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Introduction

The Wordplay workshop focuses on exploring the utility of interactive narratives, think everything from
classic text-adventures like Zork to modern Twine games, to fill a role as the learning environments of
choice for language-based tasks including but not limited to storytelling. A few previous iterations of
this workshop took place very successfully with hundreds of attendees, at NeurIPS 2018 and NeurIPS
2020. Since then, the community of people working in this area has rapidly increased. This workshop
aims to be a centralized place where all researchers involved across a breadth of fields can interact and
learn from each other. Furthermore, it acts as a showcase to the wider NLP/RL/Game communities on
interactive narrative’s place as a learning environment. The program features a collection of invited talks
in addition to contributed posters from each of these sections of the interactive narrative community and
the wider NLP and RL communities.

For more information visit: https://wordplay-workshop.github.io/.

-The Wordplay’s Organizing Committee
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Keynote Talk: Controllable Text Generation for Interactive
Virtual Environments

Shrimai Prabhumoye
Nvidia

Abstract: Since the dawn of the digital age, interactive virtual environments and electronic games have
played a huge role in shaping our lives. Not only are they a source of entertainment but they also teach
us important life skills such as strategic planning, collaboration, and problem solving. Therefore, online
gamers expect their virtual environment to be aware of their situation (e.g., position in a game) and inte-
ract with them in natural language. In this talk, I describe novel techniques to generate text in a particular
style. This talk provides an approach of generating engaging naturalistic conversation responses using
knowledge generated by pre-trained language models, considering their recent success in a multitude of
NLP tasks. The talk will conclude with exploring whether pretrained language models can be situated in
these virtual spaces and generate dialogue in a zero-shot manner.

Bio: Shrimai Prabhumoye is a research scientist at Nvidia. She got her PhD degree in computer science
from the Language Technologies Institute, Carnegie Mellon University. She was advised by Prof. Alan
Black and Prof. Ruslan Salakhutdinov. She work on controllable text generation with focus on style,
content and structure. She is also exploring the ethical considerations of controllable text generation.
She co-designed the Computational Ethics for NLP course which was offered for the first time in Spring
2018 at CMU.
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Keynote Talk: Knowledge Intensive Reinforcement Learning
Tim Rocktäschel

University College London & Deepmind

Abstract: Progress in Reinforcement Learning (RL) methods goes hand-in-hand with the development
of challenging environments that test the limits of current approaches. While existing RL environments
are either sufficiently complex or based on fast simulation, they are rarely both these things. Moreover,
research in RL has predominantly focused on environments that can be approached tabula rasa, i.e., wi-
thout agents requiring transfer of any domain or world knowledge outside of the simulated environment.
I will talk about the NetHack Learning Environment (NLE), a scalable, procedurally generated, stocha-
stic, rich, and challenging environment for research based on the popular single-player terminal-based
rogue-like game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on
problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramati-
cally reducing the computational resources required to gather a large amount of experience. Interestingly,
this game is extremely challenging even for human players who often need many years to solve it the
first time and who generally consult external natural language knowledge sources like the NetHack Wiki
to improve their skills. I will cover some of our recent work on utilizing language information in this
challenging environment.

Bio: Tim Rocktäschel is a Researcher at DeepMind and an Associate Professor at the Centre for Artificial
Intelligence at University College London (UCL). There, Tim is leading the UCL Deciding, Acting, and
Reasoning with Knowledge (DARK) Lab. Tim is also a Scholar of the European Laboratory for Learning
and Intelligent Systems (ELLIS). Before, he was a Manager, Research Scientist, and Area Lead at Meta
AI (FAIR), a Postdoctoral Researcher in Reinforcement Learning at the Whiteson Research Lab at the
University of Oxford, a Junior Research Fellow in Computer Science at Jesus College, and a Stipendiary
Lecturer in Computer Science at Hertford College. Tim obtained his Ph.D. from UCL under the supervi-
sion of Sebastian Riedel, where he was awarded a Microsoft Research Ph.D. Scholarship in 2013 and a
Google Ph.D. Fellowship in 2017. Tim’s work focuses on Reinforcement Learning and Open-endedness.
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Keynote Talk: Training Agents to Learn to Ask for Help in
Virtual Environments

Hal Daumé III
University of Maryland & Microsoft Research

Abstract: Agent has largely become synonymous with autonomous agent, but I’ll argue that scoping our
study of agents to those that are fully autonomous is a mistake: instead, we should aim to train agents that
can assist humans, and be assisted by humans. In line with this goal, I will describe recent and ongoing
work in the space of assisted agent navigation, where agents can ask humans for help, and where they
can describe their own behaviors. This talk will largely be based on joint work with Khanh Nguyen and
Lingjun Zhao.

Bio: Hal Daumé III is a professor at University of Maryland, in the computer science department. He
is also a Senior Principal Researcher at Microsoft Research NYC. Hal’s main focuses are in natural lan-
guage processing and machine learning; he studies questions related to how to get machines to becomes
more adept at human language, by developing models and algorithms that allow them to learn from data.
The two major questions that really drive their research these days are: (1) how can we get computers to
learn through natural interaction with people/users? and (2) how can we do this in a way that minimize
harms in the learned models?
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Keynote Talk: ScienceWorld: Is your Agent Smarter than a
5th Grader?

Peter Jansen
University of Arizona

Abstract: Question answering models have rapidly increased their ability to answer natural language
questions in recent years, due in large part to large pre-trained neural network models called Language
Models. These language models have felled many benchmarks, including recently achieving an A grade
on answering standardized multiple choice elementary science exams. But how much do these langua-
ge models truly know about elementary science, and how robust is their knowledge? In this work, we
present ScienceWorld, a new benchmark to test agents’ scientific reasoning abilities. ScienceWorld is an
interactive text game environment that tasks agents with performing 30 tasks drawn from the elementary
science curriculum, like melting ice, building simple electrical circuits, using pollinators to help grow
fruits, or understanding dominant versus recessive genetic traits. We show that current state-of-the-art
language models that can easily answer elementary science questions, such as whether a metal fork is
conductive or not, struggle when tasked to conduct an experiment to test this in a grounded, interactive
environment, even with substantial training data. This presents the question of whether current models
are simply retrieving answers to questions by way of observing a large number of similar input examples,
or if they have learned to reason about concepts in a reusable manner. We hypothesize that agents need
to be grounded in interactive environments to achieve such reasoning abilities. Our experiments provi-
de empirical evidence supporting this hypothesis – showing that a 1.5 million parameter agent trained
interactively for 100k steps outperforms an 11 billion parameter model statically trained for scientific
question answering and reasoning via millions of expert demonstrations.

Bio: Peter Jansen is an Assistant Professor in the School of Information at the University of Arizona. A
central focus of his research is how we can teach models to perform question answering while generating
detailed human-readable explanations for their answers. His work is largely centered in the science do-
main, where he works to answer and explain standardized elementary and middle school science exams,
as written, using a variety of automated inference formalisms. http://www.cognitiveai.org/
explanationbank/
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Keynote Talk: Text Toys and Glitch Poetics
Lynn Cherny
GhostWeather

Abstract: Not just a bug, the glitch offers creative possibility – especially in AI systems where we are
travelers in a foggy latent space. The glitch is usually a visual metaphor, but it is alive and well in text en-
codings too. I’ll talk about projects (mine and others’) that explore neural spaces in poetic and game-like
ways. Focusing on text play in this talk, we’ll visit media collages, mistaken translations, cross-modal
cutups, and the dusty bottoms of game databases in search of the uncanny glitch that make us laugh
because it’s true.

