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Abstract

Deploying NMT models on mobile devices
is essential for privacy, low latency, and of-
fline scenarios. For high model capacity, NMT
models are rather large. Running these models
on devices is challenging with limited storage,
memory, computation, and power consumption.
Existing work either only focuses on a single
metric such as FLOPs or general engine which
is not good at auto-regressive decoding. In
this paper, we present MobileNMT, a system
that can translate in 15SMB and 30ms on de-
vices. We propose a series of principles for
model compression when combined with quan-
tization. Further, we implement an engine that
is friendly to INT8 and decoding. With the
co-design of model and engine, compared with
the existing system, we speed up 47.0x and
save 99.5% of memory with only 11.6% loss
of BLEU. The code is publicly available at
https://github.com/zjersey/Lightseq-ARM.

1 Introduction

As a classic subfield of natural language processing,
neural machine translation (NMT) has achieved
great success in recent years. Most of the studies
focus on improving the accuracy of large machine
translation systems, ignoring whether such models
are easy to be deployed in real-world scenarios.
Here we adopt four metrics to evaluate whether
an NMT model is deployment-friendly. (1) Model
size is the most important metric in model com-
pression (Han et al., 2016). (2) Floating-point
operations (FLOPs) is commonly used to evaluate
computational complexity in neural architecture
design. (3) Memory or Memory mapped I/0
(MMI/O) reflects the memory requirements of the
real running system. (4) Decoding speed depends
on many realistic factors such as engine implemen-
tation and the power of avaliable processors.

*This work is done during the internship at ByteDance.
t Corresponding author.
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Figure 1: These metrics are measured on Google Pixel
4. Each result is the average of 200 runs on a sample of
src/tgt length 30.

In this paper, we propose MobileNMT, a
Transformer-based machine translation system that
can translate in 15MB and 30ms. First, we propose
three principles for designing parameter-limited
MT models: 1) To compress embedding, reducing
vocabulary size is simple and effective compared
to embedding factorization; 2) To compress the
encoder and decoder, reducing the model width
is much more efficient in computation and mem-
ory than cross-layer parameter sharing; 3) Encoder
depth is very important to ensure accuracy. To
achieve higher accuracy, we adjust the training
hyperparameters according to the newly designed
structure, and adopt sequence-level knowledge dis-
tillation. For industrial deployment, we optimize
general matrix multiplication (GEMM) and mem-
ory in our own inference engine and use the 8-bit
integer for storage and computation. As shown in
Table 1, the 10MB MobileNMT achieves 88.4%
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Figure 2: Model performance of different methods in Section 2 and Section 3 (Scaling E: scaling embedding
dimension; Scaling V: scaling vocabulary size; Sharing: cross-layer parameter sharing; Width: reducing model

width).

performance of Transformer-big with only 1.1%
size and runs 47.0x faster on decoding, which can
be easily deployed and used.

Our contributions are summarized as follows:

* We propose three principles for parameter-
limited MT models to make more efficient use
of computation and memory resources.

* We adjust training strategies according to the
newly designed structure to achieve higher
translation accuracy.

* We develop a mobile inference engine to
bridge the gap between industrial practice and
theoretical research.

2 Architecture Design Principles

For model compression and acceleration, most stud-
ies focus on a single metric such as model size
or FLOPs, without considering the real-world ap-
plications. In this section, we consider four met-
rics including model size, FLOPs, memory usage,
and decoding speed, and then propose three design
principles for parameter-limited MT models. We
choose Transformer (Appendix A) as our baseline
because of its great success in machine translation.

2.1 Embedding Compression

The vocabulary size V' usually reaches tens of thou-
sands in NMT models (Akhbardeh et al., 2021).
The parameters can reach tens of millions and
greatly affect the overall parameter efficiency.
Embedding Factorization (Scaling E). For
model compression, embedding factorization has
been widely studied (Lan et al., 2020; Grave et al.,
2017; Baevski and Auli, 2019). To decouple the

Scaling V performs better than Scaling E. Width performs nearly the same with Sharing.

