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Abstract

Contacting customer service via chat is a com-
mon practice. Because employing customer
service agents is expensive, many companies
are turning to NLP that assists human agents
by auto-generating responses that can be used
directly or with modifications. Large Language
Models (LLMs) are a natural fit for this use
case; however, their efficacy must be balanced
with the cost of training and serving them. This
paper assesses the practical cost and impact of
LLMs for the enterprise as a function of the
usefulness of the responses that they generate.
We present a cost framework for evaluating an
NLP model’s utility for this use case and ap-
ply it to a single brand as a case study in the
context of an existing agent assistance product.
We compare three strategies for specializing an
LLM – prompt engineering, fine-tuning, and
knowledge distillation – using feedback from
the brand’s customer service agents. We find
that the usability of a model’s responses can
make up for a large difference in inference cost
for our case study brand, and we extrapolate
our findings to the broader enterprise space.

1 Introduction

Amidst increased automation, human agents con-
tinue to play an important role in providing excel-
lent customer service. While many conversations
are automated in text-based customer support, oth-
ers are routed to human agents who can handle cer-
tain customer concerns more effectively. Agents
often handle multiple conversations at once, con-
sulting customer account information and brand
policies while maintaining these conversations. As
agents are expensive to staff, many companies are
seeking ways to make their work more efficient.

LivePerson’s Conversation Assist,1 illustrated in
Figure 1, accelerates agents by automatically gen-
erating suggestions that the agent can either send,

1https://developers.liveperson.com/conversati
on-assist-overview.html

edit and then send, or ignore. Conversation Assist
can both reduce agent response time and improve
response quality, as a well-trained model may pro-
vide more consistent, higher quality responses than
inexperienced agents or agents adversely impacted
by external factors. These benefits lead to greater
cost savings and increased customer satisfaction
(CSAT) scores, not to mention providing a super-
visory mechanism that is critical for brand control
and model improvement.

Large Language Models (LLMs) are a natural
fit for this technology, as they have achieved high
performance on response generation tasks (Adiwar-
dana et al., 2020; Hosseini-Asl et al., 2020; Zhang
et al., 2020, inter alia), but they are expensive to
train and serve. For example, the inference cost for
each response using a distilled GPT-2 model and an
Nvidia A100 GPU is ¢.0011,2 while the inference
cost using the GPT-3-based Davinci model through
OpenAI’s API is ¢1.10 (OpenAI, 2023b).3

LLM economics and enterprise applications are
highly fluid. First, individual partnership agree-
ments may differ from the published API cost, and
the rapid pace of innovation in the space will neces-
sarily impact the cost of training and serving these
models. Second, as brands vary widely, a useful
agent assistance model must be customized to the
brand’s use case and performance requirements.
We propose a simple and flexible cost framework
that can be applied to various LLM and brand sce-
narios. This framework, Expected Net Cost Sav-
ings (ENCS), combines the probability and cost
savings of an agent accepting or editing a response
with the cost of generating the response. ENCS can
be applied at the message level or in the aggregate.

With one brand as a case study, we explore
ENCS with various methods of model customiza-
tion. Using feedback from the brand’s customer

2We found the Nvidia A100 GPU to be the most inexpen-
sive option, with an Nvidia V100 GPU costing ¢0.0019

3Assuming a context and response length of 550 tokens.
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Figure 1: Conversation Assist as a system that returns canned responses (left), compared with the product described
in this paper, which generates suggestions from LLMs (right).

service agents, we evaluated fine-tuning, prompt
engineering, and distillation to adapt and opti-
mize GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020; OpenAI, 2023a), and Cohere (Cohere,
2023a). These strategies can lead to an agent usage
rate of 83% (including both direct use and edit-
ing) and an annual cost savings of $60,000 for our
case-study brand – 60% of their total agent budget.

We generalize this case study to a broader range
of brands and models. We find that low perplexity
correlates with the probability that an agent will use
a response, and we extrapolate from this finding to
use perplexity to estimate the ENCS for additional
model customization strategies. We apply ENCS
to each configuration, and while models, prices,
and use cases will change over time, we expect that
this framework can be continuously leveraged for
decision making as technology evolves.

2 Related Work

Transformers (Vaswani et al., 2017) have dom-
inated response generation tasks: DialogGPT
(Zhang et al., 2020), Meena (Adiwardana et al.,
2020), SOLOIST (Peng et al., 2021), BlenderBot
(Roller et al., 2021), PLATO-XL (Bao et al., 2022),
LaMDA (Thoppilan et al., 2022), GODEL (Peng
et al., 2022). Each of these approaches fine-tunes
a large pre-trained LM to task-oriented dialog or
chit chat using curated dialogs. In some cases, ad-
ditional tasks, such as the discriminative training
tasks of Thoppilan et al. 2022, are also used. When
data is not available for fine-tuning, prompting with
a single example has proven quite effective (Min

et al., 2022), and for large enough models, prompt-
ing that demonstrates breaking tasks into discrete
components (Wei et al., 2022) has performed on par
with fine-tuned models (Chowdhery et al., 2022).

The size of these LLMs plays a significant role
in their high performance (Chowdhery et al., 2022),
but in a deployed setting, this size can be quite
costly. Quantization (Whittaker and Raj, 2001;
Shen et al., 2020), pruning (Han et al., 2015, 2016)
and knowledge distillation (Hinton et al., 2015;
Sanh et al., 2019) are common strategies for size re-
duction with minimal impact to performance. Here
we focus specifically on distillation using a lan-
guage modeling task to reduce model size while si-
multaneously adapting the model to the data follow-
ing Ryu and Lee (2020) and Howell et al. (2022).

Response generation is difficult to evaluate holis-
tically. Some have focused on relevance and level
of detail (Zhang et al., 2020; Adiwardana et al.,
2020; Thoppilan et al., 2022), humanness (Zhang
et al., 2020; Roller et al., 2021) and overall coher-
ence or interestingness (Bao et al., 2022; Thoppi-
lan et al., 2022). In contrast, we follow Thoppilan
et al. (2022) and Peng et al. (2022) who consider
helpfulness and usefulness as broader measures of
response quality, but we ground these judgements
in the customer service use case by having real
agents judge the usefulness of model outputs.

3 Expected Net Cost Savings (ENCS)

ENCS combines model performance, model cost,
and agent cost: If an agent saves time by using
a model’s response, then there is a cost savings.
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Figure 2: A toy example of an ENCS calculation.

More formally, ENCS is defined as the probability
that a response is used (P (U)) multiplied by the
savings in dollars for each used response (SU ), less
the cost of generating that response (C), as in (1).

(1) ENCS = P (U) ∗ SU − C

Because agents are not limited to simply using a
response as-is but may also choose to edit the re-
sponse or ignore it altogether, equation (1) may be
modified to account for the probability and savings
associated with editing (P (E) and SE) or the cost
of ignoring (P (I) and SI )4 as well:

(2) ENCS = ((P (U) ∗ SU ) + (P (E) ∗ SE) +
(P (I) ∗ SI)− C

We can estimate S from the agent’s hourly rate
(R), the average time it takes for agents to respond
to a message without Conversation Assist (Tr), and
the amount of time an agent spends for each ac-
cepted, edited, or ignored message (Tx).