Bio: Lynn Cherny has a Ph.D. in linguistics from Stanford and worked in research on text-based virtual
worlds (MUDs) and chat interfaces. She’s been in industry as a UX desiger and data scientist for a hun-
dred years now, at companies as diverse as Adobe, The Mathworks, TiVo, and Autodesk. She worked on
the poetry generation algorithm for the UK Dubai 2020 pavilion and currently consults at Google Arts &
Culture as an ML artist in residence, where she released a small game illustrated by AI-generated images.
Lynn has given keynotes and talks on creative AI projects at Europython and PyData conferences, Eyeo
Festival, and KIKK Festival. Her newsletter is a fun mashup of weird folklore, AI art, NLP, games &
narrative links.
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A Systematic Survey of
Text Worlds as Embodied Natural Language Environments

Peter A. Jansen
University of Arizona, Tucson, AZ
pajansen@arizona.edu

Abstract
Text Worlds are virtual environments for em-
bodied agents that, unlike 2D or 3D environ-
ments, are rendered exclusively using textual
descriptions. These environments offer an al-
ternative to higher-fidelity 3D environments
due to their low barrier to entry, providing the
ability to study semantics, compositional infer-
ence, and other high-level tasks with rich action
spaces while controlling for perceptual input.
This systematic survey outlines recent devel-
opments in tooling, environments, and agent
modeling for Text Worlds, while examining
recent trends in knowledge graphs, common
sense reasoning, transfer learning of Text World
performance to higher-fidelity environments,
as well as near-term development targets that,
once achieved, make Text Worlds an attractive
general research paradigm for natural language
processing.

1 Introduction

Embodied agents offer an experimental paradigm
to study the development and use of semantic rep-
resentations for a variety of real-world tasks, from
household tasks (Shridhar et al., 2020a) to navi-
gation (Guss et al., 2019) to chemical synthesis
(Tamari et al., 2021). While robotic agents are a
primary vehicle for studying embodiment (e.g. Can-
gelosi and Schlesinger, 2015), robotic models are
costly to construct, and experiments can be slow
or difficult to scale. Virtual agents and embodied
virtual environments help mitigate many of these
issues, allowing large-scale simulations to be run in
parallel orders of magnitude faster than real world
environments (e.g. Deitke et al., 2020), while con-
trolled virtual environments can be constructed for
exploring specific tasks – though this benefit in
speed comes at the cost of having to model virtual
3D environments, which can be substantial.

Text Worlds – embodied environments rendered
linguistically through textual descriptions instead
of graphically through pixels (see Table 1) – have

Zork

North of House
You are facing the north side of a white house. There is no door here, and all
the windows are barred.
>go north

Forest
This is a dimly lit forest, with large trees all around. One particularly large
tree with some low branches stands here.
>climb large tree

Up a Tree
You are about 10 feet above the ground nestled among some large branches.
On the branch is a small birds nest. In the bird’s nest is a large egg encrusted
with precious jewels, apparently scavenged somewhere by a childless songbird.
>take egg

Taken.
>climb down tree

Forest
>go north

Table 1: An example Text World interactive fiction envi-
ronment, Zork (Lebling et al., 1979), frequently used as a
benchmark for agent performance. User-entered actions are
italicized.

emerged as a recent methodological focus that al-
low studying many embodied research questions
while reducing some of the development costs as-
sociated with modeling complex and photorealistic
3D environments (e.g. Côté et al., 2018). More than
simply reducing development costs, Text Worlds
also offer paradigms to study developmental knowl-
edge representation, embodied task learning, and
transfer learning at a higher level than perceptually-
grounded studies, enabling different research ques-
tions that explore these topics in isolation of the
open problems of perceptual input, object segmen-
tation, and object classification regularly studied
in the vision community (e.g. He et al., 2016c;
Szegedy et al., 2017; Zhai et al., 2021).

1.1 Motivation for this survey

Text Worlds are rapidly gaining momentum as a
research methodology in the natural language pro-
cessing community. In spite of this interest, many
modeling, evaluation, tooling, and other barriers
exist to applying these methodologies, with sig-
nificant development efforts in the early stages of
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mitigating those barriers, at least in part.
In this review, citation graphs of recent articles

were iteratively crawled, identifying 108 articles
relevant to Text Worlds and other embodied envi-
ronments that include text as part of the simula-
tion or task. Frequent motivations for choosing
Text Worlds are highlighted in Section 2. Tool-
ing and modeling paradigms (in the form of sim-
ulators, intermediate languages, and libraries) are
surveyed in Section 3, with text environments and
common benchmarks implemented with this tool-
ing described in Section 4. Contemporary focuses
in agent modeling, including coupling knowledge
graphs, question answering, and common-sense
reasoning with reinforcement learning, are iden-
tified in Section 5. Recent contributions to focus
areas in world generation and hybrid text-3D en-
vironments are summarized in Section 6, while
a distillation of near-term directions for reducing
barriers to using Text Worlds more broadly as a
research paradigm are presented in Section 7.

2 Why use Text Worlds?

For many tasks, Text Worlds can offer advan-
tages over other embodied environment modelling
paradigms – typically in reduced development
costs, the ability to model large action spaces, and
the ability to study embodied reasoning at a higher
level than raw perceptual information.

Embodied Reasoning: Embodied agents have
been proposed as a solution to the symbol ground-
ing problem (Harnad, 1990), or the problem of
how concepts acquire real-world meaning. Hu-
mans likely resolve symbol grounding at least par-
tially by assigning semantics to concepts through
perceptually-grounded mental simulations (Barsa-
lou et al., 1999). Using embodied agents that take
in perceptual data and perform actions in real or
virtual environments offers an avenue for study-
ing semantics and symbol grounding empirically
(Cangelosi et al., 2010; Bisk et al., 2020; Tamari
et al., 2020a,b). Text Worlds abstract some of the
challenges in perceptual modeling, allowing agents
to focus on higher-level semantics, while hybrid
worlds that simultaneously render both text and
3D views (e.g. Shridhar et al., 2020b) help con-
trol what kind of knowledge is acquired, and better
operationalize the study of symbol grounding.

Ease of Development: Constructing embodied
virtual environments typically has steep develop-
ment costs, but Text Worlds are typically easier

to construct for many tasks. Creating new ob-
jects does not require the expensive process of
creating new 3D models, or performing visual-
percept-to-object-name segmentation or classifi-
cation (since the scene is rendered linguistically).
Similarly, a rich action semantics is possible, and
comparatively easy to implement – while 3D en-
vironments typically have one or a small num-
ber of action commands (e.g. Kolve et al., 2017;
Shridhar et al., 2020a), Text Worlds typically im-
plement dozens of action verbs, and thousands
of valid Verb-NounPhrase action combinations
(Hausknecht et al., 2020).

Compositional Reasoning: Complex reasoning
tasks typically require multi-step (or composi-
tional) reasoning that integrates several pieces of
knowledge in an action procedure that arrives at a
solution. In the context of natural language, com-
positional reasoning is frequently studied through
question answering tasks (e.g. Yang et al., 2018;
Khot et al., 2020; Xie et al., 2020; Dalvi et al.,
2021) or procedural knowledge prediction (e.g.
Dalvi et al., 2018; Tandon et al., 2018; Dalvi et al.,
2019). A contemporary challenge is that the num-
ber of valid compositional procedures is typically
large compared to those that can be tractably an-
notated as gold, and as such automatically eval-
uating model performance becomes challenging
(Jansen et al., 2021). In an embodied environment,
an agent’s actions have (generally) deterministic
consequences for a given environment state, as ac-
tions are grounded in an underlying action language
(e.g. McDermott et al., 1998) or linear logic (e.g.
Martens, 2015). Embodied environments can offer
a more formal semantics to study these reasoning
tasks, where correctness of novel procedures could
be evaluated directly.

