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Abstract
Bias in machine learning models can be an is-
sue when the models are trained on particu-
lar types of data that do not generalize well,
causing under performance in certain groups
of users. In this work, we focus on reducing
the bias related to new customers in a digital
voice assistant system. It is observed that natu-
ral language understanding models often have
lower performance when dealing with requests
coming from new users rather than experienced
users. To mitigate this problem, we propose
a framework that consists of two phases (1) a
fixing phase with four active learning strate-
gies used to identify important samples coming
from new users, and (2) a self training phase
where a teacher model trained from the first
phase is used to annotate semi-supervised sam-
ples to expand the training data with relevant
cohort utterances. We explain practical strate-
gies that involve an identification of representa-
tive cohort-based samples through density clus-
tering as well as employing implicit customer
feedbacks to improve new customers’ experi-
ence. We demonstrate the effectiveness of our
approach in a real world large scale voice as-
sistant system for two languages, German and
French through a number of experiments.

1 Introduction

Deep machine learning models tend to inherit
the bias existing in the datasets used for training
(Manzini et al., 2019) (Zhao et al., 2017). For
example, GPT-3 a state of the art in contextual
language model, showed bias regarding religion,
race and gender (Brown et al., 2020). Even though
deep learning models are trained on large amounts
of data, it is hard to capture all the variations of
the language that different users can use. Even
within the same language people talk differently,
depending on the age group, part of the country,
background, etc (Kern et al., 2016) (Eisenstein
et al., 2010) (Hovy and Søgaard, 2015). If the train-
ing data is skewed towards a certain demographic

group, this can cause models to pick up on patterns
that do not generalize and underperform on certain
user groups. Bias on predictive models is an is-
sue that has been studied for some time. Most of
the related literature is focused on social bias, spe-
cially gender and race (Zhao et al., 2017) (Manzini
et al., 2019) and centered on measuring an specific
type of bias and providing contra measures for it,
which usually do not generalize to other types of
bias (Zhao et al., 2018) (Goldfarb-Tarrant et al.,
2020) (Garrido-Muñoz et al., 2021) (Dixon et al.,
2018) (Shah et al., 2020). For example, on digital
assistants, we identify other types of group bias,
like customer tenure. Everyday, new customers
join services like Amazon Alexa, Siri or Google
Home. These new customers experience digital
assistants for the first time and interact with it dif-
ferently than mature cohort. New customers tend
to try out more different functionalities, while ma-
ture customers often use utterances that work for
them and settle down in daily-related domains. The
experience of new customers is a closer reflection
of how natural communication looks like as they
are not yet “taught” how to communicate with the
devices. Learning from new customers therefore
might be one of the best ways to learn natural in-
teractions with digital assistants. Contrary to most
studies that focus on using semi-supervised learn-
ing for general accuracy (Chapelle et al., 2009a)
(Clark et al., 2018) (Ding et al., 2018) (Hinton et al.,
2015), we focus on improving the accuracy of the
new customer (early cohort) natural language un-
derstanding task (McClosky et al., 2006) and show
that our framework could target a strategic cus-
tomer cohort to improve their experiences, thus
improve the overall accuracy in all customers in an
industry scale experiment. Even so, our approach
can be easily applied to any customer cohort to mit-
igate other types of bias. Our proposal consists in
a method to identify important utterances coming
from the early cohort that need to be fixed, then em-
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ploy self training techniques to mitigate them. The
main idea is to automatically expand the training
data to increase the representativeness of utterances
that characterize early cohort customers.

2 Related work

Detecting and mitigating bias in model predictions
have attracted a lot of studies recently. For ex-
ample, (Zhao and Chang, 2020) proposed a bias
detection technique based on clustering. Their ap-
proach focuses in local bias detection, which refers
to bias exhibited in a neighborhood of instances
rather than on the entire data. (Garrido-Muñoz
et al., 2021) did a survey on bias in deep NLP,
where they present a review of the state-of-the-art
in bias detection, evaluation and correction, where
they used vector space manipulation (Bolukbasi
et al., 2016), data augmentation, data manipula-
tion or attribute protection for dealing with the
bias. (Shah et al., 2020) proposed a predictive bias
framework for NLP and identified four potential
origins of biases: label bias, selection bias, model
over-amplification, and semantic bias. To mitigate
model bias, common methods such as adversarial
learning (Li et al., 2018; Le et al., 2022b), data
augmentation with synthetic data generation using
back translation (Sennrich et al., 2016), pretrained
language model (Sahu et al., 2022; Wang et al.,
2021; Kobayashi, 2018; Kumar et al., 2019; Le
et al., 2022a) and semi-supervised learning (Cho
et al., 2019; Zhu, 2005; Zhu and Goldberg, 2009;
Chapelle et al., 2009b) have shown to be effec-
tive, especially when there is a lack of labeled data.
While most of these studies focus on general bi-
ases in training models, we specifically aim at new
customer cohort in a real world large scale voice
assistant system. We employ both active and semi-
supervised learning approaches that take customer
feedback into consideration to improve the model
prediction on this specific cohort.

