
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 5: Industry Track, pages 425–437

July 10-12, 2023 ©2023 Association for Computational Linguistics

Semantic Ambiguity Detection in Sentence Classification using
Task-Specific Embeddings

Jong Myoung Kim1,2 Young-Jun Lee2 Sangkeun Jung3 Ho-Jin Choi2
1SK-telecom 2School of Computing, KAIST

3The Division of Computer Convergence, Chugnam National University
jmkim71@sk.com {yj2961,hojinc}@kaist.ac.kr hugman@cnu.ac.kr

Abstract

Ambiguity is a major obstacle to providing ser-
vices based on sentence classification. How-
ever, because of the structural limitations of
the service, there may not be sufficient contex-
tual information to resolve the ambiguity. In
this situation, we focus on ambiguity detection
so that service design considering ambiguity
is possible. We utilize similarity in a semantic
space to detect ambiguity in service scenarios1

and training data. In addition, we apply task-
specific embedding to improve performance.
Our results demonstrate that ambiguities and
resulting labeling errors in training data or sce-
narios can be detected. Additionally, we con-
firm that it can be used to debug services.

1 Introduction

The ability to accurately access the meanings of
sentences is a key component of voice recognition-
based agent services. This task is made difficult by
the inherent ambiguity of some sentences, which
can refer to different meanings in different contexts.
Adot() 2 is a voice recognition-based service
agent, akin to Amazon’s Alexa, for Korean users.
This paper describes how we dealt with ambiguity,
from a perspective of Adot’s developer.

For example, as illustrated in Figure 1, the Ko-
rean word "앞" has two different meanings depend-
ing on the context. As a result, when the media
content is being played, the command "앞으로
가봐" may have two completely opposite mean-
ings.("move forwards" vs. "move to previous"). In a
test conducted within our company, approximately
61.7 percent of respondents interpreted it as “move
forwards” and 38.3 percent as “move to previous”.

1A scenario refers to one expected input sentence and the
analysis result of it predefined for service design.

2Adot is a virtual assistant service developed by SK Tele-
com, a telecom company in South Korea. Though officially
denoted as A., we will refer to it as Adot in this study to avoid
misunderstanding.

Figure 1: The various meanings of Korean word "앞"
and the semantic ambiguity between user utterances.

Although there is no universally valid interpreta-
tion in this scenario, each respondent was certain
that their own interpretation was the correct one.
(Likert-scale score = 5.2/7). This semantic ambi-
guity leads to a labeling error of training data and
scenarios in specification3. From the perspective
of service providers who must provide specific ser-
vices in response to user input, we contend that this
is a challenging problem. In addition, ambiguity is
very important in terms of cost. Manual inspection
of the training data or specification is required for
ambiguity handling, which is expensive in terms of
cost and resources.

Recently, many researchers have attempted to
handle ambiguity with various approaches such as
semantic space (Rodd, 2020), entity linking (Yin
et al., 2019), and attribute attention (Liu et al.,
2019). In addition, the primary purpose of these
studies is to resolve ambiguity using context. In
spite of this, we do not have sufficient contextual
information to apply these disambiguation methods
because of the characteristics of a very short input
sentence (which has 6.97 Korean letters and 2.05
words on average) and a one-turn based service.

Although contextual information required for
disambiguation is not available within the scope

3We call the set of scenarios as the specification.

425

mailto:jmkim71@sk.com
mailto:yj2961@kaist.ac.kr
mailto:hojinc@kaist.ac.kr
mailto:hugman@cnu.ac.kr

of the sentence classifier, we can still exploit non-
linguistic traits, such as user habits and device in-
formation, which are accessible from the outside
classifier to determine service. Therefore, we chose
to approach this problem through detection rather
than disambiguation. Detecting the presence of am-
biguity in scenarios would allow for the consid-
eration of external contextual information when
providing the service.

This paper proposes a process of detecting ambi-
guity in scenarios or training data through similar-
ity. To improve ambiguity detection performance,
we apply task-specific embedding. We conduct an
experiment detecting ambiguity and labeling error
from ambiguity in Adot’s scenarios and training
data. Additionally, we investigate Pearson correla-
tion coefficients between similarity and the degree
to which users expect two sentences to belong to
the same class (this is referred to as user-aware
class relevance). This study’s findings affirm that
similarity provides a means to identify scenarios
and training data with potential ambiguity. In this
process, we confirm that user-aware class relevance
correlates with the similarity. Furthermore, it was
confirmed that the training data that resulted in the
misclassification could be specified.