Transfer Learning: Training a text-only agent
for embodied tasks allows the agent to learn those
tasks in a distilled form, at a high-level. This per-
formance can then be transferred to more realistic
3D environments, where agents pretrained on text
versions of the same environment learn to ground
their high-level knowledge in low-level perceptual
information, and complete tasks faster than when
trained jointly (Shridhar et al., 2020b). This offers
the possibility of creating simplified text worlds to
pretrain agents for challenging 3D tasks that are
currently out of reach of embodied agents.
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3 Text World Simulators

Text World simulators render an agent’s world view
directly into textual descriptions of their environ-
ment, rather than into 2D or 3D graphical render-
ings. Similarly, actions the agent wishes to take
are provided to the simulator as text (e.g. “read
the letter” in Zork), requiring agent models to both
parse input text from the environment, and generate
output text to to interact with that environment.

In terms of simulators, the Z-machine (Infocom,
1989) is a low-level virtual machine originally de-
signed by Infocom for creating portable interactive
fiction novels (such as Zork). It was paired with
a high-level LISP-like domain-specific language
(ZIL) that included libraries for text parsing, and
other tools for writing interactive fiction novels.
The Z-machine standard was reverse-engineered by
others (e.g. Nelson, 2014) in an effort to build their
own high-level interactive fiction domain-specific
languages, and has since become a standard com-
pilation target due to the proliferation of existing
tooling and legacy environments.1

Inform7 (Nelson, 2006) is a popular high-level
language designed for interactive fiction novels that
allows environment rules to be directly specified
in a simplified natural language, substantially low-
ering the barrier to entry for creating text worlds.
The text generation engine allows substantial vari-
ation in the way the environments are described,
from dry formulaic text to more natural, varied,
conversational descriptions. Inform7 is compiled
to Inform6, an earlier object-oriented scripting lan-
guage with C-like syntax, which itself is compiled
to Z-machine code.

Ceptre (Martens, 2015) is a linear-logic sim-
ulation engine developed with the goal of spec-
ifying more generic tooling for operational log-
ics than Inform 7. TextWorld (Côté et al., 2018)
adapt Ceptre’s linear logic state transitions for en-
vironment descriptions, and add tooling for gen-
erative environments, visualization, and RL agent
coupling, all of which is compiled into Inform7
source code. Parallel to this, the Jericho environ-
ment (Hausknecht et al., 2020) allows inferring
relevant vocabulary and template-based object in-
teractions for Z-machine-based interactive fiction
games, easing action selection for agents.

1A variety of text adventure tooling, including the Adven-
ture Game Toolkit (AGT) and Text Adventure Development
System (TADS), was developed starting in the late 1980s, but
these simulators have generally not been adopted by the NLP

Object Tree Root

West of the House Top of Tree Clearing

Player (Agent) Small Mailbox Door

Leaflet

Bird Nest Pile of Leaves Grating

Egg

Figure 1: An example partial object tree from the interactive
fiction game Zork (Lebling et al., 1979).

3.1 Text World Modeling Paradigms

3.1.1 Environment Modelling
Environments are typically modeled as an object
tree that represents all the objects in an environ-
ment and their nested locations, as well as a set of
action rules that implement changes to the objects
in the environment based on an agent’s actions.

Objects: Because of the body of existing in-
teractive fiction environments for Z-machine en-
vironments, and nearly all popular tooling (In-
form7, TextWorlds, etc.) ultimately compiling to
Z-machine code, object models typically use the Z-
machine model (Nelson, 2014). Z-machine objects
have names (e.g. “mailbox”), descriptions (e.g.
“a small wooden mailbox”), binary flags called at-
tributes (e.g. “is_container_open”), and generic
properties stored as key-value pairs. Objects are
stored in the object tree, which represents the lo-
cations of all objects in the environment through
parent-child relationships, as shown in Figure 1.

Action Rules: Action rules describe how objects
change in response to a given world state, which is
frequently a collection of preconditions followed
by an action taken by an agent (e.g. “eat the ap-
ple”), but can also be due to environment states (e.g.
a plant dying because it hasn’t been watered for a
time greater than some threshold). Ceptre (Martens,
2015) and TextWorld (Côté et al., 2018) use linear
logic to represent possible valid state transitions.
In linear logic, a set of preconditions in the state
history of the world can be consumed by a rule
to generate a set of postconditions, such as con-
suming a closed(C) precondition and posting a
open(C) postcondition for a container-opening
action for some container C.

Côté et al. (2018) note the limitations in existing
implementations of state transition systems for text
worlds (such as single-step forward or backward
chaining), and suggest future systems may wish

community in favour of the more popular Inform series tools.
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to use mature action languages such as STRIPS
(Fikes and Nilsson, 1971) or GDL (Genesereth
et al., 2005; Thielscher, 2010, 2017) as the ba-
sis of a world model, though each of these lan-
guages have tradeoffs in features (such as object
typing) and general expressivity (such as being
primarily agent-action centered, rather than imple-
menting environment-driven actions and processes)
that make certain kinds of complex modeling more
challenging. As a proof-of-concept, ALFWorld
(Shridhar et al., 2020b) uses the Planning Domain
Definition Language (PDDL, McDermott et al.,
1998) to define the semantics for the variety of
pick-and-place tasks in its text world rendering of
the ALFRED benchmark.

3.1.2 Agent Modelling
While environments can be modelled as a collec-
tion of states and allowable state transitions (or
rules), agents typically have incomplete or inac-
curate information about the environment, and
must make observations of the environment state
through (potentially noisy or inadequate) sensors,
and take actions based on those observations. Be-
cause of this, agents are typically modelled as
partially-observable Markov decision processes
(POMDP) (Kaelbling et al., 1998).

A Markov decision process (MDP) contains the
state history (S), valid state transitions (T ), avail-
able actions (A), and (for agent modeling) the ex-
pected immediate reward for taking each action
(R). POMDPs extend this to account for partial
observability by supplying a finite list of observa-
tions the agent can make (Ω), and an observation
function (O) that returns what the agent actually
observes from an observation, given the current
world state. For example, the observation function
might return unknown if the agent tries to examine
the contents of a locked container before unlock-
ing it, because the contents cannot yet be observed.
Similarly, when observing the temperature of a cup
of tea, the observation function might return coarse
measurements (e.g. hot, warm, cool) if the agent
uses their hand for measurement, or fine-grained
measurements (e.g. 70◦C) if the agent uses a ther-
mometer. A final discount factor (γ) influences
whether the agent prefers immediate rewards, or
eventual (distant) rewards. The POMDP defined
by defined by (S, T,A,R,Ω, O, γ) then serves as
a model for a learning framework, typically re-
inforcement learning (RL), to learn a policy that
enables the agent to maximize the reward.

4 Text World Environments

Environments are worlds implemented in simu-
lators, that agents explore to perform tasks. En-
vironments can be simple or complex, evaluate
task-specific or domain-general competencies, be
static or generative, and have small or large ac-
tion spaces compared to higher-fidelity simulators
(see the Appendix for a comparison of action space
sizes across environments and simulators).

