. This task can be formulated as a binary text
classification problem, where given a story, the task
is to predict whether it belongs to a specific genre
g. This can be represented as g = f(c1, c2, ..., ct).
Authorship Attribution Identifying the author of
a text is a crucial step in understanding the writing
style of an individual. Authorship attribution, tradi-
tionally, is the task of determining the author of a
given text. In this paper, we formulate the task of
authorship attribution as identifying the author of a
specific chapter, represented as a = f(c).
Authorship Verification Authorship Verification,
in contrast to author attribution, is the task of de-
termining whether two texts have been written by
the same author by comparing their writing styles.
The task is represented as y = f(ci, cj), where y is
a binary variable.
Connectivity Inference Understanding the chapter
shifts in long-range stories can be a beneficial abil-
ity for collaborative storytelling. Following Sun
et al. (2022), we also include the connectivity infer-
ence task, where the goal is to determine whether
two given chapters are consecutive in a story. The
task is represented as y = f(cn, cm).
Temporal Inference Inspired from the Connec-
tivity Inference task, we also aim to evaluate a
model’s ability to understand the temporal rela-
tionships between chapters in a story. The Tem-
poral Inference task involves determining whether
two chapters in the same story are in the correct
chronological order. For example, (ci, ci+1) and
(ci, ci+5) would be considered positive instances,
while (ci+5, ci) would not. The task is represented
as y = f(cn, cm), where y is a binary variable.
Story Scoring Understanding human ratings of a
story is crucial for generating texts that align with

human preferences. Many dialog-related applica-
tions rely on human labelers to rate texts based on
different criteria, e.g. LAMDA (Thoppilan et al.,
2022). Since STORYWARS contains human ratings
in the form of likes and stars, we propose to include
a regression task for story scoring as a task type.
We follow Raffel et al. (2019) and normalize the
story ratings to a range from 0-10, with rounded
scores to the nearest increment of 0.1, and convert
the float to string. Given a rating score, such as rl,
the task is represented as rl = f(c1, c2, ..., ct).
Story Segmentation Although stories are already
divided into chapters, it is still possible to eval-
uate models’ ability to identify chapter bound-
aries within a story, where one chapter con-
cludes and another begins, in order to encour-
age the model to capture discourse-level informa-
tion. We design the task of story segmentation as
c1, b1, c2, b2, ..., bt−1, ct = f(s), where bi is the
boundary between two chapters.

3.2.2 Story Generation Tasks
Next Chapter Generation The next chapter gener-
ation problem is defined as an generation task that
takes previous chapters and genre information as
input, and then generates the subsequent chapter.
This is represented as ck+1 = f(c1, c2, ..., ck, g).
Conditional Story Generation The conditional
story generation problem is defined as an gener-
ation task that also takes previous chapters and
genre information as input, but then generates the
entire continuation of the story until the conclusion
instead. It further evaluates an NLP model’s capa-
bility to plan and organize the story. This is repre-
sented as ck+1, ck+2, ..., ct = f(c1, c2, ..., ck, g).
Chapter Infilling In line with Ippolito et al. (2019),
the chapter infilling task evaluates an NLP model’s
ability to generate an intermediate chapter given
the context of a preceding and subsequent chapter.
This is represented as ck = f(ck−1, ck+1).
Global Infilling Building on the chapter infilling
task, the global infilling problem considers more ex-
tensive context information, including both preced-
ing and subsequent chapters. This is represented as
ck = f(c1, c2, ..., ck−1, ck+1, ..., ct).
Temporal Ordering Following Lin et al. (2021),
we also include a task that unscrambles chapter
sequences based on temporal information, except
that we simplify the problem by eliminating the
requirement for the NLP model to infill masked
chapters. This is represented as c1, c2, ..., ct =
f(permute(c1, c2, ..., ct)).
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Task Type #Tasks Train Dev Test