2 Related Works

Ambiguity is a long-standing problem in natural
language processing (NLP) tasks such as word
sense disambiguation (Navigli, 2009), entity disam-
biguation (Barba et al., 2022), and database search
result disambiguation (Qian et al., 2021) in the task-
oriented dialogue systems. Ezzini et al. (2021) uti-
lized domain-specific data to address the structural
ambiguity of sentences. This ambiguity is largely
divided into four categories (Berry et al., 2003).

• Lexical ambiguity occurs when a word has
several meanings

• Syntactic ambiguity occurs when a given se-
quence of words can be given more than one
grammatical structure

• Semantic ambiguity occurs when a sentence
has more than one way of reading it

• Pragmatic ambiguity occurs when a sentence
has several meanings in the context in which
it is uttered.

These studies are focused on resolving the ambigu-
ity. However, we did not have contextual informa-
tion to apply to these disambiguation methods.

In NLP, the sentence similarity task, which eval-
uates the similarity between pairs of sentences us-
ing several techniques, has been investigated exten-
sively. Traditionally, edit distance has been used to
quantify superficial similarities (Levenshtein et al.,
1966). Despite being straightforward, it is notewor-
thy because of its similarity to manual identifica-
tion of training data that induce misclassification.
Recent studies have measured the similarity be-
tween pairs of sentences by projecting them into
a meaningful semantic space using various neu-
ral networks, such as Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), ELMo (Pe-
ters et al., 2018), and BERT (Devlin et al., 2018),
or using Siamese architectures, such as Sentence-
BERT (Reimers and Gurevych, 2019).

In this paper, inspired by (Ezzini et al., 2021),
We utilize a task-specific embedding, extracted
from a trained classification model, to identify se-
mantic ambiguities.

3 Task Design

3.1 Ambiguity Detection in Scenarios

When ambiguity exists in scenarios, the accurate
classification result is not aligned with the user’s
expectations. If the user expects a class (class-B)
other than the class (class-A) defined in the speci-
fication to be correct for an input a, it implies that
classification of the input under class-B is suffi-
ciently valid or that the user has experienced re-
ceiving a service corresponding to class-B for at
least one input a′ similar to a. Let’s suppose that the
command “앞으로가봐” we looked at in section1
is defined as “move forward” in the specification.
A significant proportion, 38.3%, interpret this com-
mand as “move to previous”, and the similar phrase
“앞으로 다시 가봐” is commonly used in Korea
with the meaning “move to previous”. (The inter-
jected word ‘다시’ usually means ‘again’.) From
the perspective of the user, we attempted to identify
the ambiguity of the scenarios.

First, pairs of sentences are collected, and the
correlation between similarity and user-aware class
relevance is evaluated. If this correlation is suffi-
ciently high, user-aware class relevance could be
estimated based on similarity. In a given scenario, if
specific training data y that has the highest similar-
ity with a particular scenario sentence x is placed

426

in a different class than the class-X defined for sce-
nario sentence x, it implies that the user may not
anticipate class-X for sentence x and ambiguity
may exists in the scenario. Subsequently, ambigu-
ity or the mislabeled scenario is manually inspected
in the specified scenarios to validate this process.

3.2 Ambiguity Detection in Training Data

The method of 3.1 could not be applied as it is to
detect the ambiguity of the training data. In the
process of generating training data, several similar
data are generated all at once. Ambiguous training
data is rarely observed in isolation; furthermore,
the data demonstrate a marked degree of similarity
to one another. Finding similar data with different
classes for single data did not work well.

We noted that the ambiguity in training data man-
ifests as mislabeled data that do not conform to the
specification. Models trained using this mislabeled
data yield outputs that deviate significantly from
the designer’s expectation. In this paper, we begin
with misclassified inputs and attempt to find the
training data that caused the corresponding mis-
classification and mistraining.

Hence, input sentences misclassified by Adot
are collected. Among all training data with misclas-
sified labels, data exhibiting high similarity with
misclassified inputs are assumed to be training data
that induce misclassification. These include corre-
sponding data with ambiguity or those mislabeled
from ambiguity. We inspect the specified data man-
ually to confirm any ambiguity or labeling errors.
Additionally, the labels of the specified data are
modified to the labels of the expected classes, and
the model is retrained. It is verified whether the
classification results of the model are corrected as
expected. Via this, we confirm whether the speci-
fied data are the cause of the misclassification.