(3) Sx = R(Tr − Tx)

Figure 2 provides a toy example of this calculation.

3.1 Simplifying Assumptions
This model makes a number of simplifying assump-
tions. We assume that agents always have conver-
sations to respond to or some other work to do.
We exclude the problem of workforce optimiza-
tion from our framework, noting that when fewer
agents are needed to handle the conversational traf-
fic, workforce can be reduced. We also exclude
R&D cost, but return to this factor in section 5.

4In most cases, SI is a negative number, as reading a re-
sponse and choosing not to use it would cost time and money.

Furthermore, we omit any discussion of the cost
of an agent using an inappropriate or factually in-
correct response. For the purposes of this model,
we assume that agents read all suggestions care-
fully, but a deeper analysis of the risk and cost of
these errors is a critical area for further study.

4 Case Study

We focus on a single brand to evaluate the use
of LLMs for Conversation Assist and explore the
application of ENCS for making product decisions.
We evaluate three model customization strategies
using manual ratings from brand agents. We then
evaluate how well these ratings relate to perplexity
and use this to assess a larger set of models. Finally,
we estimate ENCS and discuss the implications.

4.1 Case Study Brand

We partnered with a single brand, who we will refer
to as Anonymous Retailer (AR), for this case study.
AR’s customer base includes both consumers and
sellers who consign items through AR’s platform.
Because AR’s agents are trained across different
customer concern categories, they can provide ex-
pert feedback on a wide range of data.

At the time of writing, AR has about 350 human
agents who use LivePerson’s chat platform. AR
supports about 15,000 conversations per month,
and uses chat bots for simple tasks and routing,
while their human agents send 100,000 messages
per month on average. In comparison, the average
number of conversations per month for brands on
LivePerson’s platform is 34,000, with a median of
900 monthly conversations per brand and a stan-
dard deviation of 160.

4.2 Data sets

We constructed three datasets: brand-specific train-
ing, brand-specific test, and general training. We
de-identified data, replacing each entity with a ran-
dom replacement. For the test set, we manually
ensured that the de-identification was internally
consistent across the conversation for agent and
consumer names, addresses, and order numbers.

The brand-specific data comprises English cus-
tomer service conversations from 2022 that include
human agent and bot messages. We filtered these
conversations to ensure that they had at least two
agent turns, more human agent than bot messages,
and a positive Meaningful Conversation Score.5

5For more information on Meaningful Conversation Score,
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Fine-tuning Distillation 2nd Fine-tuning
Model Name Dataset # Convs # Steps Dataset # Convs # Steps Dataset # Convs # Steps
GPT-2 BFT BD∗ brand 100,059 15,000 brand 100,059 67,014
Cohere PE∗

GPT-3 PE∗

GPT-2 BFT brand 100,059 15,000
GPT-2 BFT BF BFT brand 100,059 34,000 brand 100,059 67,014 brand 100,059 15,000
GPT-2 GFT BD BFT general 236,769 34,000 brand 100,059 67,014 brand 100,059 28,000
GPT-2 GFT GD BFT general 236,769 34,000 general 236,769 1,264,352 brand 100,059 28,000
GPT-2
GPT-2 XL GFT GD BFT general 236,769 120,000 general 236,769 1,264,352 brand 100,059
Cohere FT brand 50
GPT-3 BFT brand 50 4 epochs

Table 1: Model adaptation configurations. ∗ indicates that this model’s outputs were manually evaluated.
BFT = fine-tuned on AR brand data, GFT = fine-tuned on the general dataset, BD = distilled using AR brand data,
GD = distilled using the general dataset, PE = prompt engineered.

From this filtered data, we randomly sampled
100,059 conversations to make up our training set.
From the remainder, we curated a brand-specific
test set by manually selecting 287 conversations
where the customer’s goal could be clearly estab-
lished from the context of the conversation. We
constructed the general training set from five ad-
ditional retail brands whose product lines fall into
similar categories as AR. We filtered and processed
the data using the method described above and se-
lected 70,000 conversations per brand, or used the
entirety of the brand’s data if there were fewer than
70,000 conversations. The total size of the general
training set is 236,769 conversations. For more
details on these datasets, see Appendix D.

4.3 Model Customization

We explored three standard model customization
strategies: prompt engineering, fine-tuning, and
knowledge distillation. Using these strategies, we
tested eleven configurations (Table 1). We evalu-
ated three of these configurations with the judge-
ments of AR agents, and for the remainder we
extrapolated usability scores from the model’s per-
plexity over the test set.

4.3.1 Prompt Engineering
GPT-3 We prompted the text-davinci-003 GPT-
3 model (OpenAI, 2023a), following OpenAI’s best
practices for prompt engineering (Shieh, 2022). Af-
ter some experimentation, we found that the most
effective prompt for our use case (Figure 3) used
a hand-constructed exemplar conversation and ex-
plicitly instructed the model to generate a response
that would address the consumer’s issue.

see: https://knowledge.liveperson.com/data-repor
ting-meaningful-conversation-score-(mcs)-meaning
ful-conversation-score-(mcs)-overview.html/

Cohere Following Cohere’s best practices (Co-
here, 2023c), we tested both verbose and concise
prompts with the XLarge Cohere model (Cohere,
2023a). Unlike GPT-3, we found that using a
prompt without an exemplar conversation (Fig-
ure 3) resulted in better performance.

4.3.2 Fine-Tuning
GPT-2 We fine-tuned GPT-2 (Radford et al.,
2019) using a language modeling task over con-
versational data on either the brand-specific dataset
or the general dataset described in section 4.2. We
started with a learning rate of 0.00008 with a linear
scheduler and no warm up steps and trained until
perplexity plateaued.

GPT-3 We fine-tuned the text-davinci-003 GPT-
3 model from OpenAI on a conversational prompt-
completion task using instructions and an exemplar
conversation as the prompt and the human-agent
response as the output. The dataset consisted of 50
random examples from the brand-specific training
set.

Cohere We fine-tuned Cohere’s XLarge model
with Cohere’s API (Cohere, 2023d) and a random
subset of 50 conversations from the brand-specific
dataset. We tested verbose and concise prompts
as well as EOS token placement, and found that a
shorter prompt with an EOS token after each turn
worked best.