Module| Dim Base Small Tiny
Vocab | 40,0007 40,000 40,0007
Embed Embed|| N/A | x1]| N/A |x1j| N/A |x1
Hidden L 512 L 256 L 128
Hidden[ 512 1 [ 256 7 r 128 7
Encoder| Head 8 X 6] 4 X 6] 2 X6
FFN |L 2048 L 1024 | L 512
Hidden[ 512 1 [ 256 7 r 128 7
Decoder] Head 8 X 0] 4 X 6] 2 X6
FEN |L 2048 L 1024 | L 512 |
Params 64.5M 21.5M 8.0M

Table 1: The detailed settings of Base, Small and Tiny.

embedding dimension F and hidden dimension H,
it additionally introduces a trainable transforma-
tion weight W1 € REXH where E < H. After
factorization, the embedding parameters will be
decreased from O(V x H) to O(V x E+ E x H).

Reducing Vocabulary Size (Scaling V). A more
direct way to compress embedding is to reduce the
vocabulary size V. To reduce the risk of out-of-
vocabulary words, here we adopt Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016; Ott et al., 2018;
Ding et al., 2019; Liu et al., 2020). For most stud-
ies on machine translation, the adopted BPE merge
operations range from 30~40K (Ding et al., 2019).
Volt proves that we can find a well-performing
vocabulary with higher BLEU and smaller BPE
merge operations (Xu et al., 2021). Experiments
in Lin et al. (2021)’work also show that smaller
vocabularies may be better.

Reducing Vocabulary Size Performs Better.
To compare the two embedding compression meth-
ods, here we select three baseline models of differ-
ent sizes. The model settings are shown in Table 1.
As shown in Table 2, the parameters and FLOPs are
almost the same in these two methods. As shown
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Figure 3: The left two figures show weight and output ranges for each layer. The right figure shows the model
performance of Post Training Quantization (PTQ) in cross-layer parameter sharing vs. reducing model width. These

figures show that reducing model width is more quantization-friendly than cross-layer parameter sharing.
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Table 2: Parameters, FLOPs, and model perfor-
mance (FLOPs and MMI/O are estimated on a sam-
ple with src/tgt length of 30.). For embeddin

compression, reducing vocabulary size (Scaling V)
is_more simple and effective. For encoder/decoder
compression, reducing model width (Width) is more
efficient in computation and memory.

in the first row of Fig. 2, compared to reducing
vocabulary size, the model with embedding factor-
ization performs poorly in most cases, especially
when the parameters are limited.

2.2 Encoder/Decoder Compression

For encoder and decoder compression, here we
compare models with cross-layer parameter sharing
and model width reduction.

Cross-Layer Parameter Sharing (Sharing).
The most widespread use of parameter sharing is in
convolutional neural networks (Long et al., 2015).
In recent years, it has also been investigated on
NLP and NLU tasks. Among them, cross-layer pa-
rameter sharing can provide stronger nonlinearity
along the model depth while keeping the parame-
ters unchanged (Dehghani et al., 2019; Takase and
Kiyono, 2021; Lan et al., 2020).

Reducing Model Width (Width). Since model
depth has been proven to be important in natural
language processing tasks such as machine trans-
lation (Devlin et al., 2019; Liu et al., 2020; Wang
et al., 2022; Liu et al., 2020), here we keep the

# Params (M)

Figure 4: Performance (BLEU) vs. parameters (M). Dif-
ferent marks denote different dimensions. Points near
large red circles have a greater impact on model perfor-
mance than points near small red circles. Encoder depth
can be considered as the most important dimension.

depth unchanged and reduce the model width.
Reducing Model Width is More Efficient and
Quantization-Friendly. In the second row of Fig.
2, these two methods perform nearly the same.
However, Table 2 shows that there is a large differ-
ence in FLOPs and MMI/O, which means reducing
model width is much more efficient in computa-
tion and memory. Since it is necessary to quantize
these models for greater compression, we further
compare the weights and output ranges of the two
methods in Fig. 3. It can obviously be observed
that models with parameter sharing have larger
ranges of values for both weight and output, which
is not quantization-friendly. The right figure also
verifies this: when we apply post-training quan-
tization (PTQ) (Sung et al., 2015; Banner et al.,
2019; Choukroun et al., 2019) to these two meth-
ods, cross-layer parameter sharing performs poorly.