4 Methods - Task-Specific Embeddings

We note that each node of the trained classification
model stores weights adjusted for the task, and the
values output by each node in the inference process
contain fragmentary information useful for infer-
ence (Wang et al., 2020). We create task-specific
embedding vectors using the output values of each
node in the classification model. Via this process,
we expect to be able to create an embedding with
better expressive power for ambiguity detection, al-
beit biased, compared to off-the-shelf embeddings,
such as pre-trained LM or Word2Vec. Assuming a

classification model fθ with n layers on top of the
embedding layer, we create a vector vi representing
the i-th layer as follows: (v1 = embedding vector,
vn = model output vector.)

Whole Layer Vector (WLV) WLV consists of
output of all nodes from the model’s embedding
layer to the layer below the final output layer. WLV
contains the most amount of data and reflects all
information flows in the model.

WLV = concat(v1, v2, ..., vn−2, vn−1)

After Representation Layer Vector (ARLV)
WLV contains considerable information, but the
embedding layer accounts for most of it, which is
problematic (for instance, 25,640 nodes out of a
total of 40,424 nodes are included in the embed-
ding layer of Adot’s classification model). ARLV
is defined using nodes from the layer following the
embedding layer to the layer immediately preced-
ing the output layer to avoid undue influence of the
embedding layer.

ARLV = concat(v2, v3, ..., vn−2, vn−1)

Conclusion Layer Vector (CLV) Although
WLV and ARLV contain a significant amount of
data, they ignore discrete functions and conse-
quently struggle with the corresponding differences.
For example, when a layer uses an activation func-
tion such as RELU, the difference in the value input
to the function might be negligible. However, the re-
sultant value after processing the function might be
completely different. CLV is only defined using the
layer immediately preceding the output layer of the
entire model to account for these characteristics.
We anticipate that the overall model’s judgment
process is structured in this layer.

CLV = vn−1

5 Experiments

5.1 Datasets
5.1.1 Scenario Ambiguity Test Set
The following experiment utilizes the task de-
scribed in section 3.1 to detect scenario ambiguities
from the user’s perspective.

Correlation Test Dataset 913 pairs of sentences
are collected from domain classification validation
data for the Adot service (Domain information is
used as a label in this experiment). Domains, in

427

the context of Adot, are defined service areas, and
include categories consisting of 30 categories such
as general, music, video, weather, and schedule.
Sentences are randomly selected from the data of
eight domains that frequently result in classification
failure. The classes of each pair may be identical
or different. We measure Pearson correlation be-
tween similarity and user-aware class relevance of
sentence pair.

Ambiguity Test Dataset To evaluate ambiguity
detection, 29,136 sentences with designer-defined
labels are collected. These sentences are scenarios
defined for the Adot service. For these scenarios of
specification, the scenarios with possible ambiguity
are detected using the process mentioned in sec-
tion 3.1. Lastly, any actual ambiguity or labeling
error corresponding to the specified scenarios is
manually inspected.

5.1.2 Training Data Ambiguity Test Set
The following experiment based on the task de-
signed in section 3.2 is performed to detect ambi-
guity in training data.

Ambiguity Test Set This test dataset consists
of 2,300 sentences incorrectly classified by Adot.
Based on the misclassified sentences, training data
exhibiting high similarity with these sentences are
assumed to be training data that caused the mis-
classification. We manually check for ambiguity or
labeling errors in those specific sentences.

Side-Effect Test Set Identification of data that
induces misclassification also requires that inputs
analyzed successfully before correction must must
remain so after correction. To confirm this, 20,000
sentences classified correctly by Adot are collected,
and their classification result is verified after the
specified data are modified and retrained.

5.2 Baseline - Similarity Methods
Edit Distance A method for measuring the su-
perficial similarity. It is very similar to the manual
debugging process.

Embedding Vector Similarity A method for
measuring the semantic similarity. Cosine simi-
larity of embedding vectors for sentences is mea-
sured. Two types of representative off-the-shelf
embeddings are prepared:Sent2Vec and KoGPT2.
Sent2vec, was trained on both Korean Wikipedia
and Adot’s training data. KoGPT2 is a pre-trained
language model developed by SKT-AI, based on

GPT-2. These embeddings are also used to com-
prise an embedding layer for the classification mod-
els discussed below. We describe the embedding
methods in detail in the Appendix A.