4.3.3 Distillation
To reduce latency and cost to serve by almost half,
we distilled our fine-tuned GPT-2 models using
the Transformers library (Sanh, 2023), following
the method set forth by Sanh et al. (2019) and the
language modeling training task of Radford et al.
(2019). For distillation, we used either the brand-
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Figure 3: Prompts used for Cohere and GPT-36

Model Name %Ignore %Edit %Use
HUMAN 10 12 77
GPT-2 BFT BD 28 16 57
Cohere PE 22 20 58
GPT-3 PE 17 14 69

Table 2: The percentage of responses that agents said
they would use, edit, or ignore. Five agents annotated
each conversation, judgements are counted individually.

specific or the general dataset. We started with
a learning rate of 0.0005 using a linear scheduler
and trained for 3 epochs. Because the OpenAI
and Cohere API’s do not make the logits of the
whole vocabulary available at inference, we are
unable to distill these models using Sanh et al.’s
methodology.

4.4 Metrics and Results
4.4.1 Response Usability
While previous work has assessed the helpfulness
or usability of a response with crowd-sourced judg-
ments (Thoppilan et al., 2022; Peng et al., 2022),
we worked with nine agents at AR who already
use our Conversation Assist product. For each con-
versation and suggested response, we asked them
whether they would use the suggested response as-
is; edit it to change specific details, add to it, or
remove parts of it; or ignore the suggestion alto-
gether. The full annotation instructions are given
in Appendix E.

Table 2 shows annotated Response Usability
(RU) scores for three models. Even when shown
the response that an AR agent had actually used
in the conversation (HUMAN), agents said that they
would use this response only 77% of the time and
would ignore it 10% of the time. This indicates a
high level of personal preference among the agents,
and sets a noteworthy upper limit on the usability
we could expect from model outputs. Agents said
that they would use the GPT-3 PE suggestion 69%

6This example prompt uses a fictitious brand name for
anonymity.

of the time compared with GPT-2 BFT BD and
Cohere PE at only 57% and 58%, respectively.

As the use rate increases, the edit rate and ignore
rates both decrease, indicating that conversations
resulting in editable prompts for some models can
result in usable prompts for another model. We also
note, that while the use rate was similar for GPT-2
BFT BD and Cohere PE, the edit rate was much
higher for cohere, highlighting the importance of
assessing the cost savings of an editable response
vs. ignoring the response entirely.

We also annotated these conversations for the
Foundation Metrics in Thoppilan et al. 2022 and
found a correlation between responses that were
sensible, specific and role-consistent and those that
the agents said they would use. Detailed analy-
sis of these labels and their correlation are in Ap-
pendix G. This additional annotation revealed that,
of the three models, GPT-2 BFT BD was most likely
to generate a consumer turn rather than an agent
turn or to generate a turn that was not relevant to
the conversation, which may account for its high ig-
nore rate. We also note that virtually all responses
generated by the three models were labeled ‘safe’
by the annotators.

4.4.2 Perplexity
Adiwardana et al. (2020) found that sensibleness
and specificity corresponded with the model’s per-
plexity, inspiring us to use perplexity to extrapolate
our manual evaluation of three models to a broader
set of model configurations. After reproducing
Adiwardana et al.’s finding for sensibleness and
specificity using our data (see Appendix J), we in-
vestigated the correlation between perplexity and
response usability. For each conversation context
in the evaluation set, we calculate the perplexity
for the generated response for each LLM using the
average log likelihood of each token, following
equation (4).

(4) PP (W ) = N

√
1

P (w1,w2,...,wN
)
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Model Name PPL %Ignore %Edit %Use
GPT-2 BFT 4.27 20.8 16.8 62.4
GPT-2 BFT BD BFT 4.50 21.0 16.9 62.1
GPT-2 GFT BD BFT 4.05 20.7 16.7 62.6
GPT-2 GFT GD BFT 4.15 20.7 16.8 62.5
GPT-2 7.08 22.7 17.8 59.5
GPT-2 XL GFT GD BFT 5.31 21.5 17.2 61.3
Cohere FT 1.93 19.3 16.0 64.7
GPT-3 BFT 4.14 20.7 16.8 62.5

Table 3: Average perplexity (PPL)7and projected Re-
sponse Usability (RU) scores. See Table 1 for descrip-
tions and naming conventions for the models.

Model Name ENCS/message ENCS/year
GPT-2 BFT BD ¢4.47 $53,653
Cohere PE ¢4.58 $55,000
GPT-3 PE ¢4.24 $50,920
GPT-2 BFT ¢4.97 $59,687
GPT-2 BFT BF BFT ¢4.96 $59,527
GPT-2 GFT BD BFT ¢4.99 $59,851
GPT-2 GFT GD BFT ¢4.98 $59,786
GPT-2 ¢4.81 $57,668
GPT-2XL GFT GD BFT ¢4.90 $58,802
Cohere FT ¢4.62 $55,391
GPT-3 BFT -¢1.56 -$18,691

Table 4: AR’s estimated cost savings per model using
equation 2 and the usage rates in Table 2. For models
below the line, we we use extrapolated usage rates us-
ing perplexity from Table 3. The assumptions used to
calculate the ENCS are described in section 4.4.3. See
Table 1 for descriptions and naming conventions for
these models.

Using all annotated LLMs’ suggested responses
across all conversations in the evaluation set, we fit
a set of linear regression models using the perplex-
ity of the generated agent turn as our independent
variable, and the probability of use, edit, and ig-
nore as our dependent variables. Individual linear
models trained on the output of a single LLM did
not show statistical significance; however, models
trained on the output of all LLMs did show sig-
nificance in the F-statistic (p < 0.05 for P(edit), p
< 0.001 for P(use) and P(ignore)). Extrapolating
from these linear models allows us to illustrate po-
tential cost savings for more models than we were
able to annotate. These linear models predict the
RU scores in Table 3.

4.4.3 Expected Net Cost Savings (ENCS)
We calculate the ENCS for each model using equa-
tion (2), repeated here in (5).

7On the rare occasion that a model did not generate a re-
sponse, we exclude that data point from the average perplexity
as it would heavily skew the average.

(5) ENCS = ((P (U) ∗ SU ) + (P (E) ∗ SE) +
(P (I) ∗ SI)− C

P (U), P (E), and P (I) are the frequency with
which the LLM’s response was accepted, edited,
or ignored in the test set. SU , SE , and SI are cal-
culated assuming that an agent costs $10.00 per
hour and averages 30 seconds per message without
Conversation Assist. With Conversation Assist, we
assume that the agent saves 25 seconds for each
accepted response, 20 seconds for each edited re-
sponse and spends an extra 5 seconds for each
ignored response. We also assume that each re-
sponse costs ¢0.002 to generate for a GPT-2 model,
¢0.0011 for a distilled GPT-2 model, ¢1.09 for
the base model and ¢6.54 for a fine-tuned model
through OpenAI’s API and ¢0.25 for the base
model and ¢0.50 for a fine-tuned model through
Cohere’s API.8

Using the RU scores in Tables 2 and 3, we esti-
mate that AR’s cost savings per message would be
¢4.47 using the GPT-2 BFT BD model compared
with ¢4.24 using GPT-3 PE, as detailed in Table 4.
ENCS per year is calculated based on AR’s annual
agent message volume of 1,200,000.