2.3 Deep Encoder and Shallow Decoder

Fig. 4 studies how different dimensions affect the
Transformer performance. In order to analyze the
impact of each dimension separately, here we only
change one specific dimension and keep the others
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Module| Dim [MobileNMT-10MB |[MobileNMT-20MB
Vocab | [ 8,000 1 - 8,000 7
Embed |Embed N/A x1 N/A x1
Hidden| L 256 L 384 |
Hidden| [ 256 1 [ 384 7
Encoder| Head 4 x12 6 x12
FFN (L 512 | L 768
Hidden| [ 256 1 [ 384 7
Decoder| Head 4 X2 6 X2
FFN L 512 | L 768
Params ~10M ~20M

Table 3: The detailed settings of MobileNMT.
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Figure 5: Running examples of the FFN and attention
quantizers. Here red lines denote values that will be
quantized, black lines denote values with full precision.

unchanged. The point on the left of the Small
Baseline @ represents scaling one dimension down,
while the point on the right represents scaling one
dimension up. We can see that Encoder Depth ¢
is more important than other dimensions, which
is consistent with the related work on large-scale
models (Wang et al., 2019, 2022). Based on the
above discussion, we finally build a deep encoder
and a shallow decoder, while reducing the vocab
size and model width. Two MobileNMT models
of different sizes are built here and the detailed
settings are shown in Table 3.

3 Training Strategies

3.1 Pre-Training with Knowledge Distillation

In order to improve the performance of compressed
models, recent studies distill knowledge from a
well-trained full-precision teacher network to a stu-
dent network (Mishra and Marr, 2018) or directly
use a quantized teacher network (Kim et al., 2019).
Here we adopt sequence-level knowledge distilla-
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Figure 7: Weight and output ranges for each layer.
Larger learning rate will result in larger range of values.

tion because it has shown to be effective for NMT
tasks. The most basic full-precision Transformer-
base model is adopted as the teacher.

3.2 Quantization

The process of quantizing a transformer model can
be divided into two steps: 1) constructing quan-
tizers; 2) applying the quantization-aware training
(QAT) (Courbariaux et al., 2015) based on the pre-
trained model we have obtained in Section 3.1.
FFN and Attention Quantizers. The original
Transformer layer includes two types of sublayers:
the attention sublayer and feed-forward network
(FFN) (Vaswani et al., 2017). Here we construct
the quantizer for each linear in the attention and
FFN, and quantize both the weights and activations
as shown in Fig. 5. Since most computations are
spent on matrix multiplication, all biases and resid-
uals are kept in full precision for accuracy preser-
vation. Since quantization will change the range of
network outputs, here we add a learnable weight
~; to the ¢-th sublayer to learn how to combine the
output and the residual surrounding it.
Quantization-Aware Training. Since Mo-
bileNMT only has 10M/20M parameters, quantiz-
ing such a small model inevitably results in perfor-
mance loss, so we perform QAT after constructing
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Figure 8: The left two figures show weight and output ranges for each layer. The right figure shows the performance
of different Lo regularizations before vs. after PTQ. Experiments show that L, regularization can make the model

more quantization-friendly.

the quantizers. Before QAT, we pre-compute all
scaling parameters based on a forward running on
the pre-trained distillation model obtained in Sec-
tion 3.1. It takes nearly no additional costs, but
provides a good initialization. For engineering de-
velopment, we choose the uniform quantization
scheme because of it is hardware-friendly (Liu
et al., 2022). For 8-bit quantization, we use the
element-wise quantization (Lee et al., 2021). For
lower-bit quantization, such as 4-bit integer, we use
the row-wise quantization (Faraone et al., 2018).

3.3 Training Hyperparameters

Compared to the original Transformer model, Mo-
bileNMT introduced in Section 2 has fewer parame-
ters and different architectures, so different training
hyperparameters are needed.

