
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 3: System Demonstrations, pages 479–488

July 10-12, 2023 ©2023 Association for Computational Linguistics

Alfred: A System for Prompted Weak Supervision

Peilin Yu Stephen H. Bach
Department of Computer Science

Brown University
{peilin_yu, stephen_bach}@brown.edu

Abstract
Alfred is the first system for programmatic
weak supervision (PWS) that creates training
data for machine learning by prompting. In
contrast to typical PWS systems where weak
supervision sources are programs coded by
experts, Alfred enables users to encode their
subject matter expertise via natural language
prompts for language and vision-language mod-
els. Alfred provides a simple Python interface
for the key steps of this emerging paradigm,
with a high-throughput backend for large-scale
data labeling. Users can quickly create, eval-
uate, and refine their prompt-based weak su-
pervision sources; map the results to weak la-
bels; and resolve their disagreements with a
label model. Alfred enables a seamless lo-
cal development experience backed by mod-
els served from self-managed computing clus-
ters. It automatically optimizes the execu-
tion of prompts with optimized batching mech-
anisms. We find that this optimization im-
proves query throughput by 2.9× versus a
naive approach. We present two example use
cases demonstrating Alfred on YouTube com-
ment spam detection and pet breeds classifi-
cation. Alfred is open source, available at
https://github.com/BatsResearch/alfred.

1 Introduction

Acquiring labeled data is a significant challenge
for machine learning for its time-consuming and
expensive nature. Programmatic weak supervision
(PWS) provides a more efficient method of data
annotation by using noisy heuristics to label data.
In a typical PWS setup, domain experts design la-
beling functions (LFs) as programs that vote for
a label or abstain. (Ratner et al., 2016, 2017) Re-
cently, there has been a growing interest in creating
LFs from large, pre-trained models through prompt-
ing (Smith et al., 2022; Arora et al., 2022; Zhang
et al., 2022b). In the shift to this new setting, exe-
cuting LFs goes from the least to the most computa-
tionally expensive part of the process, highlighting

the importance of providing a software infrastruc-
ture that facilitates efficient development. However,
existing toolkits for large language models mainly
prioritize prompt templating and tuning, leaving an
unmet need for a system that that connects prompt-
ing with the creation of training data.

Prompted models offer a unique opportunity
to enhance existing PWS systems. Traditional
PWS systems require programming LFs with code
that specifies heuristic domain knowledge. With
large pre-trained models, natural language-based
prompts can be used as LFs, also known as
prompted LFs (Smith et al., 2022). This approach
allows the easy expression of complex rules that
were previously difficult to specify using code, as
the example in Figure 1 shows. The ability to use
prompts to define labeling functions simplifies and
streamlines the weak supervision process, as well
as potentially elevating the quality of the annota-
tions. This benefit is particularly helpful for tasks
involving computer vision, where previously PWS
has been limited to tasks for which models can
identify key features (such as objects) over which
to program rules. Whether the domain is language
or multi-modal, prompts let users experiment with
different heuristics (and phrasings of those heuris-
tics). Therefore, enabling an iterative development
experience is essential for the success of a prompt-
based PWS system.

The switch to prompted models for weak super-
vision also presents significant challenges. It first
requires rethinking the abstractions and workflow
of first-generation PWS systems. Instead of edit-
ing code and managing libraries of functions, users
must manage libraries of prompts, track their out-
puts on multiple datasets, and develop strategies
for mapping those outputs to labels. This change is
complicated by large models’ demand for compu-
tational resources. The throughput of the models is
a new development bottleneck. The extra overhead
of remotely hosted models is a further hindrance to

479

https://github.com/BatsResearch/alfred

def biden_mention(instance):

 if re.match(

 r"(President\s)?(Jo(seph)|(e)\s)?(Biden)/i",

 instance):

 return POLITICS

 else:

 return ABSTENTION

"Text: [[instance]] Does this text mention President

Biden?"

"Yes" ➡ POLITICS

"No" ➡ ABSTENTION

Labeling Function Prompted Labeling Function

def positive_sentiment(instance):

 for token in tokenize(instance):

 if token in positive_words:

 return POSITIVE

 return ABSTENTION

"Text: [[instance]] Does this comment express positive

sentiment?"