3 Natural language understanding task in
early cohort

Early cohort is defined as a group of new cus-
tomers who have started to use the voice assistant
device within the last 7 days. In contrast, mature
cohort refers to the group of customers that have
used the device for at least more than 30 days.
Typically, a voice assistant consists of different
components, starting from WakeWord detection,
to Automatic Speech Recognition (ASR) that con-

verts voice signals to texts, which will be used by
the Natural Language Understand (NLU) compo-
nent. In this work, we focus on how improving
the NLU part could help to improve the end to end
experience of new customers. In this study, we
use devices’ response results and weak signals as a
way to improve the system over time. In particular,
friction is defined as commands from customers
that the system failed to provide an answer to (e.g.,
when the system gives responses such that “sorry
I do not understand”). We also consider negative
feedback from customers as a signal that the sys-
tem did not response well to their previous requests.
Finally, in order to measure the impact of our ap-
proach, we carried out offline NLU experiments
(testing on annotated data). The only change is the
implemented early cohort self training scheme.

4 Our approach

We propose an end to end framework (Figure 1)
to identify cohort representativeness and effective
data selection and augmentation to improve the
model performance on a specific cohort without de-
grading the overall performance. It is composed of
two phases, with the first phase looks for utterances
from early cohort that need to be fixed using ac-
tive learning using different strategies. After these
utterances are annotated with human annotators,
they are included in the training data to train a new
NLU teacher model. We then employ a self learn-
ing phase to further extend similar utterances using
semi-supervised learning to have more representa-
tives of samples coming from early cohort.

4.1 Active Learning strategies

We define phase I with active learning strategies to
fix important utterances from early cohort that the
model might struggle with. The aim is to select all
utterances with the highest values to be annotated
to improve the performance of the NLU system
with a given budget of ζ annotated utterances.

Let L = {(xi, yi)}|L|i=1 be a set of labeled train-
ing data that is currently used for the NLU model
F with xi ∈ XL, a set of all labeled utterances
including customer and/or synthesis utterances.
We have U = {(xi, y′i)}

|U |
i=1 as a set of unlabelled

data, which contains xi ∈ XU , a set of all unla-
belled utterances. yi denotes labels from human
annotators while y′i denotes the annotation coming
from NLU model F . y′i contains the first hypothesis
from F model and additional information about the
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Figure 1: Our framework combines active and semi-supervised learning (self learning phase) to minimize labeling
cost while improving the accuracy of early cohort: (1) selecting cohort-based data to be sent to human annotation,
(2) adding the annotated data to training data, (3) retraining the NLU model based on the added dataset, (4) self
learning scheme, extending the annotated cohort-based data with semi-supervised learning (SSL), (5) using the
trained NLU teacher model to get labels for the SSL data.

corresponding utterance such as whether it belongs
to the early cohort EARLY (i.e., utterances that oc-
cur during the 30 first days of the customers), the
frictional group FRICTION or the LOW bin (i.e.,
utterances that have low confidence scores during
NLU prediction).
To select utterances that are relevant and impor-
tant for new customers, we employ four differ-
ent sampling strategies with a set of acquisition
functions a = ⟨a(1), a(2), a(3), a(4)⟩ to select a
set of T utterances to be annotated with T =
{(xi, yi)|xi ∈ X}|ζ|i=1. The goal is to find the set
of all X = {xi|xi ∈ U} that provides the best
model’s performance P (F ′) of model F ′ that is
trained on L′ = L ∪ T .

We cover (1) difficult utterances (uncertainty
sampling), (2) wide coverage (diversity sampling)
as well as (3) utterances that are representative
of new customers (cohort-representativeness sam-
pling) and finally (4) using customer feedbacks as
an additional signal to trace back problematic ut-
terances. The selection function gives us a set of
classified utterances focusing on early cohort. The
final set is the union of all four strategies (Algo-
rithm 1).