5.3 Classification models used in the
Experiments

We employed classification models to generate task-
specific embeddings and assess the detection perfor-
mance of training data that cause misclassification.

Adot Classifier This is the model used for do-
main classification in Adot’s service. It is formed
by concatenating a convolutional neural network
(CNN) that uses a part of speech-tagged morpheme
as a token with another CNN that uses character
and dictionary information as a token followed by
three fully connected layer on top.

KoGPT2 Classifier It is a classifier based on
pretrained-LM. As in the basic classifiers of pre-
LM packages, three fully connected layers are
added on top of KoGPT2.

These models are trained using training data for
domain classification of Adot’ service. The data
consists of 2.2 M sentences with 30 corresponding
classes. We set the batch size to be 256 and fine-
tune the model for 15 epochs using a learning rate
of (1e-5). On the development dataset, the Adot and
KoGPT classification models achieved accuracy
rates of 98.4% and 94.2%, respectively. Because
presenting a high-performance model is not within
the scope of this study, a detailed description of the
model is included in the Appendix A.2.

5.4 Human Evaluation
The task designed in section 3.1 includes the user
test. The evaluator rates the degree to which two
sentences belong to the same class on a scale of 1–7.
An example of the test set given to the evaluator is
included in the appendix B.2. For this experiment,
two groups of evaluators are recruited.

Ordinary Service User (User) This group con-
sists of six ordinary Adot users. Each user exhibits
above-average linguistic proficiency and possesses
a bachelor’s degree or higher academic qualifi-
cations. Through correlation with this group, we
checked whether user-aware class relevant could
be estimated with similarity.

Expert Evaluator (Expert) This group consists
of seven people with experience in generating train-
ing data or evaluating quality of service for Adot.

428

Each participant exhibits five years of annotation
experience on average and demonstrates a thorough
understanding of class boundaries.

5.5 Evaluation Metrics
Experimental performance is evaluated in terms
of specific metrics. If the data requires correction
but is not ambiguous, it is considered to be a sim-
ple mislabeling error. In our experiment, the terms
commonly used to define the formulation for eval-
uation metrics are Nx, s, and d, where Nx, s, and
d denote the number of x ∈ {s, d}, scenario or
training data identified as having an ambiguity, and
input data, respectively.

Ambiguous Data Ratio (ADR) measures the ra-
tio of scenario or training data containing ambi-
guity in the identified scenarios or training data,
Nsa/Ns, where Nsa and Ns denote the number of
sa and the number of s, respectively. sa represents
the scenario or training data with actual ambigu-
ity among s. The existence of ambiguity was con-
firmed by a person directly checking if multiple
interpretations were possible.

Mislabeled Data from the ambiguity Ratio
(MDR) measures the ratio of scenario or data
containing ambiguity and labeling error in the iden-
tified scenario or data, Nsm/Ns. sm denotes sce-
nario or training data with actual ambiguity and
labeling error among s. Mislabeled Data (sm) was
verified by a person directly checking the need for
label correction.

Correction Ratio (CR) Measure the classifica-
tion success rate for retrained model on previously
misclassified sentences after modifying data and
retraining, Ndf /Ndfs

. df represents input data mis-
classified by Adot, while dfs denotes data cor-
rectly classified after correction and retraining from
within the df .

Accuracy preservation Ratio (APR) measures
the classification success rate for previously suc-
cessfully analyzed sentences after modifying the
data and retraining, Ndss/Nds . dss denotes input
data from the ds that was correctly classified after
correction and retraining, while ds represents data
successfully classified by Adot.

5.6 Results
Pearson Correlation Analysis As shown in Ta-
ble 1, we show the result of pearson correlation
analysis between user-aware class relevance and

the measured similarities. In general, various sim-
ilarity methods achieve significant positive corre-
lations 4, which suggests that similarity methods
can be used as a proxy estimator for user-aware
class relevance. This result is regarded as an ev-
idence of our hypothesis described in Section 3.
This result reinforces our hypothesis that present-
ing data with high similarities but differing labels
can aid in identifying ambiguous scenarios. More-
over, similarity methods more correlates with users
than experts who know the service criteria accu-
rately. Following (Pang et al., 2020), we also mea-
sure the mean inter-rater agreement. The study re-
sults indicate high agreement and yield two con-
clusions. Firstly, the methods utilized, particularly
Adot-CLV, demonstrate a correlation almost equiv-
alent to the average inter-rater correlation (0.589
vs. 0.633, respectively). Secondly, the manual eval-
uation explanation can be considered sufficient.