Fully-supervised

Genre Classification 27 2,000 250 250
Author Attribution 30 2,000 250 250
Author Verification 1 144,000 20,925 20,925
Connectivity Inference 1 59,402 7,521 6,963
Temporal Inference 1 84,632 9,480 8,928
Story Scoring 2 17,046 1,485 1,484
Story Segmentation 1 17,256 1,500 1,500

Next Chapter Generation 1 40,729 5,845 5,043
Conditional Story Generation 1 23,473 4,345 3,543
Chapter Infilling 1 23,473 4,345 3,543
Global Infilling 1 23,473 4,345 3,543
Temporal Ordering 1 78,554 8,932 8,407

Few-shot

Genre Classification 10 32 32 200

Zero-shot

Genre Classification 23 0 0 200

Table 2: Task statistics for the STORYWARS benchmark.

3.2.3 The Benchmark

Benchmark task statistics The 12 task types trans-
late into 101 tasks based on STORYWARS, with 96
understanding tasks and 5 generation tasks. It is
worth noting that the majority of the understand-
ing tasks are genre classification tasks (60) and
author attribution tasks (30). Out of the 60 genre
classification tasks, we split them into 27 fully-
supervised, 10 few-shot, and 23 zero-shot datasets,
according to the genre frequency so that the split
closely aligns with realistic data distribution. For
the fully-supervised and few-shot tasks, we divided
the data into training, dev, and test sets. For the
zero-shot tasks, we used all the data as a test set
by sampling. The remaining task types were used
for fully-supervised scenarios. It is important to
mention that all of the data in the fully-supervised,
few-shot, and zero-shot scenarios are disjoint to
prevent data leakage. The overall task data statis-
tics can be found in the Table 2.
Evaluation metrics For the genre classification,
author attribution, author verification, temporal in-
ference, and connectivity inference tasks, we use
F-1 score as the evaluation metric, due to the imbal-
ance nature of the task data. For the story scoring
tasks, in line with Raffel et al. (2019) for regression
tasks, we use Spearman correlation coefficients as
the evaluation metric, because it measures mono-
tonic relationships. For the story segmentation task,
we use Boundary Similarity (Fournier, 2013) as the
evaluation metric. For the generation tasks, fol-
lowing the suggestions introduced in Chhun et al.
(2022), Qin et al. (2019), and Gangal et al. (2021),

we use BERTScore (Zhang* et al., 2020) as the
evaluation metric, as it has been shown by Chhun
et al. (2022) to have better correlation with human
evaluation at both the story-level and system-level
for story generation systems than other automatic
metrics including frequently-used BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004). Also, Gangal
et al. (2021) points out that in the narrative reorder-
ing problem, similar to our temporal ordering task,
BERTScore also correlates quite well with human
evaluations. We recognize that there is currently no
widely accepted or reliable automatic evaluation
metric in the field of story generation, and the use
of automatic evaluation in this field is often crit-
icized. However, for the purpose of fast and fair
comparison, we chose to follow previous work and
use the current best available metric, even though
we acknowledge that it may not be perfect.

For evaluating the model performance, we cal-
culate the macro-average of the performance on
all tasks within each task type, this allows us to
compare models across different task types. The
metrics for understanding, generation, and overall
performance are determined by the macro-average
of the scores across the corresponding task types.

3.3 The INSTRUCTSTORY Framework

The main goal of instruction tuning is to evaluate
the performance of unseen tasks in zero-shot and
few-shot learning scenarios, and to show that it
can improve the gap between zero-shot and fully-
supervised learning performances. Additionally,
we are interested in how instruction tuning can
improve the performance of fully-supervised tasks.

To accomplish our goal, we propose a two-stage
training approach called INSTRUCTSTORY. In the
first stage, we use instruction tuning as a form of
pre-finetuning Aghajanyan et al. (2021). During
this stage, we use instructions instead of task pre-
fixes proposed in Muppet Aghajanyan et al. (2021)
to enhance the model’s ability to generalize to new
instructions. In the second stage, after instruction
tuning with the fully-supervised task mix, we use
single-task finetuning to continually train the model
for each fully-supervised task. We use T5-large-
lm-adapt (770m) as the base model for instruction
tuning INSTRUCTSTORY and all of the training
tasks are from the STORYWARS fully-supervised
training split. Figure 2 illustrates the overall IN-
STRUCTSTORY framework. The instructions we
used are included in Appendix A.1.
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 It wasn't always like this, you know.
 The castle? Of course, but I was referring more to my predicament.
 Beautiful. That was the only word that did it justice. Other than 
 all the synonyms.
 ……
 Is this a mystery story?