"Yes" ➡ POSITIVE

"No" ➡ ABSTENTION

def stripe_detect(instance):

 if stripe_detector.infer(instance) >= 0.5:

 return [TIGER, ZEBRA]

 else:

 return ABSTENTION

instance

“A photo of an animal with stripes”,

“a photo of an animal”

"A photo of an animal with stripes" ➡ [TIGER, ZEBRA]

"A photo of an animal" ➡ ABSTENTION

Figure 1: Examples of a labeling function versus a prompted labeling function. For the first example, each expresses
supervision relating mentions of President Biden to the category of politics. Instead of specifying an intricate regular
expression, a prompted labeling function uses the prompt “Text: [[instance]] Does this text mention President
Biden?” where [[instance]] is replaced by the news article to be labeled. The response is mapped to a vote on the
true label. The second example demonstrates how heuristics about positive sentiment that were previously hard
to define can be flexibly expressed as a natural language question. Instead of defining a set of keywords for fuzzy
sentiment matching, we can simply ask large pretrained models for answers about the sentiment. For the third
example, we consider an animal labeling task where we use the visual attributes “stripes” to vote for the classes
TIGER and ZEBRA. Previously, we would need to first collect supervised training data for attributes like stripes
and then train classifiers to make the decisions. With modern vision-language models (e.g. CLIP), we can simply
express the attribute detection task as a set of candidate prompts.

the iterative workflow of weak supervision.

Existing open-source software for prompting
concentrates on prompt engineering (Orr, 2022;
Bach et al., 2022), prompt chains (Chase, 2022) or
continuous (i.e., soft) prompt tuning (Ding et al.,
2022); placing less emphasis on throughput for a
large-model-in-the-loop workflow. Additionally,
many existing open-source systems have not devel-
oped support for vision-language models, despite
their benefits for data labeling. Incorporating large
pre-trained models into a PWS system remains an
open problem in the open-source software space,
requiring innovative solutions to address these chal-
lenges and complement existing software focused
on other aspects of prompting.

We present Alfred, a versatile PWS system that
leverages large pre-trained models for image and
text annotations. Alfred aims to provide an environ-
ment for the rapid development of prompt-based
supervision, while maintaining a consistent devel-
opment experience similar to established PWS sys-
tems. We designed Alfred with usability and ef-
ficiency in mind, aiming to provide a rapid and

smooth experience for developing prompt-based su-
pervision. Alfred supports popular large language
models from Hugging Face’s transformer package
(Wolf et al., 2020), including the GPT family (Rad-
ford et al., 2019), the T5 family (Raffel et al., 2020),
etc., and vision-language models like CLIP (Rad-
ford et al., 2021), etc. Alfred also supports local
ONNX models, or API-based models from Ope-
nAI, AI21, and Cohere. Moreover, Alfred provides
easy templating tools to help users quickly create,
evaluate, and refine prompted LFs. Alfred offers
easy ways to deploy inference servers remotely, in
addition to local model hosting. Alfred also opti-
mizes model inference throughput with improved
batching techniques and provides utilities for ef-
ficient LLM deployment and interaction. Finally,
Alfred contains a library of label models to distill
the outputs of prompted labeling functions into the
final training datasets for downstream end models.

Alfred is a prototype for a second generation of
PWS systems with prompting at their core. To this
end, we highlight three key feature of Alfred:

• Prompt-based weak supervision for images

480

Alfred ClientCompletionQuery

RankedQuery

Prompt

Prompt Candidates

Dev. Set Templates

API Model

CompletionResponse

RankedResponse

Prediction

Prediction Scores

Metrics

Query Response

Local ModelRemote Model

gRPC Transformers, ONNXAI21, Cohere, OpenAI

Voter Calibrate
Label Model

Metrics

Prompted LF Development Label Modeling End-Model Training

Figure 2: A typical workflow for programmatic weak supervision with Alfred. First, developers use Alfred to
iteratively design, evaluate, and refine their prompted labeling functions (LFs). They use prompt Templates to
generate Queries to Models based on data. The responses of Models are mapped to votes on the true labels for
examples by Voters, which can be calibrated. Then the included Label Models combine the noisy votes to produce
probabilistic training labels for an end model.

and text. Alfred provides the necessary tools for
users to create, evaluate, and refine prompt tem-
plates for both image and text weak supervision
tasks. The inclusion of a query caching system
that automatically stores and updates model re-
sponses facilitates development.