Similarity with ordinary users was significantly
higher than with experts. To ascertain the underly-
ing cause of this phenomenon, we computed the
concordance of each sentence pair at three distinct
points, namely the service area, entity properties,
and predicate. We investigated the correlation be-
tween manual evaluation and concordances. No-
tably, the expert group demonstrated a markedly
high correlation in the service area, whereas the
ordinary user group exhibited comparable correla-
tions across all three areas. Further elaboration on
this matter is presented in the appendix C, as it is
not directly pertinent to the primary focus of our
paper, namely ambiguity detection.

Specification Ambiguity Detection As shown
in Table 1, we presents the ambiguity and label-
ing errors resulting from ambiguity detected in
the scenarios. Since the specification is the gold
standard for services, it is mostly comprised of
scenarios that have a clear meaning. Nonetheless,
we can identify scenarios that contain ambiguity
or require label modification. Interestingly, the
number of data between containing actual ambi-
guity ((sa) = (Ns × ADR), KoGPT2+ARLV-
(sa) = 210, Adot+ARLV-(sa) = 152) or requiring
modification ((sm) = (Ns × MDR), Sent2Vec-
(sm) = 40, Adot+ARLV-(sm) = 36) are not differ-
ent significantly considering the number of scenar-

4In the case of Edit Distance, which takes the value 0 when
completely identical and 1 when completely different, the sign
is the opposite of that of the other similarity measurement
methods.

429

Task → Correlation Ambiguity in specification Ambiguity in training data

Methods ↓ All ↑ Expert ↑ User ↑ Ns ADR ↑ MDR ↑ ADR↑ MDR↑ CR↑ APR↑
Edit Distance -0.243 -0.184 -0.286 755 0.170 0.033 0.660 0.373 0.559 0.990

Embedding

+ Sent2Vec 0.217 0.154 0.275 4448 0.037 0.005 0.612 0.315 0.496 0.992
+ KoGPT2 0.268 0.155 0.394 1531 0.223 0.024 0.611 0.318 0.490 0.990

Task-Specific

Adot+WLV 0.237 0.170 0.294 2968 0.056 0.007 0.610 0.316 0.474 0.992
Adot+ARLV 0.565 0.468 0.604 362 0.419 0.102 0.712 0.458 0.689 0.989
Adot+CLV 0.589 0.489 0.628 243 0.469 0.132 0.711 0.463 0.599 0.992
KoGPT2+WLV 0.336 0.227 0.440 1210 0.169 0.020 0.599 0.332 0.491 0.990
KoGPT2+ARLV 0.512 0.445 0.513 755 0.278 0.039 0.688 0.439 0.601 0.989
KoGPT2+CLV 0.512 0.445 0.513 507 0.391 0.047 0.694 0.448 0.600 0.990

Inter-Rater 0.633 0.752 0.520 - - - - - - -

Table 1: Correlation: Pearson’s correlation coefficient performance between similarity and user-aware class
relevance. Ambiguity in specification: Identical performance of ambiguous scenario detection. Ambiguity in
training data: Identical performance of ambiguous training data detection. The model with the best performance is
indicated in bold , while the second best is underlined.

ios (29,136).During the scenario ambiguity detec-
tion experiment, we found a noticeable contrast in
the number of identified scenarios, denoted by Ns.
Task-specific embedding tended to have a lower
Nsthan off-the-shelf embedding. Furthermore, the
upper layer-generated embedding displayed a lower
Ns. Ns determined the performance difference in
ADR and MDR.

Training Data Ambiguity Detection Table 1
shows the performance in training data ambiguity
detection. We verify that the ambiguity and label-
ing error is viewed as the cause of misclassification.
In practice, approximately 70% of the specified
data contain ambiguity, and approximately 45% re-
quire label correction. CR and APR represent the
performance of identifying training data that cause
misclassification. The results also demonstrate that
similarity can be used to identify training data that
cause misclassification. Moreover, it is confirmed
that ARLV and CLV of task-specific embeddings
are more suitable for the detection task.

Effect of Task-specific Embedding As reported
in Table 1, task-specific embeddings outperform
other methods in both ARLV and CLV, while WLV
does not achieve significant improvement. Possibly,
this is because off-the-shelf embeddings occupy
the majority of WLV, as discussed in the defini-
tion of ARLV (See in Section 4). To understand
why this phenomenon happens, we visualize the

representation of training data samples obtained
from each embedding method using T-SNE. As il-
lustrated in Figure 2, the task-specific embeddings
(i.e., ARLV and CLV) clearly represent the training
data samples compared to general embeddings.