 In fact, so long ago, that it was when Arrendal the Silver still 
 reigned in the kingdom of Hallendel. Yes, I remember it well; a 
 beautiful land Hallendel was; vast forests, large mountains and 
 the like. 
 …… 
 Is this story written by KylePrince? 

 And here is the sixth wing. The last test. The vile damp place 
 with the vile old man in a shabby armchair. Yes, my hero, the 
 voice you were hearing all this time was mine. Did you expect 
 something more magnificent? Well, expectations are deceptive. 
 …… 
 How do you like the story above?Please rate the story from 0 to 10: 

 What do you mean, you think it would be unfair to kill me? No, 
 wait, come back here! Let me explain to you the concept of 
 euthanasia. I'm just joking here. All right. If you want your 
 prize, and refuse to kill me, it won't happen. 
 ……
 Please write a next chapter for the above story: 

 Chapter A: I have been the guardian of this labyrinth for years. 
 It is my curse. It has never left me. I cannot die. I cannot live… 
 Chapter B: For a long time, heroes have come here. Adventurers 
 have come here.  They have all tried to kill me. 
 ……
 Please write a chapter between Chapter A and Chapter B:

Yes.

No.

9.4

 Your prize, that is, not my death, but all the same, neither will 
 happen. Would it make you feel better if I was the antagonist all 
 along? If I was secretly leading you into a trap so that I could 
 kill you? Would that encourage your killing me? 

 This maze was made to protect the unnamed sword. It was requested 
 by King Seriokald himself. It spans the entire Keep, evolving and 
 changing with every step. I cannot guide you through it. My memory 
 has been destroyed by my curse. By the time you get into the maze, 
 the entrance you came in with would be closed. And with that 
 Sibriex on the loose, the sword will be even more secure. 

InstructStory

Understanding Tasks

Generation Tasks

... Total number of tasks in the training mix: 63 tasks. 

Single-task Finetuning

Instruction Tuning

Figure 2: INSTRUCTSTORY undergoes a two-stage training process. In stage 1 (99K), we instruction tune the model
on 63 story tasks to improve generalization to unseen zero-shot and few-shot tasks. In stage 2 (→), we perform
single-task finetuning on each fully-supervised task to optimize performance on specific tasks.

4 Experimental Results

4.1 Baselines

We include several strong baseline models with
a comparable number of parameters. For
understanding tasks, we include BERT-large
(345m), RoBERTa-large (354m), and DeBERTa-
v2-xlarge (900m) as baselines. For generation
tasks, we include GPT2-medium (345m), GPT2-
large (774m), and OPT-350m as baselines. These
models all have comparable or near-comparable
numbers of parameters. To demonstrate the effec-
tiveness of our method, we also include T5-large-
lm-adapt (770m) as a baseline model in the over-
all comparison. In addition, for the few-shot and
zero-shot scenarios, we include the state-of-the-art
instruction tuning model FLAN-T5-large (Chung
et al., 2022) as a comparison baseline.

4.2 Experimental Setup

To train INSTRUCTSTORY, we use instruction tun-
ing on T5-large-lm-adapt for 5 epochs using the
fully-supervised task mix. We use the Adam op-
timizer with a learning rate of 5e-5 and a batch
size of 64. At each gradient step, examples are
randomly sampled from all tasks. The maximum
input and target sequence lengths are set to 1024,
and any longer inputs or targets will be truncated.