• Optimized inference throughput. Alfred im-
plements a dynamic batching mechanism that
optimizes large sets of prompts. This feature al-
lows models hosted by Alfred to achieve 2-3×
greater throughput than naive implementations.

• Seamless local development experience. Alfred
can host models remotely and make them acces-
sible to developers via gRPC, a high-throughput
protocol for remote procedure calls.1 It enables
sending datasets to servers in large chunks to
maintain higher throughput. Alfred also imple-
ments a SSH-based port-forwarding utility for
the gRPC connection, easing deployment on
shared clusters such as those at universities.

2 Related Work and Background

Alfred sits at the intersection of programmatic weak
supervision and large pretrained models. In this
section, we overview the most related work.
Programmatic Weak Supervision. Traditionally,
supervised learning relied on manually labeled data,
and data labeling has been seen as a key bottleneck
for many applications. Recently, a family of pro-
grammatic weak supervision (PWS) methods have
offered an alternative to costly manual annotations
by incorporating multiple sources of noisy labels
to create training datasets (Zhang et al., 2022a).

1grpc.io

Typically, a PWS system such as Snorkel (Ratner
et al., 2017) has a three-stage setup: First, develop-
ers will create heuristics called labeling functions
(LFs) that vote on the label for an example (or ab-
stain). Second, a label model will reconcile the
noisy votes and provide probabilistic labels for the
data. Finally, freshly annotated data is used to train
an end model with a noise-aware loss objective
(e.g. in a classification setting, this can be a soft
cross entropy (Ratner et al., 2016)). Alfred focuses
on the first two stages and aim to efficiently in-
corporate modern large pretrained models into the
development workflow.

Prompting for Pre-Trained Models. With the
emergence of large pre-trained langugae and vision-
language models, prompting has become a pop-
ular approach to many few-shot and zero-shot
tasks (Brown et al., 2020; Schick and Schütze,
2021a; Radford et al., 2021). Prompting can create
training examples, generate data, modify datasets,
and improve model reasoning (Schick and Schütze,
2021b; Ye et al., 2022; Chia et al., 2022; Wu et al.,
2022; Wang et al., 2022; Wei et al., 2022; Zelikman
et al., 2022). This presents a unique opportunity for
combining prompting for large pretrained models
and weak supervision. Recent studies have investi-
gated strategies to combine large language models
into weak supervision frameworks (Smith et al.,
2022; Chen et al., 2022; Arora et al., 2022; Zhang
et al., 2022b). Alfred aims to provide a platform for
the rapid development of weak supervision appli-
cations that rely on large pre-trained language and
vision-language models, as well as enable experi-
mentation with new ways of using those models.

481

https://grpc.io/

Systems for Prompt Development. Prompting
has led to the development of software toolkits
that aid in prompting and research across various
tasks. Many tools have been developed for various
use cases with large language models. Prompt-
Source (Bach et al., 2022) is a development envi-
ronment for creating and archiving sets of prompts.
OpenPrompt (Ding et al., 2022) is a library fo-
cused on tuning prompts and prompted models
with training data. Manifest (Orr, 2022) provides a
unified front end for prompting large language mod-
els via different APIs. LangChain (Chase, 2022)
provides convenient utilities for building applica-
tions that chain together multiple prompts and out-
puts. To complement the existing tools in this grow-
ing space, Alfred is designed to be a PWS system
based on prompting both large language and vision-
language models.

3 Prompted LF Development

Alfred is designed to enable the development and
application of prompted labeling functions (LFs)
Compared to the typical workflow of PWS sys-
tems, where developing LFs is not computationally
demanding, developing prompted LFs has model
inference as a bottleneck. These large models are
often hosted remotely on virtual instances or com-
puting clusters, which can add to the challenge of
iterative prompt development. In an iterative devel-
opment environment, creating prompted labeling
functions requires a platform that provides optimal
throughput and low latency for a rapid local de-
velopment experience. To illustrate Alfred’s key
focuses, we illustrate a typical workflow (Figure 2)
for using Alfred to create a training dataset:
Step 1: Task Setup For a large model to be used
in the development loop, developers can elect to
use either self-hosted models or API-based mod-
els. For self-hosted models, Alfred provides an
AlfredServer to host the model on cloud or cluster