The task-specific embeddings based on the Adot
model outperformed those based on KoGPT2. How-
ever, we do not consider the transformer-based
embedding to be unsuitable for the task. The ob-
served difference in performance appears to stem
from Adot’s specialization in classifying this data,
given that Adot has undergone extensive optimiza-
tion as part of its use in the corresponding service.
The differences in classification accuracy between
the Adot and KoGPT2 models, as mentioned in
the section 5.3, support this interpretation(98% vs.
94%). Observing Figure 2, one can discern a sub-
tle yet distinct data segregation demonstrated by
the Adot-based embeddings as compared to those
based on KoGPT2. This differential expressive ca-
pacity seems to manifest as a performance discrep-
ancy. In the case of general embeddings, KoGPT2
exhibits greater separation than Sent2Vec, which,
in practice, is reflected by the overall superior
performance of Embedding-KoGPT2 compared to
Embedding-Sent2Vec.

6 Discussions

Powerful Task-Specific Representation This
study demonstrates the feasibility of detecting am-

430

Figure 2: Data representation in the semantic space corresponding to three domains (red: music, green: commerce,
blue: food_order.). We can observe that the boundaries of the represented data become clear depending on the
location where the vector is generated.

biguity through similarity and highlights the poten-
tial benefits of utilizing task-specific embedding
to enhance performance. The experimental results
show a positive correlation between model size and
detection performance according to the scaling law.
Future research efforts for ambiguity detection will
focus on generating task-specific embeddings using
larger models for superior results.

Multilingual Ambiguity Detection This study
was conducted for Korean-based services. Most
users of Adot are Korean, and the inputs contain
many Korean characteristics. And since the com-
mands input to the smart speaker were the data of
the study, fairly short and imperative sentences are
targeted. Experimentation is required to determine
if similar results can be obtained in other languages
and other types of sentences.

7 Conclusion

We introduce two processes to detect training data
and scenarios that induce ambiguity. Moreover,
task-specific embedding is adopted to improve de-
tection performance. Comprehensive analysis re-
veals that compared to off-the-shelf embeddings,
Sent2Vec and KoGPT2, task-specific embedding is
much more suitable for ambiguity detection. More-
over, the results demonstrate the viability of iden-
tifying training data that cause misclassification.
In the future work, we aim to compare the perfor-
mance of task-specific embedding using a wider
range of models and node selection methods.

Acknowledgements

This research was conducted based on the ex-
perience of developing and operating the A.()
service by SK Telecom in South Korea. This re-
search was supported and funded by the Korean Na-
tional Police Agency. [Project Name: XR Counter-
Terrorism Education and Training Test Bed Estab-
lishment/Project Number: PR08-04-000-21]. This
work was supported by Chungnam National Uni-
versity.

References
Edoardo Barba, Luigi Procopio, and Roberto Navigli.

2022. Extend: extractive entity disambiguation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2478–2488.

Daniel M Berry, Erik Kamsties, and Michael M Krieger.
2003. From contract drafting to software specifi-
cation: Linguistic sources of ambiguity. Univ. of
Waterloo, Tech. Rep.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Saad Ezzini, Sallam Abualhaija, Chetan Arora, Mehrdad
Sabetzadeh, and Lionel C Briand. 2021. Using
domain-specific corpora for improved handling of
ambiguity in requirements. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering
(ICSE), pages 1485–1497. IEEE.

431

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Yang Liu, Jishun Guo, Deng Cai, and Xiaofei He. 2019.
Attribute attention for semantic disambiguation in
zero-shot learning. In Proceedings of the IEEE/CVF
international conference on computer vision, pages
6698–6707.

Chris McCormick. 2016. Word2vec tutorial-the
skip-gram model. Apr-2016.[Online]. Available:
http://mccormickml. com/2016/04/19/word2vec-
tutorial-the-skip-gram-model.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

Bo Pang, Erik Nijkamp, Wenjuan Han, Linqi Zhou, Yix-
ian Liu, Kewei Tu, et al. 2020. Towards holistic
and automatic evaluation of open-domain dialogue
generation.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Kun Qian, Ahmad Beirami, Satwik Kottur, Shahin
Shayandeh, Paul Crook, Alborz Geramifard, Zhou
Yu, and Chinnadhurai Sankar. 2021. Database search
results disambiguation for task-oriented dialog sys-
tems. arXiv preprint arXiv:2112.08351.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Jennifer M Rodd. 2020. Settling into semantic space:
An ambiguity-focused account of word-meaning
access. Perspectives on Psychological Science,
15(2):411–427.

Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu
Park, Nilaksh Das, Fred Hohman, Minsuk Kahng,
and Duen Horng Polo Chau. 2020. Cnn explainer:
learning convolutional neural networks with interac-
tive visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 27(2):1396–1406.

Xiaoyao Yin, Yangchen Huang, Bin Zhou, Aiping Li,
Long Lan, and Yan Jia. 2019. Deep entity linking
via eliminating semantic ambiguity with bert. IEEE
Access, 7:169434–169445.

432

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

Adot KoGPT2 fine tuning

python Version 3.6.9 3.6.10
Tensorflow Ver. 1.15.2 -
Pytorch Ver. - 1.6.0a0+9907a3e
epoch 15 15
batch size 256 256
learning rate (1e-5) (1e-5)

Table 2: Development environments

A Implementation Details

A.1 Development Environment

We experimented on NVIDIA A100 (40GB). The
Adot model was implemented and trained within
the Keras and Tensorflow environments, while fine-
tuning of KoGPT was conducted in the PyTorch
framework.

A.2 Classification Models

The average Adot user only uses six Korean char-
acters in an utterance, and there are typically 5
million calls per day. Owing to these characteris-
tics, a lightweight and simple model capable of
stable CPU prediction was required. Convolutional
Neural network (CNN) based models are currently
used in Adot. This domain classification model was
created using Y. Kim’s CNN for sentence classifi-
cation (Kim, 2014). It has a model concatenated
with character-based CNN and CNN models based
on part-of-speech (POS) tagged morphemes reflect-
ing the Korean features. The character-based CNN
model uses the dictionary-based embedding layer
as a single channel to use the content domain’s
dictionary information. The configuration of the
fully connected layer on top of the convolutional
layer is also slightly different from the model in our
study. Figure 3 shows an outline of Adot’s domain
classification model.

A.3 Embeddings

We represented a sentence data in the semantic
space through two methods.

A.3.1 Sentence Representation Using Word
Embedding

Word embedding is a representative method of
expressing meaning in a semantic space. We de-
veloped two kinds of embeddings, character-level
embedding and POS tagged morpheme-level em-
bedding, to express sentences. A sentence is repre-

sented by concatenating it through two embeddings.
Our embedding developed with skip-gram and neg-
ative sampling based on McCormick (2016) tuto-
rial. Table 4 shows the detailed parameters of the
embeddings we used. These parameters were deter-
mined empirically to maximize the performance of
the Adot’s domain classifier.

These embeddings were trained from Korean
Wikipedia sentences. Korean Wikipedia is a set
of documents written by many people and reflects
the popular usage of the Korean language by Kore-
ans. However, sentences on the Wikipedia are long,
while the utterances coming into the Adot service
are relatively short, colloquial, and that there are
many content object names. To reflect this part, the
embedding trained from the wiki were tuned with
the training data of Adot.

A.3.2 Sentence Representation Using
KoGPT2

GPT-2 is a natural language processing model that
uses machine learning algorithms to generate input
sample text into text with syntactic, grammatical,
and informational consistency. KoGPT-2, an open
source-based GPT-2 model trained in Korean. Char-
acter Byte Pair Encoding (KBPE) was used as tok-
enizer. Korean Wikipedia, Modu Corpus, and the
Blue House National Petition and private data like
news were used as training data. When a sentence
passes through the KoGPT2, the output values from
the last layer were used as sentence representation.

A.4 Training Data

The training data of domain classifier of Adot’s
was used as the training data of this experiment.
Adot encompasses thirty service domains, includ-
ing ‘general’, ‘video’, ‘music’, ‘schedule’, and
‘weather’. A person directly constructed about 2.2
million training data according to the design of the
service. The data is primarily Korean sentences.
Some foreign language sentences are also included.
The table5 includes an extensive description of the
model and training data. The data used in this ex-
periment is from the December 2021 version, and
it’s important to note that its structure and content
differ from the current Adot service data.