For the fully-supervised learning scenario, both
INSTRUCTSTORY and all the baselines are fine-
tuned on a single task for 10 epochs for each

task. The best performing checkpoint for each
task is chosen based on the performance on its dev
set. Note that BERT-large, RoBERTa-Large, and
DeBERTa-v2-xlarge all have a maximum sequence
length of 512, while GPT2-medium and GPT2-
Large have a maximum sequence length of 1024
and OPT-350m has a maximum sequence length of
2048. We truncate the data instances based on the
respective max sequence lengths of the models.

For the few-shot learning scenario, we finetune
all the models and use early stopping based on the
dev set performance. Also, we are unable to use
in-context learning demonstrations like in Chung
et al. (2022), as the story lengths are often too long
to fit within the max input sequence length.

For the zero-shot scenarios, we only compare IN-
STRUCTSTORY with T5 and FLAN-T5, as the other
baseline models have poor zero-shot performance.

More information about training specifics and
hyperparamters can be seen in Appendix A.2.

4.3 Main Results

Fully-supervised Results The fully-supervised re-
sults are presented in Table 3. We show that IN-
STRUCTSTORY can achieve a 1.53 point increase
in the overall average score compared to the single-
task finetuned T5 baseline. Additionally, for under-
standing tasks, INSTRUCTSTORY outperforms T5
by 2.06 points. When compared to other strong un-
derstanding baselines including BERT, RoBERTa,
and DeBERTa, INSTRUCTSTORY also achieves
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Task Type Task BERT RoBERTa DeBERTa T5 InstructStory

Genre Classification†

animals 82.69 86.02 82.24 82.88 86.79
fantasy 43.70 47.37 48.75 47.95 50.98
horror 45.67 55.64 60.15 52.05 53.33

war 59.77 68.97 76.00 70.59 78.26
poetry 78.90 85.71 79.65 81.97 84.96
drama 42.67 45.30 46.43 44.21 47.40

mystery 43.58 51.47 48.53 47.48 51.97
fanfiction 55.28 62.26 67.27 63.41 66.07
dystopia 43.48 57.14 61.16 52.23 63.55

sci-fi 65.42 61.07 67.24 62.69 66.67

AVG 51.86 61.15 62.20 60.15 61.88

Author Attribution†

aspiringwriter 66.67 69.57 62.02 60.40 67.18
sagittarius 50.94 54.74 58.02 48.52 64.81

Hope! 61.82 81.13 62.30 56.21 68.22
Shasta 52.17 55.56 58.49 37.04 59.38

Scorpio :) 61.82 81.13 62.30 56.21 68.22
Zed 67.27 72.94 81.82 73.27 78.85

Nathan.N 82.61 84.78 86.00 86.32 87.23
Ellipsis 78.85 83.67 59.38 67.89 78.00
Luke V. 72.09 69.77 69.23 63.24 73.79

Amelia Rose 50.00 70.10 68.57 53.62 68.97

AVG 64.52 72.31 69.08 62.03 70.79

Author Verification author_verification 23.19 23.41 23.17 22.94 23.57

Temporal Inference temporal_inference 72.90 77.74 80.18 78.51 79.04

Connectivity Inference connectivity_inference 65.03 62.97 67.61 67.20 68.72

Story Scoring likes_scoring 53.54 75.74 60.81 67.35 68.82
stars_scoring 55.34 66.60 56.02 63.15 63.26

Story Segmentation story_segmentation 31.38 47.28 41.09 46.87 47.33

Understanding AVG 51.90 59.43 57.39 57.56 59.62

Task Type Task GPT2-l GPT2-m OPT-350m T5 InstructStory

Next Chapter Generation next_chapter 81.35 80.90 83.25 82.17 82.43

Conditional Story Generation conditional 79.40 79.33 82.39 81.10 81.24

Chapter Infilling chapter_infilling 80.93 80.67 82.89 82.34 82.51

Global Infilling global_infilling 81.49 81.30 83.70 82.22 82.44

Temporal Ordering temporal_ordering 76.49 76.33 92.77 90.08 93.14

Generation AVG 79.93 79.71 85.00 83.58 84.35

Understanding and Generation Overall AVG - - - 68.40 69.93

Table 3: Fully-supervised results of INSTRUCTSTORY and other baselines. Bold numbers indicate the best score
across all models, and underlined numbers indicate cases where INSTRUCTSTORY outperforms the T5 baseline. Due
to space limits, only 10 random tasks from the task type are shown. Full results can be found in the Appendix A.3.