nodes. As the main development interface, the user
can simply start a Client by specifying the type of
model. Before creating prompted LFs, users need
to familiarize themselves with the task by exploring
the raw, unlabeled dataset. If there is no develop-
ment subset available, the developer can annotate
a small portion of the data as a held-out evalua-
tion benchmark. Alfred implements a Dataset
class based on Apache Arrow for fast data access.
User may load a Dataset from CSV, JSON or
Dataframe objects. It also offers direct support

for datastes from the Hugging Face ‘Dataset‘ pack-
age (Lhoest et al., 2021). During the exploration
process, developers may gain insights into the data
and the label space, and identify potentially useful
heuristics. Moreover, users can freely experiment
with prompts with a few unlabeled instances by
directly interacting with the Client .
Step 2: Iterative Prompt Development: When
the user is ready for prompt development, they can
use a Template to define a prompted LF for either

text completion or scoring schemes. A Template ,

given a Dataset , will produce the correspond-
ing Query objects. Client will return the ap-

propriate Response object for each Query . To
map the model responses to votes, users define
the corresponding Voter and identify the label
maps and matching functions to be used for each
prompted LFs. Label maps define how potential
model responses are associated with the label space.
Matching functions specify how the Voter deter-
mines a match. By default, Alfred employs an
exact match mechanism, but this can be substituted
with user-defined matching functions for uncased
matching or embedding similarity matching, etc.
A Voter can be optionally calibrated to reduce
model-specific biases (Zhao et al., 2021). With
the model responses and the Voter, users can ob-
tain the label votes for each of their prompted LFs
and examples in a matrix format. Finally, users
can evaluate the quality of their prompted LFs us-
ing a set-aside development Dataset with desired
metrics. Here, users can continue to refine their
prompted LFs and iterate as necessary. Once users
are satisfied with the performance of their develop-
ment benchmark, they may proceed.
Step 3: Aggregate Prompt Responses Finally,
Alfred can aggregate the votes from each Voter
with a LabelModel to produce probabilistic esti-
mates of the true labels for the examples. Alfred
also supports partial labels, i.e., labels that narrow
down the possible set of classes but are not specific
enough to vote on a single class (Yu et al., 2022).
The probabilistic labels can then be used to train a
wide range of end models.

4 System Design

In this section, we describe and highlight the key
design decisions for Alfred.

4.1 Query and Response Types
We identify two main patterns using prompts

482

from alfred import Client
from alfred.fm.query import RankedQuery,

CompletionQuery
LMClient = Client(...)

headline = "Liverpool wins 7-0!"

LMClient(
CompletionQuery(headline
+ " What is the topic of this headline?")

)
Example Response:
>> CompletionResponse(prediction="Football")

LMClient(
RankedQuery(headline
+ " What is the topic of this headline?",

candidate=["Sports", "Politics",
"Tech", "Business"])

)
Example Response:
>> RankedResponse(prediction="Sports",
scores={"Sports":0.76, "Politics":0.10,
"Tech":0.07, "Business":0.07 })

Figure 3: Typed Query and Response in Alfred

for PWS: text completion and scoring. Text
completion is when a language model gener-
ates responses using a heuristic decoding strat-
egy over the whole model vocabulary, while scor-
ing is when a language ranks candidate comple-
tions or a vision-language model ranks candidate
prompts, i.e., captions. Alfred implements typed
Query and Response classes for these two pat-

terns (Figure 3). Upon applying the Template
operation on a dataset instance, it produces ei-
ther a CompletionQuery or a RankedQuery for

each instance based on the Template definition.
The resulting query can be directly fed into the
Client . The Client then returns a corresponding
CompletionResponse or RankedResponse with

the prediction as the main payload, along with any
other requested or useful information, such as the
logits for each candidate.

4.2 Templates for Prompted LFs

Prompt templates are at the core of sys-
tems for prompting. In Alfred, prompt
templates are expressed as Template objects.
For natural language tasks, users use the
StringTemplate class. To produce Query ob-

jects, users can call ‘Template.apply(instance)’
or ‘Template.apply_to_dataset(dataset).’ A
StringTemplate is defined with a template string

with keywords enclosed by double square brack-
ets, e.g. “[[text]] Does the previous context ex-
press spouse relation between [[entity_a]] and
[[entity_b]]?”. An optional field for Template
is ‘answer_choices,’ where one may specify the
candidate completions. By specifying the ‘an-
swer_choices,’ the StringTemplate would yield

a RankedQuery . An example code snippet

showing the creation of a RankedQuery is in
Figure 4. For image annotation tasks, users
may define an ImageTemplate by specifying the
candidate prompts. Upon applying to images,
ImageTemplate will produce RankedQuery ob-

jects with the images and candidate prompts.