The factor with the largest impact on AR’s cost
savings is the usefulness of the predictions, as the
best annotated model (GPT-3 PE)’s predictions are
used or edited only 5% more often than the fastest
(GPT-2 BFT BD), while its cost was almost 100
times higher (¢1.09 vs ¢0.0011). Despite this, the
difference in ENCS between these two models is
minimal and only amounts to about $3k per year.
In general, the RU and ENCS are higher for the ex-
trapolated results, which are somewhat less reliable,
but they lead to one important insight: in this case,
the inference cost for a fine-tuned GPT-3 model is
too high for the customer to realize savings.

5 Beyond a single case study

To decide which of these models will lead to the
greatest ROI for a brand, we must consider the
break-even point for each model based on the
ENCS (which includes agent labor and model infer-
ence costs) as well as R&D cost and message vol-
ume. This can be visualized with Figure 4, which

8We estimate GPT-2’s cost based on a latency of 19.57
milliseconds per inference for the full-sized model and 11.60
ms for the distilled model, and a cost of $3.53 per hour renting
an Nvidia A100 GPU from GCP for 8 hours a day. OpenAI
and Cohere’s API costs are come from OpenAI 2023b and
Cohere 2023b at the time of writing.
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Figure 4: Factors impacting when a brand will break
even when using an agent assistance model.

shows that ROI is reached when the amount that la-
bor cost is offset (green) intersects with the amount
that has been spent on the model (red). The num-
ber of suggestions needed to break even (Nr) is
calculated with equation (6), using the R&D cost
(CR&D), ENCS, and the cost to update and main-
tain the model (expressed as an average per mes-
sage over time as Cm).

(6) Nr =
CR&D

(ENCS−Cm)

Given that the difference in ENCS per message
across the models explored in this paper is not
large, low R&D cost is the main consideration to
reach the fastest ROI. For a small brand sending
500,000 agent messages per year and saving about
$24,000 per year with any of the models, reduc-
ing the upfront R&D cost would be critical. On
the other hand, a large enterprise brand who will
save $950,000 per year over 20 million messages,
will break-even on any R&D cost fairly quickly.
As a model with lower inference cost will offset
high R&D cost more quickly and lead to more sav-
ings over a longer period of time, inference cost
is a much more important factor for a brand with
high traffic. In Appendix K, we provide a detailed
example of the impacts of these costs.

It is also worth noting that when choosing be-
tween in-house and third-party models, the differ-
ence in R&D and maintenance cost may not be as
significant as one might expect. While an in-house
model requires up-front investment to train and
serve, OpenAI and Cohere’s LLMs at the time of
writing require a fair amount of effort to prompt en-
gineer for the best performance and these prompts
should be customized to some degree for different
brands and scenarios. From a maintenance per-
spective, we similarly find that while an in-house

model must be refreshed, prompts must also be
redesigned as third-party providers update and re-
lease new models.

Brands might also wish to consider factors that
are not accounted for in this framework. Some
brands would prefer to use an in-house model so
that they can retain control over their data and
protect their customer privacy by limiting access
of their data to third-party vendors. An in-house
model also provides more control over the model’s
suggestions, as well as control over when the model
is updated or deprecated. Especially as technology
develops, models become less expensive to train,
and the performance of open-source models im-
proves, these factors may carry even more weight.

6 Conclusion

In this case study, we demonstrated the utility of
LLMs for agent assistance products, exploring 3
model adaptation strategies across 11 model config-
urations. Based on feedback from real customer ser-
vice agents, we found that bigger is not always bet-
ter, as the distilled GPT-2 model resulted in greater
cost-savings than GPT-3, despite lower quality re-
sponses, because, at the time of writing, its infer-
ence cost is so much lower. These results empower
near-term decision-making for integrating models
like these into production.

However, with the rapidly shifting NLP land-
scape, a framework to assess the cost benefits of
new technologies is critical to facilitate decisions
about integrating them into products. The flexible
framework presented in this paper, ENCS, enables
NLP practitioners to invest in innovations that lead
to tangible business benefits. We found that for
this product, the impact of model quality far out-
weighs inference cost, pointing to the importance
of continuing to push the state of the art, while
considering practical expense. This framework em-
powers the NLP community to invest in the most
cost-effective technology for their specific needs,
even as that technology, its capability, and its pric-
ing evolve.

Ethics Statement

To protect customer and agent privacy, the data
used to train and evaluate models was fully
anonymized by replacing all customer or agent
names, addresses, phone numbers, or other per-
sonal identifiers with a random name or string. We
also compensated agents for annotations in line
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with their standard rate as agents at AR.
While the tools described in this paper have the

explicit goal of making agents’ jobs easier, they -
and specifically the lens of a cost savings analysis -
have the potential to be used to motivate reductions
in workforce, and we acknowledge the impact that
this can have on the agents themselves. We also
note that these tools can also improve the customer
experience by reducing wait times, which can lead
to fewer frustrated customers when they do interact
with agents.

Limitations

In this study, we collected feedback on the use-
fulness of model responses from customer service
agents at AR. These agents were recommended
based on their availability and experience with Con-
versation Assist; however, we did not receive de-
tails about the agents such as their level of train-
ing or experience, which may have an impact on
their preferences using the suggested responses.
Furthermore, while agents in our study received a
flat rate per judgment with no bonus or penalties
to how they judged the response, some businesses
have existing agent metrics (e.g. actual handle time,
AHT targets, etc.) that could incentivize the agents
to behave differently while performing their jobs.
These metrics have the potential to exert pressure
on agents in real-life situations to accept responses
at a higher rate than in this study.

The linear models in section 4.4.2 are based on
the judgments of 5 agents on 3 LMM model outputs
for 287 conversations. While they have shown a
statistically significant relationship between usage
rates and perplexity, this is a small pilot analysis.
Additional data will be necessary to determine how
well this generalizes.

Our cost savings framework also makes a num-
ber of simplifying assumptions about workforce
optimization. We’ve noted some of these assump-
tions in section 3.1, and they should be consid-
ered when leveraging this framework for different
types of products. In addition, while the explicit
goal of these models is to make agents’ jobs easier,
we expect from previous work studying vigilance
tasks (Warm et al., 2008) that there can be an upper
bound to how much cost could be saved with an
excellent LLM, as there would be less benefit from
the agent acting as a human in the loop as their
vigilance wanes.
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A Training Details: Model Fine-tuning

GPT-2 We fine-tuned the pretrained GPT-2
model from huggingface using either the brand-
specific AR or general dataset. Each training ex-
ample has an end-of-text token appended to the be-
ginning and end of the conversation and is padded
with an added pad token. The resulting model has
117M parameters and a vocabulary size of 50258
(GPT-2 vocab size with an additional pad token).
We started with a learning rate of 0.00008 with a
linear scheduler and no warm up steps. The model
was trained for 34000 steps across 4 Nvidia Tesla
V100 GPUs, which equates to roughly 3 epochs
for the AR dataset and 5 epochs for the general
dataset.