Removing Dropout. Since our models have
fewer parameters, we do not need to impose strong
regularizations on them and we remove dropout
from the entire model. The left part of Fig. 6 shows
that removing dropout will lead to an improvement
of almost two BLEU points.

Larger Learning Rate. Here we follow the
configuration provided in Wang et al. (2019) with a
larger learning rate (0.01 — 0.02), a larger training
batch (4096 — 8192), and more warmup steps
(4000 — 8000). As shown in the right part of
Fig. 6, it can improve model performance by more
than 0.5 BLEU points (red bars). However, after
PTQ, the model with 0.02 learning rate performs
significantly worse than 0.01 (blue bars). As shown
in Fig. 7, the network weights and outputs become
larger when using a larger learning rate, which is
not quantization-friendly.

L, Regularization. To solve the above prob-
lem, this paper adopts Lo regularization applied
to weight (also called weight decay). It adds the
squared magnitude of the network weights as the
penalty term to the original loss function and en-
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Figure 9: An example of processing multiple integers
in a single SIMD instruction.

courage the weights to be smaller. As shown in
the left two parts of Fig. 8, with Lo regularization,
both the network weights and output values will
become significantly smaller. The right part of Fig.
8 shows the performance of PTQ when applying
different degrees of Lo regularization. The red and
blue bars represent the model performance before
and after PTQ. We can see that Ly regularization
does improve the model performance after PTQ.

4 The Engine

This section introduces the detailed implementa-
tions of our inference engine.

4.1 GEMM Optimization

According to statistics on the ONNX Runtime plat-
form, general matrix multiplication (GEMM) ac-
counts for 80.44% of the overall decoding time,
demonstrating that optimizing GEMM is the key
to decoding speed up. We optimize GEMM from
three aspects: (1) Replacing 32-bit floating points
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System Params (M) | Size (MB) | Memory (MB) | Latency (ms) Test Valid
Transformer-big 218 11x 872 T1x 2886.6 T1.0x 1281.5 11.0x | 28.36 A-0.00 | 26.75 A-0.00
© Transformer-base 65 13 % 260 13 x 908.5 13.2x 332.313.9x% 27.40 A-0.96 | 25.81 A-0.94
A | Transformer-small | 22 710x 88 110 759.5 13.8% 158.0 18.1x 24.20 A-4.61 | 23.91 A-2.84
(5 | Transformer-tiny 8 127 x 32127 398.9 17.2x 73.0 117.6x 20.97 A-7.39 | 21.53 A-5.22
MobileNMT-20MB | 20 111 x 20 144 x 26.0 T111.2x | 46.3127.7x 27.09 A-1.27 | 25.72 A-1.03
MobileNMT-10MB | 10 122x 10 187 x 149 1194.0x | 27.3147.0x 25.08 A-3.28 | 24.85 A-1.90
Transformer-big 259 11 x 1036 11x | 2987.6 11.0x | 1345.6 11.0x | 39.05 A-0.00 | 44.12 A-0.00
Transformer-base 86 13 % 344 13 944.8 13.2x 358.9 13.7x 38.64 A-0.41 | 43.80 A-0.32
‘U,: Transformer-small | 22 112x 88 112x 782.3 13.8% 178.517.5x% 34.76 A-4.29 | 40.01 A-4.11
5 Transformer-tiny 8 132 % 32 132x 418.8 17.1x 80.3 116.8x 30.36 A-8.69 | 36.01 A-8.11
MobileNMT-20MB | 20 113 x 20 152 26.7 1111.9x | 53.7125.1x 37.67 A-1.38 | 43.81 A-0.31
MobileNMT-10MB | 10 126x 10 1104x | 15.8 T189.1x | 28.9 146.6% 36.00 A-3.05 | 41.87 A-2.25

Table 4: Results on WMT14 En-De and WMT14 En-Fr tasks. These metrics are measured on Google Pixel 4.
Transformer-big/base/small/tiny results are tested on TFLite and MobileNMT-20MB/10MB are tested on our engine.