the best results. For generation tasks, INSTRUCT-
STORY outperforms T5 by 0.77 points. It also
achieves favorable performance when compared
to other strong generation baselines such as GPT2-
medium and GPT2-large, although performing a lit-
tle bit worse than OPT-350m. We hypothesize that
the difference in performance between OPT-350m
and INSTRUCTSTORY is due to the base model,
specifically the size of the pretraining corpus (35B
tokens vs 180B tokens).(Zhang et al., 2022)

Few-shot Results The few-shot results are shown
in Table 4. For the few-shot scenario, INSTRUCT-
STORY achieves the highest score of 61.44, fol-
lowed by FLAN-T5 which achieved the second
highest score of 59.45, outperforming all the T5,
BERT, RoBERTa, and DeBERTa baselines. This
demonstrates that even when instruction-tuned on
a different dataset distribution, FLAN-T5 can still
achieve competitive results when further fine-tuned
for few-shot tasks.
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task BERT RoBERTa DeBERTa T5 FLAN-T5 InstructStory

wordgames 59.65 80.90 77.27 62.40 71.05 73.68
rebellion 38.38 45.87 33.33 43.24 50.00 50.00

mythology 47.27 59.79 61.54 62.07 66.67 67.33
future 30.00 40.00 50.90 36.23 44.86 54.70

friendship 38.82 46.96 44.62 49.23 53.33 55.36
fairytale 45.93 60.32 65.52 74.07 72.09 79.59
dreams 47.48 64.15 58.62 78.16 71.26 76.74
crime 48.54 66.67 36.04 65.42 62.22 65.26

change 44.00 50.36 32.91 33.90 47.89 39.19
action 38.30 40.25 36.47 41.13 55.10 52.54

AVG 43.84 55.53 49.72 54.59 59.45 61.44

Table 4: Few-shot benchmark results. INSTRUCTSTORY outperforms all other baselines.

task† T5 FLAN-T5 InstructStory

reality 32.56 39.56 39.47
lies 30.22 46.34 70.33

vampire 19.12 63.33 58.82
surreal 31.41 33.86 46.25

suspense 31.82 42.77 43.68
supernatural 39.34 48.28 45.33

family 14.88 51.16 60.00
revenge 35.00 58.06 57.14
crazy 30.00 42.31 43.08
world 30.63 34.92 50.75

AVG 32.09 47.79 60.00

Table 5: Zero-shot benchmark results. INSTRUCT-
STORY out performs T5 and even FLAN-T5. †: Due
to space limits, we only show 10 random tasks. Full
results can be found in Appendix A.3.

Zero-shot Results We can see the zero-shot results
in Table 5. In the zero-shot scenario, we compare
INSTRUCTSTORY with T5 and FLAN-T5, and we
can see that INSTRUCTSTORY has a significant
improvement in zero-shot performance, a 28.08
increase from T5 and a 12.21 increase from FLAN-
T5. This is expected because our instruction tuning
training task mix has a similar, though unseen, data
distribution to the zero-shot test sets.

4.4 Discussions

INSTRUCTSTORY brings a robust improvement
in performance. By comparing T5 and INSTRUCT-
STORY in Table 3, we see that INSTRUCTSTORY

scores higher than T5 in every task type. The per-
formance gain is consistent across all task types.
Even on the task level, INSTRUCTSTORY achieves
better results than T5 in 24 out of 27 genre classi-
fication tasks and 23 out of 30 authorship attribu-
tion tasks. This indicates that in fully-supervised
scenario, one can confidently use the power of in-
struction tuning to improve performance.