GPT-3 We fine-tuned GPT-3 with prompt-
completion pairs using the OpenAI API. We
trained for 4 epochs using a total of 50 examples
that were selected and split at random human-agent
turns to append the preceding conversation to
the prompt and the human-agent turn as the
completion. Additionally, the prompt included a
brief summary of the context before giving the
conversational context, which includes a separator
sequence to delineate the summary and the
conversation. An example of a prompt-completion
pair is given below:

Prompt:

Summary: The following is a conversa-
tion between a CONSUMER and a po-
lite, helpful, customer service AGENT
from <BRAND_NAME>.

CONSUMER: <consumer_turn>

AGENT[non-human]: <agent_turn>

...

AGENT[human]:

Completion:

<agent_response>

Cohere To fine-tune the Cohere model, we ex-
perimented with different configurations for pre-
processing the input data that varied the input

prompts and whether or not to use an end-of-
sequence token between conversation turns. These
selections were all motivated by the Cohere guide
for prompt-engineering, which applies to both train-
ing and inference. The first prompt we experi-
mented with was longer and more verbose, using
sequences to indicate which part of the prompt was
the instruction and which was the conversation to
complete. The second prompt we used was shorter
and did not have clear delimiters between the in-
structions and conversation. The full prompts can
be seen in in the prompt engineering appendix (Ap-
pendix C).

B Training Details: GPT-2 Distillation

GPT-2 We distilled our fine-tuned GPT-2 models
using the distillation code provided by Hugging-
face. The dataset was preprocessed with the same
beginning and ending tokens as in the fine-tuning
stage. The resulting model has 81M parameters
across 6 layers, reduced from 117M parameters
across 12 layers with the same vocabulary size.
Training started with a learning rate of 0.0005 us-
ing a linear scheduler and ran for a maximum of 3
epochs on 1 Nvidia Tesla V100 GPU. This resulted
in 67,014 and 164,352 steps for distilling on the
AR and general datasets, respectively.

C Prompt Engineering

GPT-3 We experimented with several prompts
before choosing one that gave adequate results
without consuming too much of the token limit.
That is, we wanted to provide enough information
to get the best results in the most concise way.

First, we varied the verbosity of the framing of
the request, changing factors such as whether the
brand name was provided or whether there was a
description of the product line:

You are a customer service representative

You are a customer service representative for
a retail and consignment brand

You are a customer service representative for
a luxury retail and consignment brand

You are a customer service representative for
a luxury retail and consignment brand called The
Republic of Fashion

You are a customer service representative for
a luxury retail and consignment brand called The
Republic of Fashion which is an anonymized version
of AR.
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The quality of the responses did not vary
based on the amount of detail given here, nor did
they change when this was omitted, so we chose to
omit it.

The next aspect we varied was the amount of
detail given in the description of the examples:

Here are examples of good interactions

Here are examples of good interactions be-
tween a consumer and an agent

Here are examples of good interactions be-
tween a consumer and an agent where the agent is
able to address the consumer’s question

Here is an example of a good consumer agent
interaction where the agent is able to address the
consumer’s question. Consumer turns start with
“CONSUMER:”, customer service representative
turns start with “AGENT:”

And finally, we varied the description of the
task we requested:

Your job is to generate the next agent turn for the
following conversation

Your job is to generate the next agent turn for
the following conversation to properly address the
consumer’s question.

Results were best when the words “to prop-
erly address the consumer’s question” were
provided, but it did not matter whether they
appeared in describing the examples or in the final
instruction.

Based on these findings, we selected the
following prompt framing to use in the GPT-3
experiments:

Here are examples of good interactions between a
consumer and an agent.

<sample conversation>

Generate the next agent turn for the following
conversation to properly address the consumer’s issue

<conversation>

The next task was to find an exemplar conversation
to use in the prompt. The prompt used with
the example conversation (few shot, n = 1) and
without (zero shot) did not differ in the quality
of the responses, though it did differ in the exact
wording (we also found that 2 runs in a row, same
conditions, had similar differences in wording),
showing that in these cases, the example we give
it did not greatly affect the appropriateness of
the response. Therefore, we went with a generic,

hand-curated example based on observing trends
in the data:

AGENT[human]: Hello! Thank you for connecting with
The Republic of Fashion. I will be happy to assist you.

CONSUMER: Hi. I wanted to follow up on my
order? It hasn’t arrived yet.

AGENT[human]: Ok. Could I get your order
number?

CONSUMER: Yes. It’s AX001001

AGENT[human]: And the email address?

CONSUMER: test123@gmail.com.

AGENT[human]: Please allow me 1-2 minutes to
look this up. It looks like your order is in progress. It is
due to be shipped tomorrow. You will receive an email
with the tracking number once it ships. Is there anything
else I can help you with today? Thank you for contacting
The Republic of Fashion!

Cohere For Cohere prompt engineering, we
experimented with two separate prompts based
on the instructions given in the Cohere prompt
engineering documentation and the efforts that
were made towards GPT-3 prompt engineering.
The first prompt we used was a shorter prompt that
did not include delimiting to indicate which part
was instruction and which was the conversation to
complete. The second prompt was more verbose
and used the Cohere prompt engineering guidelines
to indicate instruction and conversation. In both
cases, we followed Cohere’s recommendation on
using stop-sequences by inserting <EOS> at the
end of every turn. Without the stop sequence,
Cohere would continue to generate multiple agent
and consumer turns until it hit the maximum token
count. With the stop-sequence, the Cohere model
would only generate a single agent turn. Addition-
ally, both prompts end with "AGENT[human]:"
to prompt the model to generate the human-agent
turn every time. The shorter prompt ultimately
performed better so we only report the results
for prompt engineering using the shorter prompt,
however, both prompts used are given below:
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Long prompt

===Instruction===

The following is a conversation be-
tween a CONSUMER and a polite,
helpful customer service AGENT from
The Republic of Fashion. Your task
is to determine the next best response
from the AGENT.

===Conversation===

<conversation_context>

AGENT[human]:

Short prompt

The following is a conversation be-
tween a CONSUMER and a polite,
helpful customer service AGENT from
The Republic of Fashion. What is the
next best response the AGENT should
give?

<conversation_context>

AGENT[human]:

D Dataset Details

We constructed our brand-specific dataset using
conversational data from our case-study brand,
Anonymous Retailer (AR), from every month of
the year 2022. From the year’s data, we removed
conversations that did not meet the following crite-
ria:

• 2 or more agent turns

• an automated conversational quality score of
neutral or higher 9

• proportionally more human agent then bot
turns

From the remaining data, we randomly sampled
100 conversations per month for a development
and test set. The final test set contains 287 conver-
sations that were chosen to represent a variety of
common scenarios where the agent’s response was
not always dependent on a database-style lookup,
and therefore could be reliably generated without
a database integrated on the back-end. The devel-
opment set was used to experiment with different
prompt engineering configurations.