4.3 Throughput Optimization

Alfred is designed to handle large numbers of
queries. Self-hosted models from the Transform-
ers package (Wolf et al., 2020) are set up to use
model parallelization enabled by Accelerate (Syl-
vain Gugger, 2022), with user-customizable device
maps for parallelizing the model across multiple
GPUs. Alfred adopts a dynamic batching strategy
that groups instances with similar lengths together
and adjusts the input batch size dynamically to max-
imize model inference throughput. The core idea
of the dynamic batching strategy is to group input
instances with similar token lengths to minimize
padding and maximize memory utilization.

With the dynamic batching strategy, on a node
with 8 NVIDIA Tesla V100s, Alfred achieves a
speedup of up to 2.5× and a token throughput
increase of 2.9× for approximately 500 queries
(∼21,000 tokens) compared to an unoptimized
strategy with T0++ (Sanh et al., 2022), an 11-
billion parameter T5-based (Raffel et al., 2020)
language model in FP32. Additionally, Alfred in-
cludes a client-side query caching system that au-
tomatically stores and updates model responses
to facilitate prompt development and avoid redun-
dant queries during development. Alfred also im-
plements a server-side caching system for large
multi-modal pretrained models such as CLIP. At in-
ference time, Alfred will cache the input data with
its corresponding encoded latent representations
from different encoder head for each modalities.
This server-side caching system effectively avoids
redundant encoding computation on the server end.

483

from alfred.template import StringTemplate, ImageTemplate

string_template = StringTemplate(
"Context: [[text]]\n\nIs the above text about weather?", answer_choices = ["Yes", "No"]

)
example = {'text': "A pleasant day with a sunny sky."}
prompt = string_template.apply(example)
>> RankedQuery("Context: A pleasant day with a sunny sky.\n\nIs the above text about weather?",
candidates=["Yes", "No"])

image_template = ImageTemplate(
{"label": ["cat", "dog"]},
template = "A photo of [[label]]."

)
example = cat_image
prompt = image_template.apply(example)
>> RankedQuery(example, candidates=["A photo of cat.", "A photo of dog."])

Figure 4: Example code snippet for creating a RankedQuery from a StringTemplate or a ImageTemplate .

4.4 Remote Self-Hosting of Models

The computational demands of large pre-trained
models can pose a challenge when using them for
weak supervision development. To address this
challenge, Alfred provides utilities for deploying
and interacting with models on remote virtual in-
stances or computing clusters. Additionally, Alfred
implements a SSH-based tunneling service that en-
sures a secure local connection while preserving
all Alfred functionality. The tunneling utility also
simplifies deployment of the server on shared com-
puting clusters, with the login node serving as a
jump host for the computing node. This is particu-
larly useful for using Alfred on centrally-managed
shared computing clusters such as those at uni-
versities. Alfred’s built-in SSH tunneling is also
capable of handling 2-factor authentication, which
is common for shared clusters. To enable efficient
communication between the client and server, Al-
fred uses gRPC, a high-performance, open-source
remote procedure call framework. This enables
Alfred to provide a seamless development experi-
ence for weak supervision development without the
need for expensive local resources.

4.5 Mapping Responses to Votes

Another core piece of the Alfred system is the
Voter class. Each Voter defines how to map

model responses to votes for the true label of an
exmaple. The votes can be class labels or par-
tial labels (e.g., attributes) specified by the users.
The voting mechanism also relies on a match-
ing function, which by default only casts a vote
for an exact match. Users may provide their
intended matching mechanisms such as uncased

matching or embedding similarity matching for
more flexibility for each Voter . Furthermore,
Voter can be contextually calibrated for the spe-

cific Template class to reduce model bias towards
predicting certain answers. Recent studies show
calibration can be helpful for many prompt-based
tasks (Zhao et al., 2021; Smith et al., 2022). By
calling ‘Client.calibrate(Template, Voter),’ Alfred
will calibrate the voting weights according to the
strategy proposed by Zhao et al. and automatically
apply the calibration during voting.