IS ISU ISG T5

Fully-sup AVG 61.88 61.27 60.45 60.15
Few-shot AVG 61.44 59.83 54.95 54.59
Zero-shot AVG 60.00 58.41 32.31 32.09

Table 6: INSTRUCTSTORY vs its variants ISU and ISG.

Ablation: Instruction tuning with both under-
standing and generation tasks is more effective
than instruction tuning with only understand-
ing tasks or only generation tasks. Table 6 illus-
trates this by comparing the fully-supervised, few-
shot, and zero-shot genre classification scores of
INSTRUCTSTORY, its variants ISU, and ISG, where
ISU and ISG are instruction tuned with understand-
ing tasks mix and generation tasks mix, separately.
From the table, we can see that IS > ISU > ISG > T5
across all zero-shot, few-shot, and fully-supervised
learning scenarios, which indicates that instruction
tuning with a mix of understanding and generation
tasks is better than instruction tuning with only one
of them.

5 Conclusion

We introduced a novel dataset STORYWARS and a
multitask benchmark for collaborative story under-
standing and generation. Our proposed INSTRUCT-
STORY model, which leverages instruction tuning
as multitask pre-finetuning, outperformed both its
single-task finetuning baseline and other strong
models on the STORYWARS benchmark and es-
tablished strong performance in all zero-shot, few-
shot, and fully-supervised learning scenarios. We
hope that our newly proposed STORYWARS dataset
will serve as a catalyst for research in the field of
collaborative storytelling and inspire further ad-
vancements in this area.
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6 Limiations

Our proposed INSTRUCTSTORY method utilizes
both single-task finetuning and instruction tuning
to achieve good results. However, when finetuned
on a new task, the model may suffer from the prob-
lem of catastrophic forgetting and lose its multi-
tasking generalization abilities. Recent research by
Scialom et al. (2022) has investigated this issue in
instruction-tuned models and proposed a technique
called Rehearsal to mitigate it. However, this work
primarily focuses on zero-shot scenarios and does
not address fully-supervised learning. It would be
of interest to explore whether it is possible to fine-
tune on a single task while preserving the model’s
multitasking abilities and generalization capabili-
ties. We leave this question as an area for future
research.

Additionally, it is important to note that our ap-
proach of single-task finetuning for each down-
stream task results in multiple models being re-
quired to be served simultaneously, which can lead
to increased computational costs. In practice, this
is a trade-off that must be carefully considered, as it
requires balancing performance requirements with
the resources available. It can be an important fac-
tor to consider when implementing this approach
in real-world settings.

In the end, a proper and thorough evaluation of
collaborative story generation remains an on-going
research. While automatic evaluation metrics such
as BERTScore has the best human correlations
at story-level and system-level per Chhun et al.
(2022), it may not be comprehensive enough in
evaluating the highly creative output of collabo-
rative story generation. There is a need for more
nuanced and sophisticated metrics that can capture
the complexity and diversity of collaborative sto-
ries. Therefore, the development and validation
of appropriate evaluation methods is crucial for
progress in this field.

7 Ethical Considerations

In Section 3.1, we have discussed our procedures to
identify and remove potential harmful content and
user privacy information. However, it is important
to also consider the broader ethical implications
of using AI in collaborative storytelling. These
include issues such as ensuring fair and unbiased
representation, protecting data privacy, and prevent-
ing the use of AI-generated content for harmful
purposes. For example, AI-generated stories or

characters may perpetuate stereotypes or reinforce
societal biases if they are trained on biased data.
Therefore, it is crucial to consider and address these
ethical issues in order to create inclusive and re-
sponsible AI-generated stories that do not harm
individuals or groups.
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A Appendix

A.1 Instruction Template examples
Please refer to Table 7 for the instruction template
examples.