The remaining data, not sampled for the develop-
ment or test sets, was used for fine-tuning. Specific
dataset sizes are given in Table 5, which shows

9We used LivePerson’s Meaningful Conversation Score.
For more details, see: https://knowledge.liveperson.c
om/data-reporting-meaningful-conversation-score
-(mcs)-meaningful-conversation-score-(mcs)-overv
iew.html/

Conv. Mess. # Agent
AR 100,059 4,234,023 14.5
General 234,769 8,708,004 13.5

Table 5: Size of fine-tuning data sets

the number of conversations, messages, and the
average count of agent turns per conversation.

All data was de-identified using an internal
Personally Identifiable Information (PII) masker
that replaces personal names, locations, and digit
strings with a random stand-in. The evaluation set,
which would undergo a round of human annotation,
was reviewed to ensure that agent and consumer
names, order numbers, addresses, etc, were inter-
nally consistent within a conversation.

For the general dataset, we chose five retail
brands whose product lines were a close match to
AR’s. These were filtered using the same method
that was applied to the AR data. We then sampled
70,000 conversations from each brand, or used all
the data available if the brand had less than 70,000,
resulting in 236,769 conversations, as shown in
Table 5.

E Annotation Scheme: Response
Usability

As described in 4.4.1, to evaluate the usefulness of
suggestions to agents, we asked nine agents from
AR to look at turns in a conversation and tell us,
based on their experiences as an agent for AR,
whether the suggestion was one that they would
use, edit, or ignore.

Agents were given access to an internal
annotation tool where they viewed conversations
one at a time, with names and numbers replaced
with random stand-ins to protect personally
identifiable information, so that they could decide
with the correct context what they would do in a
given suggestion. They were given the following
guidelines:

Context

What we’re building: We want to build
a tool that will offer agents suggestions
for what to say next in conversations
with customers. The tool would be
like a powered-up Conversation Assist,
where custom recommendations would
be based on the entire conversation. We
are investigating different techniques to
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train machine learning models so they
can offer responses that are specific to a
brand, and we want to understand how
well they work.

We want your guidance: We want to di-
rectly use your expertise as agents to
evaluate how good these models are at
giving you useful suggestions. We’ll
show you snippets of real conversations
between a customer and a human agent,
one at a time, as well as a suggestion
for the next agent message. We would
like you to consider the suggestion in the
context of the conversation and decide
whether you would use it, edit it, or ig-
nore it.

Instruction

Our goal for this task is to evaluate the
models that will be responsible for sug-
gesting possible agent responses. This
helps us understand exactly how useful
they would be to agents like you, and
gives us data to improve our models.

The real conversations you’ll see are spe-
cific to AR, with names and numbers
replaced with a random stand-in to pro-
tect personal identifiable info. We have
also replaced references to AR with a
made-up brand, Republic of Fashion.

We’ll ask you to look at turns in a con-
versation and tell us, based on your ex-
periences as an agent for AR whether
the suggestion is one that you would use,
edit, or ignore. The quality of these sug-
gestions will be widely varied. Please
make your decisions both on the con-
tent of the suggestions, and whether they
match the appropriate tone for AR. We
encourage you to go with your instincts
here on what you would prefer to do in
a real conversation. For example, the
line between editing a response vs. ig-
noring it is often flexible, depending on
how much editing you think it needs. We
want to build tools that are the most use-
ful to you, so feel free to go with your
gut.

It’s possible that you could see the same
conversation shown with an alternate sug-
gestion at another point. That’s fine - we

don’t need to compare differences in the
suggestions. Our goal for this evaluation
is to understand: would an experienced
agent use the suggestion or not? The
data from this will help us improve our
suggestion models.

You can find more details on the labels
below. We won’t be asking you to pro-
vide reasons for your responses. In the
future, we might ask to do focus groups,
or interviews to learn more about your
thought process and why you selected an-
swers, but it’s not required for this task.

Use suggestion: Select this label if
you would use this message as-is if you
were the agent handling this conversa-
tion. This includes: if you would make a
formatting change (for example, splitting
the turn into multiple messages) and if
you would use the message suggested,
and also send additional messages after-
wards

Edit suggestion: Select this label if you
would choose this message, and then
make edits before sending. Edits in this
case include instances where personal
or factual information (consumer names,
agent names, discount percentages, etc.)
would need to be verified and changed.
The amount of editing needed does not
matter; if you would change the message
at all before sending it, please select this
label.

Ignore suggestion: Select this label if
you would not use or edit the suggestion,
but would rather type your own message.
There are many valid reasons not to use
a suggestion (it’s irrelevant, repetitive,
inappropriate, etc).

In any case where the annotation tool
does not properly display a suggestion,
choose the fourth option, “No suggestion
displayed”.

F Annotation Scheme: Foundation
Metrics

To better understand the Response Usability results,
we annotated each response following a variation
of the Foundation Metrics from Thoppilan et al.
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Figure 5: Foundation Metrics decision flowchart

(2022). Our internal team of professional annota-
tors labeled responses from the evaluation dataset
for Sensibleness, Specificity, Safety, Informative-
ness, Helpfulness and Role-consistency, following
the guidelines laid out by Thoppilan et al., with
some concessions made for effort and information
available.

We omit Interestingness, as we found it irrele-
vant in a customer support setting. Additionally,
because the models in this case study are not con-
nected to the back-end system that the agents use
to look up account details, we do not consider the
accuracy of entities and therefore omit Grounded-
ness and made adjustments to our understanding of
Informative. The metrics used and their guidelines
for annotation are below:

Sensible: A suggestion is sensible if it
is a logical continuation of the conversa-
tion, or a logical follow-up question or
request. It also does not contradict ear-
lier information given by the Agent in the
conversation. A suggestion can be sensi-
ble or not sensible regardless of whether
or not it is Specific or Informative.

Specific: A suggestion is specific if it
shows understanding of the context of
the conversation. This may be shown in
a reflection of something mentioned ear-
lier in the conversation, a reflection of
the question the consumer is trying to an-
swer, etc. Whether or not a suggestion is
Specific was considered only if Sensible
= true.

Informative: A suggestion is Informa-
tive if it provides factual information that

would be able to be shown to be correct
or incorrect. Smalltalk or opinions would
not be Informative; statements about or-
der numbers, general policies or avail-
able time slots would be. Agent actions
taken that could be true or untrue (I’ve
forwarded your inquiry/I’ve resent your
package) would also be Informative.

As mentioned, because the nature of the
suggested responses was often specific
to AR and these annotations were not
done with access to the AR knowledge
base, we had no basis on which to judge
Groundedness as outlined in LaMDA
(Thoppilan et al., 2022). Therefore, we
treated each suggestion as if it contained
true information. In other words, regard-
ing Informativeness, we did not check
whether the information was correct,
only whether the statement contained in-
formation that could be judged correct or
incorrect. Like Specificity, Informative-
ness was only considered if Sensible =
true.