4.1 Single Environment Benchmarks

Single environment benchmarks typically consist
of small environments designed to test specific
agent competencies, or larger interactive fiction
environments that test broad agent competencies to
navigate a large world and interact with the environ-
ment toward achieving some distant goal. Toy en-
vironments frequently evaluate an agent’s ability to
perform compositional reasoning tasks of increas-
ing lengths, such as in the Kitchen Cleanup and re-
lated benchmarks (Murugesan et al., 2020b). Other
toy worlds explore searching environments to lo-
cate specific objects (Yuan et al., 2018), or combin-
ing source materials to form new materials (Jiang
et al., 2020). While collections of interactive fic-
tion environments are used as benchmarks (see Sec-
tion 4.3), individual environments frequently form
single benchmarks. Zork (Lebling et al., 1979) and
its subquests are medium-difficulty environments
frequently used in this capacity, while Anchorhead
(Gentry, 1998) is a challenging environment where
state-of-the-art performance remains below 1%.

4.2 Domain-specific Environments

Domain-specific environments allow agents to
learn highly specific competencies relevant to a
single domain, like science or medicine, while typi-
cally involving more modeling depth than toy envi-
ronments. Tamari et al. (2021) create a TextWorld
environment for wet lab chemistry protocols, that
describe detailed step-by-step instructions for repli-
cating chemistry experiments. These text-based
simulations can then be represented as process exe-
cution graphs (PEG), which can then be run on real
lab equipment. A similar environment exists for
the materials science domain (Tamari et al., 2019).

4.3 Environment Collections as Benchmarks

To test the generality of agents, large collections of
interactive fiction games (rather than single environ-
ments) are frequently used as benchmarks. While

4



the Text-Based Adventure AI Shared Task initially
evaluated on a single benchmark environment, later
instances switched to evaluating on 20 varied envi-
ronments to gauge generalization (Atkinson et al.,
2019). Fulda et al. (2017a) created a list of 50
interactive fiction games to serve as a benchmark
for agents to learn common-sense reasoning. Côté
et al. (2018) further curate this list, replacing 20
games without scores to those more useful for RL
agents. The Jericho benchmark (Hausknecht et al.,
2020) includes 32 interactive fiction games that
support Jericho’s in-built methods for score and
world-change detection, out of a total of 56 games
known to support these features.

4.4 Generative Environments

A difficulty with statically-initialized environments
is that because their structure is identical each time
the simulation is run, rather than learning general
skills, agents quickly overfit to a particular task
and environment, and rarely generalize to unseen
environments (Chaudhury et al., 2020). Procedu-
rally generated environments help address this need
by generating variations of environments centered
around specific goal conditions.

The TextWorld simulator (Côté et al., 2018) al-
lows specifying high-level parameters such as the
number of rooms, objects, and winning conditions,
then uses a random walk to procedurally generate
environment maps in the Inform7 language meeting
those specifications, using either forward or back-
ward chaining during generation to verify tasks can
be successfully completed in the random environ-
ment. As an example, the First TextWorld Prob-
lems shared task2 used TextWorld to generate 5k
variations of a cooking environment, divided into
train, development, and test sets. Similarly, Mu-
rugesan et al. (2020a) introduce TextWorld Com-
monSense (TWC), a simple generative environ-
ment for household cleaning tasks, modelled as
a pick-and-place task where agents must pick up
common objects from the floor, and place them in
their common household locations (such as placing
shoes in a shoe cabinet). Other related environ-
ments include Coin Collector (Yuan et al., 2018), a
generative environment for a navigation task, and
Yin et al.’s (2019b) procedurally generated envi-
ronment for cooking tasks.

Adhikari et al. (2020) generate a large set of

2https://competitions.codalab.org/
competitions/21557

recipe-based cooking games, where an agent must
precisely follow a cooking recipe that requires col-
lecting tools (e.g. a knife) and ingredients (e.g.
carrots), and processing those ingredients correctly
(e.g. dice carrots, cook carrots) in the correct order.
Jain et al. (2020) propose a similar synthetic bench-
mark for multi-step compositional reasoning called
SaladWorld. In the context of question answering,
Yuan et al. (2019) procedurally generate a simple
environment that requires an agent to search and
investigate attributes of objects, such as verifying
their existence, locations, or specific attributes (like
edibility). On the balance, while tooling exists to
generate simple procedural environments, when
compared to classic interactive fiction games (such
as Zork), the current state-of-the-art allows for gen-
erating only relatively simple environments with
comparatively simple tasks and near-term goals
than human-authored interactive fiction games.

5 Text World Agents

Recently a large number of agents have been
proposed for Text World environments. This
section briefly surveys common modeling meth-
ods, paradigms, and trends, with the performance
of recent agents on common interactive fiction
games (as categorized by the Jericho benchmark,
Hausknecht et al., 2020) shown in Table 2.

Reinforcement Learning: While some agents
rely on learning frameworks heavily coupled with
heuristics (e.g., Kostka et al., 2017, Golovin), ow-
ing to the sampling benefits afforded by operating
in a virtual environment, the predominant model-
ing paradigm for most contemporary text world
agents is reinforcement learning. Narasimhan et
al. (2015) demonstrate that “Deep-Q Networks”
(DQN) (Mnih et al., 2015) developed for Atari
games can be augmented with LSTMs for represen-
tation learning in Text Worlds, which outperform
simpler methods using n-gram bag-of-words rep-
resentations. He et al. (2016a, DRRN) extend this
to build the Deep Reinforcement Relevance Net-
work (DRRN), an architecture that uses separate
embeddings for the state space and actions, to im-
prove both training time and performance. Madotto
et al. (2020) show that the Go-Explore algorithm
(Ecoffet et al., 2019), which periodically returns
to promising but underexplored areas of a world,
can achieve higher scores than the DRRN with
fewer steps. Zahvey et al. (2018, AE-DQN) use an
Action Elimination Network (AEN) to remove sub-
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DRRN (He et al., 2016b) 0.55 0.09 0.07 0.20 0.05 0.00
BYU-Agent (Fulda et al., 2017a) 0.59 0.03 0.00 0.10 0.00 0.01
Golovin (Kostka et al., 2017) 0.20 0.04 0.10 0.15 0.00 0.01
AE-DQN (Zahavy et al., 2018) – 0.05 – – – –
NeuroAgent (Rajalingam and Samothrakis, 2019) 0.19 0.03 0.00 0.20 0.00 0.00
NAIL (Hausknecht et al., 2019) 0.38 0.03 0.26 – 0.00 0.00
CNN-DQN (Yin and May, 2019a) – 0.11 – – – –
IK-OMP (Tessler et al., 2019) – 1.00 – – – –
TDQN (Hausknecht et al., 2020) 0.47 0.03 0.00 0.34 0.02 0.00
KG-A2C (Ammanabrolu and Hausknecht, 2020) 0.58 0.10 0.01 0.06 0.03 0.01
SC (Jain et al., 2020) – 0.10 – – 0.0 –
CALM (N-gram) (Yao et al., 2020) 0.79 0.07 0.00 0.09 0.00 0.00
CALM (GPT-2) (Yao et al., 2020) 0.80 0.09 0.07 0.14 0.05 0.01
RC-DQN (Guo et al., 2020a) 0.81 0.11 0.40 0.20 0.05 0.02
MPRC-DQN (Guo et al., 2020a) 0.88 0.11 0.52 0.20 0.05 0.02
SHA-KG (Xu et al., 2020) 0.86 0.10 0.10 – 0.05 0.02
MC!Q*BERT (Ammanabrolu et al., 2020b) 0.92 0.12 – – 0.00 –
INV-DY (Yao et al., 2021) 0.81 0.12 0.06 0.11 0.05 –