4.1.1 Uncertainty and diversity sampling
As a common approach in active learning, the first
sampling strategy is to query for utterances that
have low NLU confidence scores and utterances
where texts are similar, but NLU hypotheses are
different. Those are utterances that the model are
unsure about its predictions. For diversity sam-
pling, we select representative frictional utterances
using k-means clustering, extracting the centroid
of each cluster to get a set of representative broken
utterances from early cohort.

4.1.2 Identification of cohort
representativeness

To get a visualization on a target cohort friction
data, we propose the following approach that takes
into account contextual information embedded in
BERT representations together with hidden topic
modeling (Blei et al., 2003). While BERT embed-
ding provides contextual information about how
words are interacting and accompanying each other,
topics project utterances to a hidden topical space
that is easy for interpretation. We then compare the
density area for each cohort with topic guidance to
identify the areas that are representative of friction
utterances from early cohort. The process is com-
posed of two main steps (1) Step 1: inspired from

554



BERT topic combination (Bianchi et al., 2021),
we perform parameter estimation and data fitting,
where the LDA (Latent Dirichlet Allocation) (Blei
et al., 2003) topic estimation, Auto Encoder (Liou
et al., 2014) and Uniform Manifold Approximation
and Projection (UMAP) (McInnes et al., 2018) are
learned from generic frictional data. Note that this
training phase is completely unsupervised, only the
first NLU hypothesis domain labels are integrated
into the training data for a better domain focus
representation. (2) Step 2: Topic inference with
BERT representation and transforming friction data
from different cohorts (e.g. early and mature co-
hort) separately through Autoencoder and UMAP,
we use density clustering with topic guidance to
identify the areas that are representative of friction
utterances from the early cohort.

Training with the original data gave rather poor
results since the friction data is very unbalanced
with main focus on the bigger domains (e.g Mu-
sic and Knowledge). LDA is not able to capture
correctly other domains and classes when training
on original data, but gave a much better results
after upsampling minority classes. Furthermore,
integrating NLU domain label hypotheses gives
another dimension of information, hence improve
domain focus and give a better labelling for inter-
preting topics. In the inference phase (Figure 2),
friction data is included in its original distribution
(e.g., no resampling is used). Early and mature co-
hort friction data are fed separately into the models.
Before doing UMAP transformation, we employ
density clustering with topic guidance to extract
utterances that most characterize early cohort (i.e.,
are often asked by the early cohort and gave them
frictions in compared to mature cohort). The visu-
alization of early and mature cohort give insights
into which topics are mostly asked, identifying do-
mains that are usually confused to each other, top
words that are used in each domain/topic that lead
to friction. This helps to understand which types of
requests from new customers need to be fixed.

4.1.3 Using customer feedback inputs
In this sampling approach, we look at utterances
from new customers that might contain negative
feedbacks (NF). To this end, we employ a binary
classifier that predicts whether an utterance con-
tains a negative feedback (e.g., “this is not what I
meant”, “you did not understand it”). If it is likely
that an utterance contains a negative feedback, we
trace back to the previous de-identified utterance

that might have led to the negative feedback. This
is the fourth sampling strategy used for querying
utterances for active learning.

4.2 Data augmentation with self-training
scheme

Since the budget of ζ annotated utterances is lim-
ited, we want to combine SSL together with data
augmentation as the second step for enriching the
training data with utterances that best solve the
problems of young cohort. Many recent stud-
ies have shown that augmented data with semi-
supervised learning (Chapelle et al., 2006) can
boost the performance of text classification tasks
with reduced number of annotated data. We inte-
grate them together with the utterances selected for
annotation in Phase I in a self-training scheme to
select best utterances that can be augmented into
the training set. In particular, the process consist of
the following steps:

1. Take all data coming from T and with the
output NLP model F ′, retrained in Phase I.

2. F ′ runs on a new unlabelled set of utterances
to achieve H1 and their scores.

3. Construct the set Tssl that contains all selected
utterances that are most similar to those com-
ing from T with the highest confidence to be
added to the training data with a data retrieval
module based on similarity search.