All results are based on a sample with src/tgt length of 30.

with 8-bit integers in GEMM for model quantiza-
tion. (2) The Arm instruction set we use allows
multiple integers to be processed in parallel in a
single instruction, which takes full advantage of
the processor throughput. (3) To improve the cache
hit and the register usage, we adjust the layout of
the tensor in memory to ensure that the instruction
reads data from continuous space. Specifically, we
convert each 4 x 4 block in the original layout into
a contiguous vector of size 16. An example can be
seen in Fig. 9.

4.2 Memory Optimization

As shown in Fig. 10 in the appendix C, except for
GEMM, other operations account for only 19.56%
of the decoding time but will be frequently per-
formed, resulting in a large amount of temporary
memory. To improve memory efficiency, we take
two strategies: (1) To avoid frequent memory-
mapped /O and footprint, our engine integrates
all adjacent fine-grained operations between two
GEMM operations into one fused operation. (2)
To save temporary memory, different operations
are allowed to share the same space, provided that
these operations do not interfere with each other at
the same time. Through memory sharing, only two
8-bit memory buffers, and one 32-bit buffer need
to be pre-allocated in the Transformer encoder to
hold intermediate results.

5 Experiments

5.1 Setups

We evaluate our methods on two WMT bench-
marks. For the WMT14 En-De task (4.5M pairs),
we choose newstest-2013 as the validation set and

System Params(M)ly (o pg()[BLEU
w/ | wlo

Transformer-base 65| 44 1.9 27.40
DeLighT 37| 314 - 27.60
Universal Transformer N/A| 7.4 1.9 26.20
Lite Transformer (small) [N/A| 2.9 0.2 22.50
Lite Transformer (medium)N/A| 11.7 0.7 25.60
Lite Transformer (big) N/A| 17.3 1.0 26.50
EdgeFormer w/o LA N/A| 8.6 1.8 26.50
EdgeFormer (Adapter-LA) [N/A| 9.4 1.8 26.90
EdgeFormer (Prefix-LA) [N/A| 8.6 1.9 26.80
MobileNMT-10MB 10| 7.9 0.3 25.08
MobileNMT-20MB 20| 17.7 0.6 27.09

Table 5: The comparison of MobileNMT with other
parameter-efficient Transformers, including DeLighT
(Mehta et al., 2021), Universal Transformer (Dehghani
et al., 2019), Lite Transformer (Wu et al., 2020) and
EdgeFormer (Ge et al., 2022) (Parameters w/ or w/o
embedding layer are both provided. FLOPs is estimated
on a sample with src/tgt length of 30.).

newstest-2014 as the test set. For the WMT14 En-
Fr task (35M pairs), we validate the system on
the combination of newstest-2012 and newstest-
2013, and test it on newstest-2014. Details of the
architecture were introduced in Section 2, and train-
ing hyperparameters were introduced in Section 3.
For model compression ratio and decoding speed
up, we choose Transformer-big as the benchmark
(1.0x). Other details of experimental setups are
introduced in Appendix D.

5.2 Results

Table 4 shows the results of different sys-
tems on WMTI14 En-De and En-Fr. Table 5
shows the comparison of MobileNMT with other
parameter-efficient methods based on Transformer.
MobileNMT-10MB and MobileNMT-20MB are
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two models we have built with different sizes,
which are introduced in Table 3.

On WMT14 En-De, our MobileNMT-10MB re-
quires only 4.6% of the parameters to maintain
88.4% performance of Transformer-big, while it
achieves 87.2x compression ratio and 47.0x speed
up. Our MobileNMT-20MB can maintain 95.5%
performance of Transformer-big with only 9.2%
parameters, while it achieves 43.6x compression
ratio and 27.7x speed up. Experiments on En-Fr
show similar results. In addition, thanks to the
memory optimization strategies adopted in our en-
gine, MobileNMT requires significantly less run-
ning memory than other models (0.5%~0.9% of
Transformer-big). All these experiments demon-
strate that MobileNMT is efficient in terms of pa-
rameters, computation, and memory, and can be
easily deployed on mobile devices.