Table 2: Agent performance on benchmark interactive fiction environments. All performance values are normalized to
maximum achievable scores in a given environment. Due to the lack of standard reporting practice, performance reflects values
reported for agents, but is unable to hold other elements (such as number of training epochs, number of testing epochs, reporting
average vs maximum performance) constant. Parentheses denote environment difficulty (E:Easy, M:Medium, H:Hard) as
determined by the Jericho benchmark (Hausknecht et al., 2020).

optimal actions, showing improved performance
over a DQN on Zork. Yao et al (2020, CALM)
use a GPT-2 language model trained on human
gameplay to reduce the space of possible input
command sequences, and produce a shortlist of can-
didate actions for an RL agent to select from. Yao
et al. (2021, INV-DY) demonstrate that semantic
modeling is important, showing that models that ei-
ther encode semantics through an inverse dynamic
decoder, or discard semantics by replacing words
with unique hashes, have different performance
distributions in different environments. Taking a
different approach, Tessler et al. (2019, IK-OMP)
show that imitation learning combined with a com-
pressed sensing framework can solve Zork when
restricted to a vocabulary of 112 words extracted
from walk-through examples.
Constructing Graphs: Augmenting reinforce-
ment learning models to produce knowledge graphs
of their beliefs can reduce training time and im-
prove overall agent performance (Ammanabrolu
and Riedl, 2019). Ammanabrolu et al. (2020, KG-
A2C) demonstrate a method for training an RL
agent that uses a knowledge graph to model its
state-space, and use a template-based action space
to achieve strong performance across a variety of in-
teractive fiction benchmarks. Adhikari et al. (2020)
demonstrate that a Graph Aided Transformer Agent
(GATA) is able to learn implicit belief networks

about its environment, improving agent perfor-
mance in a cooking environment. Xu et al. (2020,
SHA-KG) extend KG-A2C to use hierarchical RL
to reason over subgraphs, showing substantially
improved performance on a variety of benchmarks.

To support these modelling paradigms, Zelinka
et al. (2019) introduce TextWorld KG, a dataset for
learning the subtask of updating knowledge graphs
based on text world descriptions in a cooking do-
main, and show their best ensemble model is able
to achieve 70 F1 at this subtask. Similarly, An-
namabrolu et al. (2021a) introduce JerichoWorld, a
similar dataset for world modeling using knowl-
edge graphs but on a broader set of interactive
fiction games, and subsequently introduce World-
Former (Ammanabrolu and Riedl, 2021b), a multi-
task transformer model that performs well at both
knowledge-graph prediction and next-action pre-
diction tasks.
Question Answering: Agents can reframe Text
World tasks as question answering tasks to gain
relevant knowledge for action selection, with these
agents providing current state-of-the-art perfor-
mance across a variety of benchmarks. Guo et
al. (2020b, MPRC-DQN) use multi-paragraph read-
ing comprehension (MPRC) techniques to ask ques-
tions that populate action templates for agents, sub-
stantially reducing the number of training examples
required for RL agents while achieving strong per-
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formance on the Jericho benchmark. Similarly,
Ammanabrolu et al. (2020b, MC!Q*BERT) use
contextually-relevant questions (such as “Where
am I?”, “Why am I here?”) to populate their
knowledge base to support task completion.

Common-sense Reasoning: Agents arguably re-
quire a large background of common-sense or
world knowledge to perform embodied reasoning
in virtual environments. Fulda et al. (2017a) ex-
tract common-sense affordances from word vectors
trained on Wikipedia using word2vec (Mikolov
et al., 2013), and use this to increase performance
on interactive fiction games, as well as (more gener-
ally) on robotic learning tasks (Fulda et al., 2017b).
Murugesan et al. (2020b) combine the Concept-
Net common-sense knowledge graph (Speer et al.,
2017) with an RL agent that segments knowledge
between general world knowledge, and specific be-
liefs about the current environment, demonstrating
improved performance in a cooking environment.
Similarly, Dambekodi et al. (2020) demonstrate
that RL agents augmented with either COMET
(Bosselut et al., 2019), a transformer trained on
common-sense knowledge bases, or BERT (De-
vlin et al., 2019), which is hypothesized to con-
tain common-sense knowledge, outperform agents
without this knowledge on the interactive fiction
game 9:05. In the context of social reasoning, Am-
manabrolu et al. (2021) create a fantasy-themed
knowledge graph, ATOMIC-LIGHT, and show that
an RL agent using this knowledge base performs
well at the LIGHT social reasoning tasks.

6 Contemporary Focus Areas

World Generation: Generating detailed environ-
ments with complex tasks is labourious, while ran-
domly generating environments currently provides
limited task complexity and environment cohe-
siveness. World generation aims to support the
generation of complex, coherent environments, ei-
ther through better tooling for human authors (e.g.
Temprado-Battad et al., 2019), or automated gener-
ation systems that may or may not have a human-
in-the-loop. Fan et al. (2020) explore creating co-
hesive game worlds in the LIGHT environment
using a variety of embedding models including
Starspace (Wu et al., 2018a) and BERT (Devlin
et al., 2019). Automatic evaluations show perfor-
mance of between 36-47% in world building, de-
fined as cohesively populating an environment with
locations, objects, and characters. Similarly, hu-

man evaluation shows that users prefer Starspace-
generated environments over those generated by
a random baseline. In a more restricted domain,
Ammanabrolu et al. (2019) show that two models,
one Markov chain model, the other a generative
language model (GPT-2), are capable of generating
quests in a cooking environment, while there is a
tradeoff between human ratings of quest creativity
and coherence.

Ammanabrolu et al. (2020a) propose a large-
scale end-to-end solution to world generation that
automatically constructs interactive fiction environ-
ments based on a story (such as Sherlock Holmes)
provided as input. Their system first builds a
knowledge graph of the story by framing KG con-
struction as a question answering task, using their
model (AskBERT) to populate this graph. The
system then uses either a rule-based baseline or a
generative model (GPT-2) to generate textual de-
scriptions of the world from this knowledge graph.
User studies show that humans generally prefer
these neural-generated worlds to the rule-generated
worlds (measured in terms of interest, coherence,
and genre-resemblance), but that neural-generated
performance still substantially lags behind that of
human-generated worlds.

Hybrid 3D-Text Environments: Hybrid simula-
tors that can simultaneously render worlds both
graphically (2D or 3D) as well as textually of-
fer a mechanism to quickly learn high-level tasks
without having to first solve grounding or percep-
tual learning challenges. The ALFWorld simulator
(Shridhar et al., 2020b) combines the ALFRED 3D
home environment (Shridhar et al., 2020a) with
a simultaneous TextWorld interface to that same
environment, and introduce the BUTLER agent,
which shows increased task generalization on the
3D environment when first trained on the text world.
Prior to ALFWorld, Jansen (2020) showed that a
language model (GPT-2) was able to successfully
generate detailed step-by-step textual descriptions
of ALFRED task trajectories for up to 58% of un-
seen cases using task descriptions alone, without
visual input. Building on this, Micheli (2021) con-
firmed GPT-2 also performs well on the text world
rendering of ALFWorld, and is able to successfully
complete goals in 95% of unseen cases. Taken to-
gether, these results show the promise of quickly
learning complex tasks at a high-level in a text-only
environment, then transferring this performance to
agents grounded in more complex environments.
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7 Contemporary Limitations and
Challenges