4.6 Label Models for Aggregating Votes

Alfred currently includes four label models for
combining the votes from prompted labeling func-
tions. The four label models are available to meet
different use cases. The MajorityVote model is
a baseline option suitable for fast development it-
eration, while the NaiveBayes model is recom-
mended as the standard label model. Alfred also
includes NPLM (Yu et al., 2022) (noisy partial la-
bel model) to support weak supervision from partial
labels, which are labels that narrow down the possi-
ble set of classes but are not specific enough to vote
on a single class. FlyingSquid (Fu et al., 2020) is
the fourth model option and is recommended when
MajorityVote is not accurate enough but more

speed than NaiveBayes is needed. These label
model classes have a unified interface, providing a
consistent experience for users. After processing
votes, the label model module generates probabilis-
tic labels, represented as a distribution over the
label space, for the given unlabeled dataset. Finally
users can use the estimated probabilistic labels to
train an end model for the downstream task.

484

5 Example Use Cases

In this section, we present two example use cases
for how Alfred can be used to create training data
for specific machine learning tasks using natural
language prompts in both text and image domains.
We measure the labeling quality by taking the top-1
accuracy of the estimated probabilistic labels given
by the label model. The notebooks to reproduce
these examples are in the Alfred repository.

5.1 Youtube Comment Spam Detection

Zero Shot Prompted LFs Prompted LFs+C
46.8 57.8 65.3

Table 1: Top-1 accuracy on YouTube spam detection.
Zero Shot refers to prompting T0++ directly. +C means
applying contextual calibration on the Voter objects.

In this experiment, we use Alfred to annotate the
training split of YouTube spam detection dataset.
(Alberto et al., 2015) We replicate the setup used
by Smith et al. The prompts are translated from
the code-based labeling functions provided by
the WRENCH benchmark (Zhang et al., 2021),
a comprehensive weak supervision benchmark. Al-
fred also includes a WrenchBenchmarkDataset
abstraction for easily running this benchmark. In to-
tal, we define 10 prompted labeling functions with
StringTemplate objects. Responses are mapped

to votes using Voter objects. For this experiment,
we use T0++ (Sanh et al., 2022) as the backbone
model for Alfred. Following Smith et al., we also
calibrate the responses from T0++ when voting
using the contextual calibration strategy proposed
by Zhao. Finally we aggregate the votes using
the NaiveBayes label model to produce the prob-
ablistic labels. Table 1 shows that Alfred makes
reproducing the results of Smith et al. easy, demon-
strating that the combination of weak supervision
and calibration yield a dramatic improvement over
zero-shot prompting alone.

5.2 Pet Breed Classification

Zero Shot Prompted LFs
86.0 92.4

Table 2: Top-1 accuracy on Oxford-IIIT Pet breed clas-
sification. Zero Shot refers to prompting CLIP directly.

Traditionally, programmatic weak supervision
for vision has been limited by the ability to express

supervision in code, relying on models such as ob-
ject or attribute detectors to extract features and
classify. However, these object detectors often de-
pend heavily on supervised training data, becoming
a bottleneck for applying programmatic weak su-
pervision in various vision tasks. Fortunately, with
large-pretrained vision-language model like CLIP
(Radford et al., 2021), we are now able to express
supervision with natural language. For this task, we
develop prompts to classify 37 different breeds of
pets from the Oxford-IIIT Pet dataset (Parkhi et al.,
2012). We use CLIP-ViT/L-14 as the backbone
model and developed three simple prompted LFs.
The first two prompted LFs use templates “a photo
of [[label]]” and “a photo of [[label]] [cat/dog]”
where “[cat/dog]” is selected based on the breed.
The third prompted LF produces a partial label
with the template "a photo of [cat/dog]", encour-
aging fine-grained labels to match with the coarse-
grained type detected by CLIP. We combine the
votes using the NPLM label (Yu et al., 2022) to
support weak supervision at various levels of gran-
ularity in the label space. Table 2 shows that this
multi-granular weak supervision provides a nice
boost over zero-shot prompting alone.