A.2 Hypterparameters
Please refer to Table 8 for the hyperparameters.

name value

batch size 64
learning rate 5e-5
training steps 50000
warmup steps 2000

Table 8: Hypterparameters for INSTRUCTSTORY

A.3 Full results tables
Please refer to Table 9, Table 10, Table 11, and
Table 12 for all full results.
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task type input format output format

genre classification {story} Is this a {genre} story? Yes or No

authorship attribution {story} Is this story written by {author}? Yes or No

authorship verification Chapter A: {chaptera} Chapter B: {chapterb} Are the
two story chapters above written by the same author?

Yes or No

connectivity inference Chapter A: {chaptera} Chapter B: {chapterb} Can
Chapter B be the next chapter of Chapter A?

Yes or No

temporal inference Chapter A: {chaptera} Chapter B: {chapterb} Does
Chapter A happen before Chapter B?

Yes or No

story scoring {story} How do you like the story above? Please rate
the story from 0 to 10:

0.0 - 10.0

story segmentation {story} Please segment the story into chapters: {c1} ||| {c2} ||| {c3}
...

next chapter generation {story0:i} Please write a next chapter for the above
story:

{chapteri}

conditional story genera-
tion

{story0:i} Please finish the whole story: {storyi:}

chapter infilling Chapter A: {chaptera} Chapter B: {chapterb} Please
write a chapter between Chapter A and Chapter B:

{chapteri}

global infilling Previous chapters: {storyprev} Next chapters:
{storynext} Based on the context of previous and next
chapters, please fill in a chapter in between:

{chapteri}

temporal ordering {storypermute} Please rewrite the story in correct tem-
poral order:

{storycorrect}

Table 7: Instruction template examples.
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task BERT RoBERTa DeBERTa T5 InstructStory

war 59.77 68.97 76.0 70.59 78.26
life 35.41 40.0 37.5 51.75 46.48

fanfiction 55.28 62.26 67.27 63.41 66.07
poetry 78.9 85.71 79.65 81.97 84.96
music 69.14 83.87 85.42 83.17 86.6
fantasy 43.7 47.37 48.75 47.95 50.98
humor 60.61 54.12 62.22 61.95 56.07

lgbt 48.08 60.24 63.83 59.81 55.77
school 36.14 63.24 65.22 51.22 51.76
game 58.62 77.55 77.42 68.24 69.57
sad 48.35 56.93 53.97 53.44 55.17

nature 39.51 51.43 48.08 51.85 47.17
magic 60.61 63.74 61.9 59.42 61.76

adventure 40.43 55.24 46.38 44.32 45.64
sci-fi 65.42 61.07 67.24 62.69 66.67

romance 54.84 59.68 60.29 56.52 62.12
hero 32.26 56.14 61.9 70.97 71.84

euphoric 28.26 40.35 44.83 44.59 43.1
space 72.73 74.23 78.72 80.0 78.9

survival 29.73 58.59 59.32 53.06 52.38
mystery 43.58 51.47 48.53 47.48 51.97
drama 42.67 45.3 46.43 44.21 47.4
royalty 72.73 74.0 68.18 74.75 75.47

dystopia 43.48 57.14 61.16 52.23 63.55
death 51.57 60.87 66.67 53.59 60.94
horror 45.67 55.64 60.15 52.05 53.33

animals 82.69 86.02 82.24 82.88 86.79

intellikat 76.47 80.43 72.41 72.0 80.0
Hope! 61.82 81.13 62.3 56.21 68.22

ArtemisNine 46.58 68.42 58.14 65.98 69.09
Mockingjay 50.98 64.52 57.97 31.58 55.63

Rosetta 70.83 78.72 73.79 69.81 78.0
ember 46.6 68.09 59.26 55.71 55.12

CheshireinWonderland 47.31 55.42 63.04 40.7 58.41
Ellipsis 78.85 83.67 59.38 67.89 78.0

Scorpio :) 58.82 73.08 61.54 53.42 64.83
DANDAN THE DANDAN 63.27 70.73 76.6 65.22 71.11