Helpful: A suggestion is Helpful if it is
first Informative (i.e., could be judged on
correctness, as above). Then, given a pre-
sumption that the information provided
is correct, it is Helpful if it fits the stan-
dard definition of “helpful” as judged by
the annotator. Helpful should only be
considered if Informative = true.

Safety: A suggestion is considered Safe
if it does not contain content that: could
cause users mental or physical harm;
may be misinformation about public fig-
ures or events; could be construed as
financial advice or an unsubstantiated
health and safety claim; has obscene (vi-
olent/gory, sexual, profane, or bigoted)
material; reveals personal information
that appears to be outside the context of
the conversation (not related to the con-
sumer or company). Safety was consid-
ered independent of other metrics.

Role-consistency: The response looks
like something a consumer-facing agent
might say, consistent with the role of an
agent for AR. This consistency does not
rely on being consistent with other infor-
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mation in the conversation and is consid-
ered independent of other metrics; that
information is captured in Sensibility.

Figure 5 further illustrates the way we considered
these metrics interdependent.

G Foundation Metrics Results and
Analysis

The Foundation Metrics label frequencies for each
model are shown in Figure 6. As noted in Ap-
pendix F, accuracy of entities is not reflected in
these metrics as it was not considered. Instead,
that information is captured to some degree by the
response usability metric, which allows agents to
indicate that they would edit the response.

For Foundation Metrics, the GPT-3 PE re-
sponses were rated on par with the HUMAN re-
sponses, and it was considered even more specific
and helpful than the human.10 We found that GPT-
2 BFT BD was much worse than the other models.

To better understand the relationship between
Response Usability and Foundation Metrics, we
calculated the Pearson correlation coefficient (Ta-
ble 6). The strongest positive correlations are be-
tween “sensible”, “specific” and “role-consistent”
and “use”, while the strongest negative correlations
are between those labels and “ignore”. “Edit” does
not correlate strongly with any labels, which we
take as an indication that there are a wide range of
reasons to edit messages, from the presence of in-
formation to the inclusion of non-sensible phrases
amidst more useful text. It should be noted that
very few of the generated responses were judged
not “safe”, hence the low correlations to all Re-
sponse Usability measures.

GPT-2 BFT BD outputs were labeled “ignore” by
the agents much more often relative to “edit” than
they were for the other models. The Foundation
Metrics shed light on this, as GPT-2 BFT BD has
the lowest score for each of these metrics, with the
exception of “safe”, which did not correlate with
usability11. This suggests that GPT-3 PE and Co-
here PE are more often able to produce something
sensible and specific, even when the full response
is not usable, compared with GPT-2 BFT BD.

Figure 6: Label counts per model for each of the Foun-
dation Metrics.

Sensible Specific Informat. Helpful Safe Role-consis.
Use 0.44 0.29 0.14 0.14 0.02 0.37
Edit -0.15 -0.07 0.00 -0.02 0.01 -0.09
Ignore -0.45 -0.31 -0.18 -0.17 -0.04 -0.40

Table 6: Pearson Coefficient, showing correlation be-
tween Response Usability and Foundation Metrics la-
bels.

H Response Usability Annotator Analysis

As mentioned in Section 4.4.1, nine different anno-
tators annotated the usability of different models’
suggested responses, and we gathered five anno-
tations per response. We calculate the agreement
level using Fleiss Kappa. The overall agreement
level and the agreement level for each model are
shown in Table 7.

In addition, we show the average suggested
response length (as number of tokens) for tasks
with high agreement rates. These averages are
shown in Figure 7 for responses with three or
more annotations with the same label (either
‘use’/‘edit’/‘ignore’), and for tasks with even higher
agreement with four or more of the same label. An-
notations of empty suggestions (‘No Suggestion
Displayed’) are counted as ‘ignore’.

10See Table 1 for descriptions and naming conventions for
the models.

11As a matter of fact, very few responses were not consid-
ered safe
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Model Fleiss Kappa
All models 0.1744
Human 0.1562
Dist GPT-2 0.2104
GPT-3 0.1411
Cohere 0.1101

Table 7: Agreement level as Fleiss Kappa for each
model, between the five annotators of each response.

Model GPU Latency Throughput Cost/Inference
(ms) (infer/s) (¢)

GPT-2-XL V100 620 16 0.0468
GPT-2 V100 47 211 0.0036
GPT-2 DISITL V100 25 398 0.0019
GPT-2-XL A100 128 78 0.0126
GPT-2 A100 20 510 0.0019
GPT-2 DISITL A100 12 859 0.0011

Table 8: Table comparing inference speeds and costs on
a V100 GPU vs A100 GPU

I Inference Cost

In production at peak hours, we require that our
models handle at least 500 inferences per second,
32 concurrent messages, with a latency of no more
than 500ms/inference. We performed model bench-
marking and cost estimation on the Google Cloud
Platform (GCP) Google Kubernetes Engine to de-
termine the minimum hardware requirements for
serving our fine-tuned GPT-2 models of three dif-
ferent sizes: GPT-2 with 117M parameters, GPT-2-
distilled with 81M parameters, and GPT-2-XL with
1.5B parameters. We converted our PyTorch model
checkpoints to Onnx (Huggingface) and served the
models with the optimized NVIDIA Triton Server
(NVIDIA, b) using their natively supported on-
nxruntime backed. We then performed load and
latency benchmarking using Triton’s Performance
Analyzer (NVIDIA, a) tool on both 1 NVIDIA
V100 with 16GB of GPU memory and 1 NVIDIA
A100 with 40GB of GPU memory. Both config-
urations were set up with 30GB of CPU Memory
and with a limit of 4 CPU cores. Table 8 shows the
performance of each model per GPU type12.

We calculate cost per inference using the Google
Cloud Pricing Calculator (Google) for a GKE Node
Pool to first price each GPU. On GCP, there is a
sustained use discount depending on how many
hours the GPU node is in use. In a production

12All latencies and throughputs recorded use a batch size
of 1 and concurrency of 10 with 4 instances of the models
loaded for inference (except in the case of GPT-2 XL which
was loaded with 1 instance on the V100 due to insufficient
GPU memory). The GPU utilization was at 80-100% for all
tests implying we used the GPUs to their full potential.

Figure 7: Average suggested response length for tasks
with high agreement. In the figure, ‘use3’ means tasks
with at least three ‘use’ annotations etc.

setting, one could rent some GPUs 24/7 at a lower
rate, and additional GPUs at a higher hourly rate to
handle peak loads. We approximate this variation
by using the 8hr/day pricing option. The cost of the
V100 GPU Node was listed to be $661.14/month
at 243.33 hours or $2.72/hour, and the cost of the
A100 GPU $858.16/month or $3.53/hour. Using
the latencies in Table 8, we report the cost per
inference in cents.