6 Discussion and Future Work

This paper introduces Alfred, a prototype for the
next generation of programmatic weak supervision
systems that leverage the potential of large pre-
trained models. Alfred complements the existing
ecosystem of large-pretrained-model toolkits, offer-
ing optimized inference throughput, a smooth local
development experience, and compatibility with
vision-language models to support image annota-
tion tasks. Alfred represents a notable advancement
in the domain of programmatic weak supervision,
as it enables users to express their domain-specific
knowledge and heuristics with flexible natural lan-
guage prompts for language and vision-language
models. This approach can be more user-friendly
than conventional PWS systems, which requires
expert programming of weak supervision sources.
Our objective is for Alfred to serve as the infras-
tructure and experimentation platform for many
future weak supervision research projects and ap-
plications. Furthermore, we plan to extend Alfred’s
capabilities to accommodate a wider range of mul-
timodal large pre-trained models, such as Whisper
(Radford et al., 2022) and LayoutLMs (Xu et al.,
2020b,a; Huang et al., 2022).

485

Limitations

Alfred is a prototype for the second generation of
PWS systems, which incorporate large pre-trained
models. However, there are some potential limi-
tations to consider. As with all PWS approaches,
application quality is limited by the quality of the
weak supervision sources used to vote on the labels.
In this case of prompted labeling functions, this de-
pends on how well suited the prompts and model
are to the task and domain. If they are not well
suited, then additional fine-tuning of the prompted
models will be necessary. Compared with tradi-
tional labeling functions written in code, under-
standing when and why labeling functions fail on
certain examples can be particularly challenging.
Methods for explanations such as minimal con-
trastive edits (Ross et al., 2021) can potentially
help address this limitation. We plan to explore
incorporating such methods into Alfred.

Ethics Statement

One major concern for Alfred is the potential for
biased or unfair labeling. Large pre-trained models
are trained on massive datasets, which can reflect
societal biases and inequalities. Consequently, su-
pervision generated by these models can perpetu-
ate and amplify these biases, leading to discrimi-
nation or unfair treatment in downstream applica-
tions. Therefore, it is essential to carefully consider
the quality and representativeness of the backbone
model for Alfred, as well as the prompts used for
labeling data. To address potential labeling biases,
human oversight and auditing are needed during
the development loop to spot and correct any is-
sues. While Alfred has the potential to enhance
the efficiency of programmatic data labeling, it is
crucial to carefully consider and address potential
ethical challenges.

Acknowledgments

We appreciate the helpful comments and discus-
sion with Andrew Yuan, Avi Trost, Nihal Nayak
and Zheng-Xin Yong. This material is based
on research sponsored by Defense Advanced Re-
search Projects Agency (DARPA) and Air Force
Research Laboratory (AFRL) under agreement
number FA8750-19-2-1006. The U.S. Government
is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and

should not be interpreted as necessarily represent-
ing the official policies or endorsements, either ex-
pressed or implied, of Defense Advanced Research
Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL) or the U.S. Government. We
gratefully acknowledge support from Google and
Cisco. Disclosure: Stephen Bach is an advisor to
Snorkel AI, a company that provides software and
services for weakly supervised machine learning.

References

Túlio C Alberto, Johannes V Lochter, and Tiago A
Almeida. 2015. Tubespam: Comment spam filtering
on youtube. In 2015 IEEE 14th international confer-
ence on machine learning and applications (ICMLA),
pages 138–143. IEEE.

Simran Arora, Avanika Narayan, Mayee F Chen, Lau-
rel J Orr, Neel Guha, Kush Bhatia, Ines Chami, Fred-
eric Sala, and Christopher Ré. 2022. Ask me any-
thing: A simple strategy for prompting language mod-
els. arXiv preprint arXiv:2210.02441.

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea San-
tilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu,
Gunjan Chhablani, Han Wang, Jason Alan Fries,
Maged S. Al-shaibani, Shanya Sharma, Urmish
Thakker, Khalid Almubarak, Xiangru Tang, Xian-
gru Tang, Mike Tian-Jian Jiang, and Alexander M.
Rush. 2022. Promptsource: An integrated develop-
ment environment and repository for natural language
prompts.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Harrison Chase. 2022. LangChain.

Mayee F Chen, Daniel Y Fu, Dyah Adila, Michael
Zhang, Frederic Sala, Kayvon Fatahalian, and
Christopher Ré. 2022. Shoring up the foundations:
Fusing model embeddings and weak supervision. In
Uncertainty in Artificial Intelligence, pages 357–367.
PMLR.