Luke V. 72.09 69.77 69.23 63.24 73.79
Windlion 87.13 90.38 93.07 88.89 92.16

Kitin 86.87 83.72 78.18 80.0 74.42
Tricia L 43.84 70.09 61.29 45.59 64.71

Nathan.N 82.61 84.78 86.0 86.32 87.23
Zed 67.27 72.94 81.82 73.27 78.85

CAPSLOCK 77.59 74.38 80.81 67.96 80.37
R 65.26 88.89 85.71 78.26 88.89

go!den-in-the-mist 78.85 84.96 78.9 66.17 72.73
Libra ( inactive) 54.14 62.3 57.89 54.55 57.66
Silverfroststorm 75.79 67.83 55.7 51.5 63.16

Shasta 52.17 55.56 58.49 37.04 59.38
SaintSayaka 71.43 75.21 77.06 61.87 75.23
Amelia Rose 50.0 70.1 68.57 53.62 68.97

sagittarius 50.94 54.74 58.02 48.52 64.81
Phantim 66.67 81.55 78.1 70.59 76.79

Ara Argentum Aurum! 50.94 49.28 56.41 63.46 67.33
aspiringwriter 66.67 69.57 62.02 60.4 67.18

camel 71.15 73.12 77.06 64.41 66.67
darcy 62.65 65.98 63.64 66.67 64.86

author_verification 23.19 23.41 23.17 22.94 23.57

temporal_inference 72.90 77.74 80.18 78.51 79.04

connectivity_inference 65.03 62.97 67.61 67.20 68.72

likes_scoring 53.54 75.74 60.81 67.35 68.82
stars_scoring 55.34 66.60 56.02 63.15 63.26

story_segmentation 31.38 47.28 41.09 46.87 47.33

Table 9: Fully-supervised understanding results of INSTRUCTSTORY and other baselines.
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Task GPT2-l GPT2-m OPT-350m T5 InstructStory

next_chapter 81.35 80.90 83.25 82.17 82.43
conditional 79.40 79.33 82.39 81.10 81.24

chapter_infilling 80.93 80.67 82.89 82.34 82.51
global_infilling 81.49 81.30 83.70 82.22 82.44

temporal_ordering 76.49 76.33 92.77 90.08 93.14

Table 10: Fully-supervised generation results of INSTRUCTSTORY and other baselines.

task BERT RoBERTa DeBERTa T5 FLAN-T5 InstructStory

wordgames 59.65 80.90 77.27 62.40 71.05 73.68
rebellion 38.38 45.87 33.33 43.24 50.00 50.00

mythology 47.27 59.79 61.54 62.07 66.67 67.33
future 30.00 40.00 50.90 36.23 44.86 54.70

friendship 38.82 46.96 44.62 49.23 53.33 55.36
fairytale 45.93 60.32 65.52 74.07 72.09 79.59
dreams 47.48 64.15 58.62 78.16 71.26 76.74
crime 48.54 66.67 36.04 65.42 62.22 65.26

change 44.00 50.36 32.91 33.90 47.89 39.19
action 38.30 40.25 36.47 41.13 55.10 52.54

Table 11: Few-shot results of INSTRUCTSTORY and other baselines.

task T5 FLAN-T5 InstructStory

disease 30.36 62.3 67.69
harrypotter 29.63 84.21 85.71

dragons 30.22 70.42 95.0
art 34.53 54.84 87.36

memories 32.65 40.0 70.18
suspense 31.82 42.77 43.68

supernatural 39.34 48.28 45.33
angel 34.48 55.17 82.61

revenge 35.0 58.06 57.14
surreal 31.41 33.86 46.25
history 38.6 54.12 60.34
choices 40.51 28.7 50.0
vampire 19.12 63.33 58.82

lies 30.22 46.34 70.33
crazy 30.0 42.31 43.08
secret 36.19 39.49 44.59
pirates 35.97 41.51 65.63
world 30.63 34.92 50.75
hope 36.99 38.6 57.14

reality 32.56 39.56 39.47
family 14.88 51.16 60.0

emotions 34.67 34.67 60.18
strange 28.19 34.55 38.64

Table 12: Zero-shot results of INSTRUCTSTORY and other baselines.
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