6 Conclusion

We propose MobileNMT, a Transformer-based ma-
chine translation system that can translate in 15MB
and 30ms. It uses existing resources efficiently
and can be easily deployed in real-world scenarios.
We develop a mobile inference engine with GEMM
and memory optimization, hoping that it can bridge
the gap between theoretical research and real-world
applications on efficient machine translation.

Acknowledgments

This work was supported in part by the National
Science Foundation of China (No. 62276056), the
National Key R&D Program of China, the China
HTRD Center Project (No. 2020AAA0107904),
the Natural Science Foundation of Liaoning
Province of China (2022-KF-16-01), the Yunnan
Provincial Major Science and Technology Special
Plan Projects (No. 202103AA080015), the Funda-
mental Research Funds for the Central Universities
(Nos. N2216016, N2216001, and N2216002), and
the Program of Introducing Talents of Discipline
to Universities, Plan 111 (No. B16009).

Limitations

Multilingual Translation. Here we mainly dis-
cuss the design principles of efficient architectures
for bilingual machine translation. Compared with
bilingual translation, multilingual translation tasks
require significantly more parameters and compu-
tations to perform well, and different model scales

may lead to different design considerations. We
will leave this for future exploration.

Knowledge Distillation. As a small model that re-
quires only 10MB/20MB of storage, MobileNMT
will inevitably suffer from performance loss com-
pared to other Transformer-based models. To re-
duce performance loss, here we adopt knowledge
distillation and choose the Transformer-base model
as the teacher. From a training efficiency per-
spective, although the teacher model can help Mo-
bileNMT improve performance, it also introduces
additional training costs.

Compatibility. Here our inference engine only
provides implementation for the ARM CPU. We
will make it available for other Al accelerator (such
as NPU) on mobile devices in the future.
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A Transformer Architecture

We chose Transformer for study because it is one
of the most successful neural models for machine
translation. It consists of a /N-layer encoder and
a M-layer decoder, where N=M=6 in the origi-
nal Transformer-base and Transformer-big. Each
encoder layer consists of two sublayers, includ-
ing the self-attention and feed-forward network
(FFN). Each decoder layer has an additional cross-
attention sublayer to bridge the encoder and de-
coder.

The self-attention takes the output X of the pre-
vious sublayer as its input. The cross-attention is
similar to the self-attention, except that it takes the
encoder output as an additional input. Both types
of attention first compute the attention distribution
A, and then average X by A,. We denote the trans-
formation matrices of @, K,V as W, Wy, W,,, the
subsequent transformation matrices as W,, and the
attention as Y, = Attn(X), then:

X r'xT
Y, = A, XW,W, (2)

A, = SoftMax(

The FFN applies non-linear transformation to its
input X. We denote the FFN as Y; = FFN(X):

Yf = ReLU(XWl + b1)W2 + by 3)

where W and b; denote the weight and bias of the
first linear transformation, W5 and b, are parame-
ters of the second transformation.

Here we preprocess each sublayer input by the
layer normalization (Ba et al., 2016). All sublayers
are coupled with the residual connection (He et al.,
2016a).

B PTQ and QAT

As an appealing solution to model compression,
quantization enables the model to use lower-bit
values (such as 8-bit integer) to compute faster and
consume less storage space (Hubara et al., 2016;
Micikevicius et al., 2018; Quinn and Ballesteros,
2018; Jacob et al., 2018).

Post-Training Quantization (PTQ) can be seen as
the basis for Quantization Aware Training (QAT),
it adds quantization nodes to a well-trained floating-
point model. To quantize a floating-point tensor r
to a tensor with n bits, a scale s is introduced to
map these two types of values (Wu, 2020):

max(r) — min(r)

s= DL (4)

System Params (M) | Size (MB) | BLEU
Transformer-base 65 260 27.40
+ Reducing Vocab 48 192 26.20
+ Reducing Width 10 40 22.01
+ Other Dimensions 10 40 22.54
+ Distillation 10 40 23.77
+ Quantization 10 10 23.76
+ Hyperparameters 10 10 25.48
+ Greedy Search 10 10 25.08

Table 6: Ablation study on MobileNMT-10MB. The
colors refer to Model Architecture in Section 2,

Training Strategies in Section 3 and Greedy Search.