486

http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/hwchase17/langchain

Yew Ken Chia, Lidong Bing, Soujanya Poria, and Luo
Si. 2022. Relationprompt: Leveraging prompts to
generate synthetic data for zero-shot relation triplet
extraction. arXiv preprint arXiv:2203.09101.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
OpenPrompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 105–113, Dublin, Ire-
land. Association for Computational Linguistics.

Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M.
Hooper, Kayvon Fatahalian, and Christopher Ré.
2020. Fast and three-rious: Speeding up weak super-
vision with triplet methods. In Proceedings of the
37th International Conference on Machine Learning
(ICML 2020).

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022. Layoutlmv3: Pre-training for doc-
ument ai with unified text and image masking. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, pages 4083–4091.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A commu-
nity library for natural language processing. arXiv
preprint arXiv:2109.02846.

Laurel Orr. 2022. Manifest. https://github.com/
HazyResearch/manifest.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
and CV Jawahar. 2012. Cats and dogs. In 2012
IEEE conference on computer vision and pattern
recognition, pages 3498–3505. IEEE.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv preprint arXiv:2212.04356.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data pro-
gramming: Creating large training sets, quickly. Ad-
vances in neural information processing systems, 29.

Alexis Ross, Ana Marasović, and Matthew Peters. 2021.
Explaining NLP models via minimal contrastive edit-
ing (MiCE). In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3840–3852, Online. Association for Computational
Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Timo Schick and Hinrich Schütze. 2021a. Few-shot
text generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 390–
402, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021b. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943–
6951, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ryan Smith, Jason A Fries, Braden Hancock, and
Stephen H Bach. 2022. Language models in the
loop: Incorporating prompting into weak supervision.
arXiv preprint arXiv:2205.02318.

Thomas Wolf Philipp Schmid Zachary Mueller
Sourab Mangrulkar Sylvain Gugger, Lysandre De-
but. 2022. Accelerate: Training and inference at
scale made simple, efficient and adaptable. https:
//github.com/huggingface/accelerate.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

487

https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
https://github.com/HazyResearch/manifest
https://github.com/HazyResearch/manifest
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2021.findings-acl.336
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.32
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yuxiang Wu, Matt Gardner, Pontus Stenetorp, and
Pradeep Dasigi. 2022. Generating data to mitigate
spurious correlations in natural language inference
datasets. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2660–2676, Dublin,
Ireland. Association for Computational Linguistics.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, et al. 2020a. Layoutlmv2:
Multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2020b. Layoutlm: Pre-training
of text and layout for document image understanding.
In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 1192–1200.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. arXiv preprint arXiv:2202.07922.

Peilin Yu, Tiffany Ding, and Stephen H. Bach. 2022.
Learning from multiple noisy partial labelers. In
Artificial Intelligence and Statistics (AISTATS).

Eric Zelikman, Yuhuai Wu, and Noah D Goodman.
2022. Star: Bootstrapping reasoning with reason-
ing. arXiv preprint arXiv:2203.14465.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang,
and Alexander Ratner. 2022a. A survey on
programmatic weak supervision. arXiv preprint
arXiv:2202.05433.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yam-
ing Yang, Mao Yang, and Alexander Ratner. 2021.
WRENCH: A comprehensive benchmark for weak
supervision. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track (Round 2).

Rongzhi Zhang, Yue Yu, Pranav Shetty, Le Song,
and Chao Zhang. 2022b. Prboost: Prompt-
based rule discovery and boosting for interac-
tive weakly-supervised learning. arXiv preprint
arXiv:2203.09735.

Fang Zhao. 2022. Auto-correction dans un analyseur
neuronal par transitions : un comportement factice
? (self-correction in a transition-based neural parser
: a spurious behaviour ?). In Actes de la 29e Con-
férence sur le Traitement Automatique des Langues
Naturelles. Volume 2 : 24e Rencontres Etudiants
Chercheurs en Informatique pour le TAL (RECITAL),
pages 20–32, Avignon, France. ATALA.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages
12697–12706. PMLR.

488

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-long.190
https://doi.org/10.18653/v1/2022.acl-long.190
https://doi.org/10.18653/v1/2022.acl-long.190
https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=Q9SKS5k8io
https://aclanthology.org/2022.jeptalnrecital-recital.2
https://aclanthology.org/2022.jeptalnrecital-recital.2
https://aclanthology.org/2022.jeptalnrecital-recital.2
https://aclanthology.org/2022.jeptalnrecital-recital.2