Environment complexity is limited, and it’s cur-
rently difficult to author complex worlds. Two
competing needs are currently at odds: the de-
sire for complex environments to learn complex
skills, and the desire for environment variation
to encourage robustness in models. Current tool-
ing emphasizes creating varied procedural environ-
ments, but those environments have limited com-
plexity, and require agents to complete straight-
forward tasks. Economically creating complex,
interactive environments that simulate a significant
fraction of real world interactions is still well be-
yond current simulators or libraries – but required
for higher-fidelity interactive worlds that have mul-
tiple meaningful paths toward achieving task goals.
Generating these environments semi-automatically
(e.g. Ammanabrolu et al., 2020a) may offer a par-
tial solution. Independent of tooling, libraries and
other middleware offer near-term solutions to more
complex environment modeling, much in the same
way 3D game engines are regularly coupled with
physics engine middleware to dramatically reduce
the time required to implement forces, collisions,
lighting, and other physics-based modeling. Cur-
rently, few analogs exist for text worlds. The addi-
tion of a chemistry engine that knows ice warmed
above the freezing point will change to liquid wa-
ter, or a generator engine that knows the sun is a
source of sunlight during sunny days, or an obser-
vation engine that knows tools (like microscopes or
thermometers) can change the observation model
of a POMDP – may offer tractability in the form
of modularization. Efforts using large-scale crowd-
sourcing to construct knowledge bases of common-
sense knowledge (e.g., ATOMIC, Sap et al., 2019)
may be required to support these efforts.

Current planning languages offer a partial so-
lution for environment modelling. While simu-
lators partially implement facilities for world mod-
eling, some (e.g. Côté et al., 2018; Shridhar et al.,
2020b) suggest using mature planning languages
like STRIPS (Fikes and Nilsson, 1971) or PDDL
(McDermott et al., 1998) for more full-featured
modeling. This would not be without significant
development effort – existing implementations of
planning languages typically assume full-world ob-
servability (in conflict with POMDP modelling),
and primarily agent-directed state-space changes,
making complex world modeling with partial ob-

servability, and complex environment processes
(such as plants that require water and light to sur-
vive, or a sun that rises and sets causing different
items to be observable in day versus night) out-
side the space of being easily implemented with
off-the-shelf solutions. In the near-term, it is likely
that a domain-specific language specific to complex
text world modeling would be required to address
these needs while simultaneously reducing the time
investment and barrier-to-entry for end users.

Analyses of environment complexity can inform
agent design and evaluation. Text world articles
frequently emphasize agent modeling contributions
over environment, methodological, or analysis con-
tributions – but these contributions are critical, es-
pecially in the early stages of this subfield. Agent
performance in easy environments has increased in-
crementally, while medium-to-hard environments
have seen comparatively modest improvements.
Agent performance is typically reported as a distri-
bution over a large number of environments, and
the methodological groundwork required to under-
stand when different models exceed others in time
or performance over these environment distribu-
tions is critical to making forward progress. Trans-
fer learning in the form of training on one set of
environments and testing on others has become a
standard feature of benchmarks (e.g. Hausknecht
et al., 2020), but focused contributions that work
to precisely characterize the limits of what can be
learned from (for example) OmniQuest and trans-
ferred to Zork, and what capacities must be learned
elsewhere, will help inform research programs in
agent modeling and environment design.

Transfer learning between text world and 3D
environments. Tasks learned at a high-level in
text worlds help speed learning when those same
models are transferred to more complex 3D envi-
ronments (Shridhar et al., 2020b). This framing of
transfer learning may resemble how humans can
converse about plans for future actions in locations
remote from those eventual actions (as when we
apply knowledge learned in classrooms to the real
world). As such, text-plus-3D environment render-
ing shows promise as a manner of controlling for
different sources of complexity in multi-modal task
learning (from high-level task-specific knowledge
to low-level perceptual knowledge), and appears
a promising research methodology for imparting
complex task knowledge on agents that are able to
navigate high-fidelity virtual environments.
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A Extended List of Simulators

Simulators provide the infrastructure to implement
the environments, objects, characters, and interac-
tions of a virtual world, typically through a combi-
nation of a scripting engine to define the behavior
of objects and agents, with a rendering engine that
provides a view of the world for a given agent or
user. Simulators for embodied agents exist on a
fidelity spectrum, from photorealistic 3D environ-
ments to worlds described exclusively with lan-
guage, where a trade-off typically exists between
richer rendering and richer action spaces. This fi-
delity spectrum (paired with example simulators) is
shown in Table 3, and described briefly below. Note
that many of these higher-fidelity simulators are
largely out-of-scope when discussing Text Worlds,
except as a means of contrast to text-only worlds,
and in the limited context that these simulators
make use of text.

3D Environment Simulators: 3D simulators pro-
vide the user with complex 3D environments, in-
cluding near-photorealistic environments such as
AI2-Thor (Kolve et al., 2017), and include physics
engines that model forces, liquids, illumination,
containment, and other object interactions. Be-
cause of their rendering fidelity, they offer the pos-
sibility of inexpensively training robotic models in
virtual environments that can then be transferred to
the real world (e.g. RoboThor, Deitke et al., 2020).
Adding objects to 3D worlds can be expensive, as
this requires 3D modelling expertise that teams
may not have. Similarly, adding agent actions or
object-object interactions through a scripting lan-
guage can be expensive if those actions are outside
what is easily implemented in the simulator (like
creating gasses, or using a pencil or saw to modify
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3D Environment Simulators

– AI2-Thor (Kolve et al., 2017)
– CHALET (Yan et al., 2018)
– House3D (Wu et al., 2018b)
– RoboThor (Deitke et al., 2020)
D ALFRED (Shridhar et al., 2020a)

D I ALFWorld (Shridhar et al., 2020b)

Voxel-Based Simulators

– Malmo (Johnson et al., 2016)
– MineRL (Guss et al., 2019)

Gridworld Simulators

– Rogue-in-a-box (Asperti et al., 2017)
D BABYAI (Chevalier-Boisvert et al., 2018)
I Nethack LE (Küttler et al., 2020)
I VisualHints (Carta et al., 2020)
– Griddly (Bamford, 2021)

Text-based Simulators

I Z-Machine (Infocom, 1989)
I Inform7 (Nelson, 2006)
I Ceptre (Martens, 2015)
I TextWorld (Côté et al., 2018)
I LIGHT (Urbanek et al., 2019)
I Jericho (Hausknecht et al., 2020)

Table 3: Example embodied simulation environments bro-
ken down by environment rendering fidelity. D specifies that
environments supply natural language directives to the agent,
I specifies that environments are interacted with (at least in
part) using natural language input and/or output, and no rating
represents environments that do not have a significant text
component.

an object). Because of this, action spaces tend to be
small, and limited to movement, and one (or a small
number of) interaction commands. Some simula-
tors and environments include text directives for
an agent to perform, such as an agent being asked

Environment # Actions Examples

3D Environment Simulators

ALFRED 7 Command pickup, put, heat, cool
5 Movement move forward

Gridworld

BABYAI 4 Command pickup, drop, toggle
3 Movement turn left, move forward

NETHACK 77 Command eat, open, kick, read
16 Movement move north, move east

Text-based

ALFWorld 11 Command goto, take, heat, clean
LIGHT 11 Command get, drop, give, wear

22 Emotive applaud, wave, wink
PEG (Biomedical) 35 Command incubate, mix, spin

Zork 56 Command open, read, drop, drink

Table 4: Action space complexity for a selection of 3D,
gridworld, and text-based environments.

to “slice an apple then cool it” in the ALFRED
environment (Shridhar et al., 2020a). Other hybrid
environments such as ALFWorld (Shridhar et al.,
2020b) simultaneously render an environment both
in 3D as well as in text, allowing agents to learn
high-level task knowledge through text interactions,
then ground these in environment-specific percep-
tual input though transfer learning.