To get a faster computation speed, both weights
and activations will be quantized to n-bit. Suppose
rm = min(r), the quantization function is:

Q(r) = (r—rm)/sl xs+rm (5

where | -] represents rounding to the nearest integer.

However, in PTQ, applying quantization directly
to the floating-point network will result in signif-
icant performance losses. Based on PTQ, QAT
simulates the behavior of n-bit computation by min-
imizing quantization errors during training, which
helps the model achieve higher accuracy. In addi-
tion to the learnable weights of the model itself, s
is also learnable.

C Operations except GEMM

Since general matrix multiplication (GEMM) ac-
counts for 80.44% of the overall decoding time, we
have concluded that optimizing GEMM is the key
to decoding speed up in Section 4. As for opera-
tions except GEMM, Fig. 10 shows the proportion
of running time in the decoding process. The corre-
sponding data is measured in 32-bit floating point
format on the ONNX Runtime.

D Setups

All sentences were segmented into sequences of
sub-word units (Sennrich et al., 2016). In the im-
plementation, we adopt the normalization before
layers (Baevski and Auli, 2019; Xiong et al., 2020;
Nguyen and Salazar, 2019). Most previous work
only shared source and target vocabularies on the
En-De task. In our MobileNMT, both En-De and
En-Fr adopt shared vocabularies for efficiency rea-
sons, which leads to a larger compression gain at
the expense of performance. We test on the model
ensemble by averaging the last 5 checkpoints and
report SacreBLEU scores (Post, 2018).
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Figure 10: Proportions of different operations (except GEMM) on the Transformer-base model.

Params Bits Size

System ™) (W-E-A) | (MB) BLEU
Transformer-base 65 32-32-32 | 260 27.40
10 32-32-32 40 25.79

10 8-8-8 10 25.08

MobileNMT-10MB 10 4-8-8 5 25.43
10 3-8-8 3.75 | 24.09

10 2-8-8 2.5 21.25

20 32-32-32 80 27.30

20 8-8-8 20 27.09

MobileNMT-20MB 20 4-8-8 10 26.96
20 3-8-8 7.5 26.23

20 2-8-8 5 24.33

Table 7: Results of quantizing weights to lower bits.

For the experiments of MobileNMT in Table 4,
we use the greedy search algorithm in our engine.
Compared with beam search, greedy search can
lead to more efficient decoding. For the experi-
ments of TFLite in Table 4, since TFLite will ex-
pand all loop subgraphs, it is hard to support the en-
tire decoding process (30 steps) of the Transformer-
big/base model with limited memory (6GB in
Google Pixel 4). For the memory of these two
models, we only record the running memory of 1
step. For the corresponding latencies, we estimate
the 30-step latency according to the 1-step and 5-
step latencies. It is worth noting that except for the
memory and latency on Transformer-big/base, all
other data statistics are measured in real-world.

E Analysis

E.1 Ablation Study

Table 6 summarizes how each part of Section 2 and
Section 3 affects the overall performance. Each
row in Table 6 represents the result of applying the
current part to the system obtained in the previous
row.

To reduce the model parameters from 65M to
10M, the model performance decreased from 27.40
to 22.54, which illustrates the importance of net-
work parameters on model capacity. We observe
that both knowledge distillation and tuning hyper-
parameters can bring significant performance im-
provements (from 22.54 to 25.48), which effec-
tively compensate for the performance loss caused
by parameter reduction.

E.2 Quantization Study

Table 7 studies how performance changes when
quantizing the model to lower bits (i.e., 4-bit, 3-bit,
and 2-bit). As introduced in Section 3.2, for 8-bit
quantization, we use the element-wise quantization
method (Lee et al., 2021). For lower-bit quantiza-
tion, we use the row-wise quantization for accuracy
preservation (Faraone et al., 2018).

As shown in Table 7, 8-bit and 4-bit quantization
have almost no negative effect on model perfor-
mance. When quantizing the model to lower bits,
such as 3-bit and 2-bit integers, model performance
will drop dramatically.
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