The A100 GPU was found to be less expensive
per inference than the V100 GPU because it was
over two times faster. As expected, the distilled
model was by far the fastest and least expensive,
with a relative improvement of 1.7x that of the
GPT-2 model and 25x that of the GPT-2 XL model.

J Linear Modeling

Response Usability To calculate the relationship
between the human-annotated response usability
judgments and perplexity, we converted the counts
of each label to a probability distribution. We then
trained a linear model using the R (R Core Team,
2021) base lm function, using the perplexity of the
generated utterance as the independent variable,
and the probability of the usage statistic as the
dependent variable.

Prior to fitting a linear model, we removed out-
liers using the Interquartile Range (IQR) method.
This method was applied to each subset of the data,
and to the entire dataset, independently.
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Figure 8: Linear Fits for Response Usage Metrics: P(use), P(ignore), and P(edit)

Linear models calculated from the perplexities
of the outputs of individual LLMs did not show sta-
tistical significance, likely due to the small datasets
(n = 287). Across all LLMs, however, all linear
models showed statistical significance (p < 0.05 for
P(edit), p < 0.001 for P(use) and P(ignore)), so all
equations are derived from the aggregated data (n
= 861).

Figure 8 shows the fit of the linear models for
P(use), P(ignore), and P(edit) respectively. The
X-axis represents the perplexity of the generated
output while the Y-axis represents the probability
of the agent selecting the metric. As expected, the
probability of an agent choosing to use a suggestion
decreases as the perplexity increases. Edit and
ignore are largely a matter of personal preference,
so while the general trend is that the probabilities of
both increase as perplexity increases, the effect of
perplexity is not as strong as it is for the probability
of using the suggestion.

These linear models show significance in the F-
statistic (p < 0.05 to p < 0.01). This indicates that
the null hypothesis is rejected and that there is a re-
lationship between the perplexity of the generated
output and the agent’s choice to use, ignore, or edit
the suggestion.

Foundation Metrics We used same method to
calculate the relationship between the human-
annotated foundation metrics and the perplexity
of the generated output, except that we did not
need to convert the annotations into a probability
distribution, because the foundation metrics were a
binary judgment. Perplexity outliers were removed
from this data using the IQR method, and the R (R
Core Team, 2021) base lm function was used to fit
a linear equation to the data.

Figure 9 shows the fits of the linear equations for
the foundation metrics, Sensible, Specific, Infor-
mative, Helpful, and Role Consistent. Since very

few of the generated suggestions were judged to be
not safe, this model did not show significance. The
X-axis represents the perplexity of the generated
output, while the Y-axis represents the judgment of
the selected foundation metric. As expected, and
extending the findings of Adiwardana et al. (2020),
all metrics decrease as the perplexity increases.

These linear models also show significance in
the F-statistic (p < 0.05), indicating that there is a re-
lationship between the perplexity of the generated
model and the human judgments of the foundation
metrics.

Discussion This is a pilot study where 861 gener-
ated responses were judged by 5 annotators for
the Response Usability metrics, and 3 annota-
tors reached consensus on the Foundation Metrics.
These models show that there is a significant rela-
tionship (p < 0.05) between perplexity and human
judgments of Response Usability and the Founda-
tion Metrics. These models, however, are consid-
ered only a starting point from which to build.

K Cost-savings Model

Below we have the cost-saving models that we de-
veloped as the basis of ENCS (section 3). Table 9
focuses on cost-savings, using estimates for op-
eration scale, labor cost, and conversational data
volume from AR as well as other brands. Since
we investigated both third-party LLM inference
costs, as well as in-house inference costs, we made
sure to include both as part of the model, and ul-
timately calculated cost savings per message with
each model type.

Table 10 focuses on the R&D cost estimation
for building and maintaining the model, which was
omitted from the main body of the paper. This
uses some ballpark estimates (e.g. 3 months of
developer time to build a model, developer salaries,
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Figure 9: Linear Fits for Foundation Metrics

and amortization period) to estimate the overall
monthly R&D cost of building and maintaining an
in-house model.

Table 11 uses the R&D cost to build the model,
and calculates a break-even point to answer the
question: how many assisted messages does it take
for the cost-savings to effectively cover the devel-
opment cost of the model. This was also calculated
as a number of months, based on the estimated
messaging traffic, and total number of agent mes-
sages per month. For the example described in the
table, the model could break even in less than two
weeks of operation. As described further in sec-
tion 5 this calculation could be very different for a
lower-traffic brand.
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1. Operation scale
# agents 500
# conversations per agent per month 500
Total agent messages 3,750,000
Total consumer & agent messages per month 7,500,000
2. Labor cost
Agent hourly rate $10
Labor cost $866,667
3. Volume of conversational data
Average length of conversation (messages) 30
# Consumer messages 15
# Agent messages 15
Average message length (char.s) 150
Average # of characters per conversation 4,500
Average conversation volume per month (char.) 1,125,000,000
Average conversation volume per month (tokens) 281,250,000
4. Model inference cost
In house
Usage per 1000 tokens $0.0016
Monthly usage cost $450
Monthly usage & R&D cost $6,017
LLM recommendation cost/message $0.0016
3rd party
Usage per 1000 tokens $0.12
Monthly usage cost $33,750
Monthly usage & R&D cost $39,316.67
LLM recommendation cost/message $0.010
5. Agent time saving estimation
Time to read & accept suggestion (sec) 5
Time to read & edit suggestion (sec) 10
Time to reject suggestion and compose (sec) 30
Probability of accepting 0.7
Probability of editing 0.15
Probability of rejecting 0.15
Avg agent time/msg with LLM assistance (sec) 9.50
Avg agent time/msg without LLM assistance (sec) 30
Agent time saving (%) 68%
6. Cost saving per message
Labor cost/msg with LLM $0.03
Labor cost/msg without LLM $0.08
In house
Total cost in-house model assisted (labor + recommendation) $0.03
Cost saving in-house model assisted vs unassisted ($) $0.06
Cost saving in-house model assisted vs unassisted (%) 66%
3rd Party
Total cost 3rd party model assisted (labor + recommendation) $0.04
Cost saving 3rd party model assisted vs unassisted ($) $0.05
Cost saving 3rd party model assisted vs unassisted (%) 56%

Table 9: Cost Saving Estimates
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1. Cost to build a model
Project effort, dev/months 3
R&D labor cost $50,000
Model training cost $100
Total cost to build a model $50,100
Amortization period, years 3
Amortized model development cost per month $1,392
2. Cost to maintain model
Project effort, dev/months 3
R&D labor cost $50,000
Model training cost $100
Total cost of model maintenance per year $50,100
Cost of model maintenance per month $4,175
Monthly R&D cost
Monthly R&D cost to build and maintain $5,567
US AI developer FTE rate $200,000

Table 10: R&D Cost Estimates

In-house
# of model assisted messages to break even 905,313
Time to break even, months 0.24
3rd Party
# of model assisted messages to break even 1,078,347
Time to break even, months 0.29

Table 11: Break Even Point Estimates
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