Voxel-based Simulators: Voxel-based simulators
create worlds from (typically) large 3D blocks, low-
ering rendering fidelity while greatly reducing the
time and skill required to add new objects. Sim-
ilarly, creating new agent-object or object-object
interactions can be easier because they can gener-
ally be implemented in a coarser manner – though
some kinds of basic spatial actions (like rotating an
object in increments smaller than 90 degrees) are
generally not easily implemented. Malmo (John-
son et al., 2016) and MineRL (Guss et al., 2019)
offer wrappers and training data to build agents
in the popular Minecraft environment. While the
agent’s action space is limited in Minecraft (see
Table 4), the crafting nature of the game (that al-
lows collecting, creating, destroying, or combining
objects using one or more voxels) affords exploring
a variety of compositional reasoning tasks with a
low barrier to entry, while still using a 3D envi-
ronment. Text directives, like those in CraftAssist
(Gray et al., 2019), allow agents to learn to perform
compositional crafting actions in this 3D environ-
ment from natural language dialog.

GridWorld Simulators: 2D gridworlds are com-
paratively easier to construct than 3D environments,
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and as such more options are available. GridWorlds
share the commonality that they exist on a dis-
cretized 2D plane, typically containing a maximum
of a few dozen cells on either dimension. Cells are
discrete locations that (in the simplest case) contain
up to a single agent or object, while more complex
simulators allow cells to contain more than one
object, including containers. Agents move on the
plane through simplified spatial dynamics, at a min-
imum rotate left, rotate right, and move forward,
allowing the entire world to be explored through a
small action space.

Where gridworlds tend to differ is in their render-
ing fidelity, and their non-movement action spaces.
In terms of rendering, some (such as BABYAI,
Chevalier-Boisvert et al., 2018) render a world
graphically, using pixels, with simplified shapes
for improving rendering throughput and reducing
RL agent training time. Others such as NetHack
(Küttler et al., 2020) are rendered purely as textual
characters, owing to their original nature as early
terminal-only games. Some simulators (e.g. Grid-
dly, Bamford, 2021) support a range of rendering
fidelities, from sprites (slowest) to shapes to text
characters (fastest), depending on how critical ren-
dering fidelity is for experimentation. As with 3D
simulators, hybrid environments (like VisualHints,
Carta et al., 2020) exist, where environments are
simultaneously rendered as a Text World and ac-
companying GridWorld that provides an explicit
spatial map.

Action spaces vary considerably in GridWorld
simulators (see Table 4), owing to the different
scripting environments that each affords. Some
environments have a small set of hardcoded envi-
ronment rules (e.g. BABYAI), while others (e.g.
NetHack) offer nearly 100 agent actions, rich craft-
ing, and complex agent-object interactions. Text
can occur in the form of task directives (e.g. “put
a ball next to the blue door” in BABYAI), partial
natural language descriptions of changes in the en-
vironmental state (e.g. “You are being attacked by
an orc” in NetHack), or as full Text World descrip-
tions in hybrid environments.
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Abstract
We describe our system for playing a minimal
improvisational game in a group. In Chain
Reaction, players collectively build a chain of
word pairs or solid compounds. The game
emphasizes memory and rapid improvisation,
while absurdity and humor increases during
play. Our approach is unique in that we have
grounded our work in the principles of oral cul-
ture according to Walter Ong, an early scholar
of orature. We show how a simple computer
model can be designed to embody many aspects
of oral poetics, suggesting design directions for
other work in oral improvisation and poetics.
The opportunities for our system’s further de-
velopment include creating culturally specific
automated players; situating play in different
temporal, physical, and social contexts; and
constructing a more elaborate improvisor.

1 Introduction

We developed a prototype computer system to play
the game Chain Reaction. This is both a memory
game and an oral improvisational game, and may
be the simplest such game. The game is best in-
troduced with an example. Consider four players
sitting in a circle, uttering the following:

• Player 1, beginning the game: Post office.
• Player 2: Post office chair.
• Player 3: Post office chair man [chairman].
• Player 4: Post office chair man child [man-

child].
• Player 1: Post office chair man child labor.
• Player 2: Post office chair man child labor

law.
• Player 3: Post office chair man child labor

law school.
• Player 4: Post office chair man child labor

law school boy [schoolboy].
• Player 1: Post office chair man child labor

law school boy band.
• Player 2: Post office chair man child labor

law school boy band [“banned”] book.

• Player 3: Post office chair man child la-
bor law school boy banned book shelf [book-
shelf].

• Player 4: Post office chair man child labor
law school boy banned book shelf ... uh, I
can’t think of anything!

• Player 2: Shelf life!
• Player 1: Too late! Let’s start again.
Each player’s task is to continue the chain by

reciting it quickly, without hesitation, and to imme-
diately add a word that will create a coherent pair
with the word before it. “Coherent” simply means
that the pair must refer to a meaningful single item
or concept. In written language we could call this a
collocation or a bigram, but a pair could also form a
solid compound such as “chairman” or “manchild.”
There is no requirement that the added word make
any sense when joined together with any earlier
words, only that the last word and the added word
together constitute “a thing.” As seen in the case of
band/banned, words are considered to be oral units
and it is fine to continue the chain while treating the
previous word as a homophone. Typically, there
is a prohibition on re-using words within the same
game. Although this example doesn’t show it, it’s
fine to use verb phrases (e.g., “slide off,” “run up”),
which also constitute “a thing.” Many of these are
easy to continue (e.g., “off brand,” “up hill”).

What exactly is “a thing”? Like obscenity, we
know it when we see it, or in this case, when we
hear it. “A thing” is determined by consensus. It is
whatever the group accepts as a suitable two-word
phrase or compound word. In the example given,
Player 2 might have made a first move that involved
uttering “post office plant” (an office plant being
similar to a house plant, but for the office). This
would have been a less obvious phrase, yet proba-
bly acceptable. Even so, the continuations “office
salad” and “office sky” would probably not have
been accepted, even if the player could have spun
a story about how there are such things (a salad
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stored in the office kitchen’s fridge and consumed
at one’s desk or the view of the sky from one’s of-
fice, for instance). If a player has to stop to explain
the phrase, the game’s continuity is broken, so such
phrases are, at least, not good moves.

New players usually find it surprisingly easy to
recite long chains. There are reasons for this re-
lated to oral practices. A fundamental reason in-
volves shared cultural and linguistic expectations.
Each word pair in the chain, after all, was almost
instantly thought up by a player.

2 Why Build Computational Models of
Oral Improvisation?

There has been intriguing work done to imple-
ment interactive improvisational games for lan-
guage learning (Morgado da Costa and Sio, 2020).
One game, Forced Links, is even related to chain
reaction, in that it involves the formation of word
chains, although not a word at a time. Our work
differs from this project because it does not have
any goal extrinsic to the game itself, and because it
is strongly based on oral practices and principles.

Oral cultures and thought encompass a broad
span of human history prior to the development of
writing and the establishment of cultures grounded
in literacy. Aspects of oral thought persist today,
as do new oral practices that are now situated in a
culture suffused with manuscript, print, and elec-
tronic practices. A prominent and innovative one,
for instance, is freestyle rap.

There are many approaches to understanding
complex phenomena such as orality. We chose the
epistemological approach of developing a compu-
tational model. This allows us to explore the nature
and consequence of orality in three distinct ways.
First, in the process of building the system we can
discover constituent elements of oral thought in ac-
cordance with the computational-imperative princi-
ple: “any model of human intelligence should in-
troduce only computational capabilities that enable
observed behaviors without enabling unobserved
behaviors.” (Winston and Holmes, 2018). Second,
we can examine the system’s functions and connec-
tions as a map towards understanding the functions
and structures of orality in action. Last, by engag-
ing with the built system, we can explore surprises
and unexpected (yet sometimes positive) behavior,
which can be used as further input to generate new
questions to explore.