Figure 3 shows how the SSL data selection
works, where we search for early cohort most rel-
evant utterances from the live traffic. Due to the
large scale of the data, it is prohibitively expen-
sive to search for relevant utterances from the de-
identified live traffic data using pair wise similarity
search. Therefore, we encoded and indexed all
utterances once, clustering the data where each
cluster is represented by their centroids, which are
used as inverted file and indices (Johnson et al.,
2019). For each of the selected early cohort ut-
terances (that were annotated in Phase I), we find
those that are most semantically similar (but are
not identical). When a query vector comes in, a
most suitable cluster found based on its similarity
with the centroids is returned together with the top
K-nearest utterances coming from the live traffic
data.
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Figure 2: Identification of cohort representative utterances

Figure 3: Indexing and searching module

5 Experiment setup

5.1 Models and dataset

We took aggregated and de-identified data for eval-
uating our framework for both German (DE) and
French (FR) languages. The offline results are eval-
uated on human annotated test set that comes from
the live traffic distribution. For the first phase we
got 8K annotated utterances. For the second phase,
we further enriched with ∼13K utterances using
semantic retrieval for SSL. The offline results are
reported with a sample test set containing 1M sam-
ples for DE and 800K samples for FR.

5.2 Metrics

We report our offline results in semantic error rate
(SEMER), which is calculated by the number of
errors (at slot and intent level) divided by the total
number of reference slots and intent classification
error rate (ICER), which takes only intent classifi-
cation error into consideration (see A.2 for more
information).

6 Results

We report offline results testing on annotated test
data.

Table 1 shows the relative changes of each phase
in compared to a baseline model for both ICER and
SEMER metrics. We observe a constant improve-
ment across domains for both phases in German
(DE) and French (FR) languages. In particular, the
biggest gain (6.99% intent error and 6.1% seman-
tic error reduction) is observed in German second
phase, where we include semi-supervised learning
with focus on early cohort. Among all domains, we
see especially good improvements in Help, Notifi-
cations and Knowledge domains. These domains
are also popular domains among new customers,
who tend to try out different functionalities and re-
quire support (Help) from the devices to understand
how to use them. We see also some small degra-
dation (0.29% in ICER for French phase II), but
no degradation with SEMER metric, when we take
also slot information into consideration. Overall,
the offline results show that both active and semi-
supervised learning are effective in improving the
performance of the model.

7 Conclusions

In this work, we provide an end to end framework
for bias mitigation with a focus on early cohort.
This framework is also general enough to apply to
other customer cohorts and other types of bias. Our
approach uses a combination of active and semi-
supervised learning techniques in a self-learning
scheme for effective data selection and augmenta-
tion. Our main contribution is the identification
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DE Phase I FR Phase I DE Phase II FR Phase II
Domain ICER SEMER ICER SEMER ICER SEMER ICER SEMER
Music -1.48% -0.99% 1.29% 1.36% -2.74% -1.82% -0.59% +2.13%
Global +2.31% +1.63% -1.08% -1.78% -2.23% -1.95% 0.96% +0.15%
HomeAutomation -0.61% -0.20% -1.13% -0.4% -0.79% -1.27% 0.97% +1.64%
Knowledge -0.13% -0.56% -1.49% -3.41% -5.44% -5.16% 2.89% -1.99%
Notifications -1.16% -0.20% -1.8% -1.99% -41.11% -32.79% -1.23% -0.8%
Communication +0.00% -2.44% -3.5% -4.01% -3.51% -1.48% 0% -3.69%
LocalSearch +1.59% +1.52% 1.46% -1.65% -1.17% -0.71% -0.35% +0.69%
Help -1.46% -1.93% -5.21% -5.31% +1.08% -3.62% -0.33% +1.12%
Overall -0.12% -0.40% -1.43% -2.15% -6.99% -6.10% 0.29% -0.09%

Table 1: ICER and SEMER relative changes (%) (negative shows an improvement, while positive indicates a
degradation)

of the cohort representativeness where we use a
combination of BERT topic embeddings with Au-
toencoder and density clustering to create a better
representation of each cohort data and identify the
contrastive area, where the new customers’ data is
missing. Furthermore, we applied SSL using a data
retrieval module based on similarity search to aug-
ment the training data relevant to the early cohort.
We compared a model that was trained on a random
set of data with a model that was selected based
on the active semi supervised learning approach.
The proposed approach improves overall semantic
and intent error rate for both German and French
languages during offline testing.

Limitations

In this work, we have employed different strate-
gies to identify the important utterances from early
cohort. However, since a voice assistant system
consists of many components, such as Wakeword,
automatic speech recognition, NLU, dialogue man-
ager, where errors occurring in one step might re-
sult to the final overall incorrect response. We have
not discussed or considered the interaction among
these components in this study. Last but not least,
weak signal learning using users’ feedbacks has
shown to be beneficial in many studies, it is impor-
tant to classify and identify the types of feedbacks
that are relevant and those that are not relevant to
NLU improvement (e.g., a negative feedback might
not be caused by an immediate previous request,
but be caused by other factors such as unsupported
features, ASR incorrect recognition, device techni-
cal problems).