B Testset Details

B.1 Designer-Annotator testset

To improve performance, we have collected utter-
ance logs from Adot users and used them for accu-

433

Figure 3: Overview of Adot’s domain classification model

shape objective
intput 1 (None,25) POS-tagged morpheme
input 2 (None,40) Korean character
input 3 (None,40,107) Named Entity & Content Entity Dict. Info
output (None,30) domain classification result

Input & Output Information of Classification Model
Total params 16,016,544
Trainable params 16,016,330
Non-trainable params 214
Total layer Numbers 41

Parameter & Layer Information of Classification Model

Table 3: Adot’s Domain Classification Model Training Information

racy evaluation. A test set was constructed using
the utterances input in April 2022.

Consensus Error& Ambiguity testset Among
those utterances, utterances that were classified in-
correctly were targeted. To prevent data modifica-
tion that occurred in both directions of the classes,
only utterances with the correct class ‘‘general’’
were collected. The “general” class is for device
manipulation such as volume control in Adot. We
constructed 2,300 test cases. Because these data
are misclassification data collected from the Adot
classification model, only the Adot classification
model was applied to this experiment.

Side-effect test set This set is a test set to eval-
uate the side effects caused by label modification.
Through modification, even if it is possible to cor-
rectly classify misclassified utterances, the classi-
fication results of utterances that have been accu-
rately analyzed should not be changed. We col-
lected 20,000 utterances that the current classifier
accurately analyzes and expect the data to be ana-
lyzed accurately even after modification.

B.2 Scenario ambiguity testset

We built two test sets to detect consensus errors
between designers and users.

434

character-level embedding morpheme-level embedding
tokken Character (Korean, English, numbers) POS tagged morpheme
Dictionary size 1638 9391
embedding space 256 256
skipgram window size 3 3
negative sampling rate 1 1

Table 4: Parameters of Two Kinds of Embeddings

Figure 4: Human evaluation test set example. The evaluation was conducted in Korean; a more detailed explanation
is attached.

training data size about 2.2M
domain number 30
average character size 16.77
average word size 4.50
average morpheme size 8.56
average named entity numbers 1.1
average domain entity numbers 1.9

Table 5: Training Data Information of Adot’s Domain
Classifier. Dec. 2021 version

Correlation testset First, sentence pairs were
collected to confirm the correlation between simi-
larity and the degree to which the user thinks the
classes are consistent. 913 pairs of sentences were
collected from validation data for the Adot service.
Among them, test sets were collected from eight
domains in which domain classification frequently
fails: ‘commerce,’ ‘food,’ ‘general,’ ‘news,’ ‘sched-
ule,’ ‘video,’ ‘music,’ and ‘radio.’ Like a domain
classifier, domain information was used as a label
for classification. Each sentence pair is randomly
collected within the verification data of 8 domains
and may have the same class or a different class.
Figure 4 and 5 shows example of testset.

435

similarity scenario entity predicate

Expert 0.720 0.380 0.104
User 0.487 0.476 0.307
Adot-CLV 0.357 0.443 0.249

Table 6: Pearson correlation coefficients between man-
ual evaluation results and the three features

Ambiguity detection testset To test consensus
error detection between designers and users, 29,136
sentences in which designers defined labels were
collected. These sentences are specifications de-
fined for Adot service scenarios and defined by the
designer of Adot service. For this Spec, the sen-
tences in which Consensus error may occur were
indicated through the method mentioned in A. It
was confirmed whether there was an actual ambigu-
ity or consensus error for the specified sentences.

C Expert-ordinary user correlation
comparison

With ordinary users, similarity was significantly
higher than with experts. To determine the reason
behind this phenomenon, concordance is estimated
at three points for each sentence pair—service area,
entity properties, and predicate. In addition, the
correlation between manual evaluation and concor-
dances is estimated. The results are presented in
Table 6. Although the expert group exhibits a very
high correlation in the service area, the ordinary
user group exhibits similar correlations in all three
areas. Let us consider the pair, “Play Netflix” and
“Play Spotify” Ordinary users may believe that the
classes are similar because of the similarity of the
predicates. In contrast, experts believe that Netflix
and Spotify provide different services (video vs.
music)—so there is no agreement irrespective of
the predicate. The results confirm that the simi-
larity is more similar to the judgment of ordinary
users than that of experts. Consequently, similarity
is deemed to be useful in detecting in designer-user
consensus errors.

436

Figure 5: Human evaluation test set example. The evaluation was conducted in Korean; a more detailed explanation
is attached.

437