Ethics Statement

In the self learning phase, we have increased the
representativeness of early cohort utterances in the
training data. While it helps to improve the end to

end experience of new customers, the method de-
scribed in this work focuses on improving common
customers and potentially introduces bias into the
training data as well as the model. For example,
minor customers that are not well represented in
the live traffic will have lower chances of having
their types of requests fulfilled through the active
semi-supervised learning phased. Similarly, certain
types of customers (e.g., those who use the device
frequently) may have better chances of having cor-
rect NLU predictions overtime, while the system
might still struggle dealing with rare requests in
some specific domains.
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A Appendix

A.1 Algorithm for sampling strategies

Algorithm 1 Sampling strategies for early cohort
Input: current NLU model release F

set of recent live traffic data U = {(xi, y
′
i)}|U|

i=1

K: the number of clusters used for diversity sampling strat-
egy

Output: A boosting model F ′ built on top of F

1) Initialize T = ∅
2) From a set of live traffic data U , select utter-
ances to be annotated with acquisition functions a =

⟨a(1), a(2), a(3), a(4)⟩
3) Uncertainty sampling
Select X(1) using a(1) that selects utterances with (1) low
confidence from early cohort that causes friction or (2) have
different annotations while the utterance texts are the same.

a(1)(xi) =





1, (xi, y
′
i) ∈ EARLY,FRICTION,

(xi, y
′
i) ∈ LOW

or ∃(xk, y
′
k) where xi = xk, y

′
i ̸= y′

k

0, otherwise

Send X(1) for human annotation to get T (1) =

{(xi, yi)|xi ∈ X(1)}|X
(1)|

i=1

4) Diversity sampling
Using k-means algorithm on a set of U

YF = {(x_i, y_i’) | (x_i, y_i’) ∈ EARLY, (xi, y
′
i) ∈

FRICTION}|Ui=1

YF|Kisthenumberofclustersandζ(2) is the utterance
budget for annotation
Assign initial values for E(x1), E(x2), ..., E(xUY F )
repeat
assign each item E(xi) to the cluster with the closest centroid;
calculate new centroid for each cluster
until converge
For each cluster, select ζ(2)/K representative utterances to be
added to X(2)

Send X(2)for human annotation to get T (2) = {(xi, yi)|xi ∈
X(2)}|X

(2)|
i=1

5) Using customer feedback inputs
Let UNF = {(xi, y

′
i)|(xi, y

′
i) ∈ EARLY, (xi, y

′
i) ∈

PNF_i = 1|UPNF| where
PNF = {(xi, y

′
i)|(xnext

i , y′
i
next) ∈

EARLY, (xnext
i , y′

i
next) ∈ NF}|UNF|

i=1 defines a group
of all previous utterances of those that are classified as
containing negative feedbacks.
Send X(3) for human annotation to get T (∋) =

{(xi, yi)|xi ∈ X(3)}|X
(3)|

i=1

6) Using cohort representative data with density clustering
Using BERT and LDA to define an embedding function of
each utterances coming from both early and mature cohort
Use density clustering to define clusters where early cohort
out-populates mature cohort in density to get X(4)

Send X(4) for human annotation to get T (4) = {(xi, yi)|xi ∈
X(4)}|X

(4)|
i=1

7) Train a new model F ′ on L′ = L ∪ T on top of F

The algorithm for sampling strategies in the first
phase is given in Table 1, where the aim is to select
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utterances with highest values for early cohort. The
final set of the utterances is the union of the four
sampling strategies.

A.2 Metrics
Semantic error rate (SEMER), is a metric used
in offline evaluation where model prediction
on domain/intent/slots is compared to human
annotations. SEMER considers substitution
error (S), insertion error (I), deletion error
(D) at intent and slot level, and number of cor-
rect intents/slots classification (C) (see Equation 1).

(1)
SEMER =

#errors

#referenceslots

=
(S + I +D)

(C + I + S +D)

ICER stands for Intent classification error, a metric
calculated as the percentage of utterances contain-
ing an error intent classification error divided by
total number of samples in this intent. BPS repre-
sent the percent increase/decrease from the current
value. Friction refers to instances where a model
does not understand the user or can not action the
user’s request.
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