There have been remarkable systems for oral

improvisation and poetics, including a physical
robot which engages in an agonistic, improvised
singing practice, bertsolaritza, that is traditional in
the Basque Country. (Astigarraga et al., 2013) This
“Bertsobot” does a complex sort of improvisation
and is a multimodal system with an elaborate ar-
chitecture, as opposed to the system we describe.
The interface is speech-based. However the under-
lying generation of verses, based on a vector-space
model of sentences, is not based on oral principles.
The way language is characterized by researchers
(as “sentences” rather than “utterances”) indicates
a literate-culture orientation in the system’s design
and development. Bertsobot’s sentence selection is
also based on a corpus that consists of some preex-
isting, transcribed bertsos, but mostly of text from
a newspaper, Berria — a literate, written source.

More recently, a physical robot that can engage
in freestyle rap battles, Shimon, has been developed
(Savery et al., 2020). Again, this is an elaborate sys-
tem that multimodally performs a complex type of
improvisation. Shimon was trained on a database of
rap lyrics (and, in a different condition, metal music
lyrics), but these lyrics were composed rather than
improvised. Researchers studied flow and drew on
how-to books about rapping, but it not clear that
the project was informed by the ethnographic lit-
erature on freestyle or a significant neuroscience
study (Liu et al., 2012).

Both Bertsobot and Shimon were engineered to
perform optimally and to be evaluated positively
by people. They were developed with clear aware-
ness of bertsolaritza and freestyle rap. Still, the
language generation in these systems did not seem
completely anchored to any explicit and general
theory of oral poetics. While our project may seem
trivial by comparison to these very elaborate ones,
it does have such a basis. And by focusing on a min-
imal improvisational situation, and paring down
our system to its essence, we hope to show what
oral poetic design principles apply most widely.

3 Chain Reaction

3.1 History of the Game

More than 110 years ago the technique of word as-
sociation was developed to allow patients to surface
unconscious ideas. (Jung, 1910) The experimenter
instructs the subject: “Answer as quickly as possi-
ble the first word that occurs to your mind.” Then,
a series of words are uttered and the response to
each is recorded. In word association, it is not nec-
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essary to make a Chain-Reaction-style completion,
a pair or “thing.” The reply can be an antonym, a
synonym, a hypernym, a hyponym, a meronym, or
anything else. The relationship of this technique
to Chain Reaction is that players in the game must
also utter a continuation as quickly as possible,
often the first thing that comes to mind.

The concept of word association is culturally
understood as having incongruous and humorous
potential and has been employed in comedy, for in-
stance in the in the 1975 Saturday Night Live sketch
“Word Association” with Chevy Chase and Richard
Pryor (Saucier et al., 2016) and in the 1989/1990
Monty Python’s Flying Circus sketch “Word As-
sociation Football” (Aarons, 2012). These are
scripted performances, not improvisational verbal
games, but help to illustrate that there can be humor
in instantaneous responses to a word.

In January 1980 a game show devised by Bob
Stewart premiered on US television. The show,
hosted by Bill Cullen, was called Chain Reaction
and required that players guess a chain of words
connecting a given first word with a given last word.
In early rounds, the chain was eight words long.
(Nedeff, 2013) The first run of the show was short-
lived, but it has been revived several times.

We do not find the first mention of the verbal
game Chain Reaction, with rules similar to those
we provided in the introduction, until the early 21st
Century. It is described in a book of games to be
played in the car by children. (Gladstone, 2004)
While Gladstone (or whoever devised this game)
likely had the game show in mind, contestants on
TV had to find predetermined intermediate words
in a chain of fixed length. The verbal game involves
the same sort of chaining, but allows the continu-
ations to be determined by players. In the verbal
game, the chain is not of fixed length, but can grow
indefinitely.

There are other types of verbal chain games, for
instance, some that involve connecting one word to
another that are used as improv theater warm-ups.
And there is a children’s verbal game that involves
the memory component, I’m Going to a Picnic and
I’m Bringing..., where players each add an item
of food and have to remember the entire list. But
Gladstone’s is the only precise description of Chain
Reaction, under any name, that we have found.

We have participated in many Chain Reaction
games in different contexts, offering us a diversity
of experience, although certainly not the distance

for impartial observation. Fundamentally, our play
of chain reaction serves as a “reality check” to
demonstrate that the game as explained in this re-
cent book is indeed playable and (for us and many
participants) can be fun. Our informal but frequent
experience of play offers us some insights as ob-
servers of others and allows us to reflect on our
own cognition during play, as we discuss later.

3.2 Seemingly Competitive, but Cooperative
At first glance Chain Reaction seems like a com-
petitive game. It is possible for a player to lose,
as Player 4 did in the example game transcript. A
player can lose by forgetting part of the chain or
by failing to come up with a new word to extend
the chain. In this case, we could say that everyone
else in the circle gets a point for that game. If a
group were playing like this, the group would want
to ensure that a continuation of the chain actually
existed, so the player that was unable to come up
with a word might have the right to challenge the
previous player (e.g., “... plastic spatula ... uh ...
come on, spatula what? There’s no way to continue
that!”). The game as presented by Gladstone al-
lows for a player to win by connecting the end of
the chain to the first word uttered by Player 1. For
instance, if playing with this rule, Player 2 might
have said: “post office lamp” and Player 3 might
have triumphantly declared “post office lamp post
— I win!” Perhaps some number of points greater
than one could be given to the player who achieves
the rare loop of this sort.

While we can discuss fine details of how this
game can be scored and thus won or lost, the truth
is, in social circumstances observed by author-
participants, the game is not really played com-
petitively. It is a cooperative game such as footbag
(the trademarked name of which is Hackeysack).
In this game, a circle of players kick a small bag
filled with sand into the air with their feet, trying to
keep it from hitting the ground. In this social game,
a good footbag player is one who keeps the bag in
the air and makes it possible for others to also play,
extending the fun of the game. The same is true in
Chain Reaction.

3.3 Context, Individuality, Cultures
Much of the fun in Chain Reaction arises from the
relationship between individuals, the cultural com-
monality in the group, and the cultural differences
between players. Different players have some cog-
nitive differences. They draw from varying life
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experiences and find different ways to continue
chains.

Players can come from different cultures, which
might influence the way they follow up particu-
lar words: American and Canadian players might
choose “station eleven” (the name of an American
TV series based on a Canadian novel) while British
players might be more inclined to say “station stop”
(a chiefly British way to indicate a train station).
Yet players do share a language, as well as the com-
monality of broadly defined human experience.

Gameplay is influenced by the embodied nature
of the game. This brings the world of social in-
teractions, context, and the physical environment
of play into the dynamics of the game, whether
consciously or unconsciously. A game may vary
greatly, for instance, depending on whether it is
played in a classroom, during dinner, or in a park.

4 The Obvious Approach Misses the Point

It would be simple enough to download a large
textual corpus, create a list of word pairs from
this data, then sample uniformly to create an au-
tomated player for Chain Reaction. The player so
constructed could be given a higher or lower tem-
perature parameter so that it utters more common
or more unusual words to continue the chain. This
player, however, would lack the nuance humans
will have when playing, and would have no basis
in the principles of orature or cognitive operational
constraints.

Human speakers have not perfectly memorized
libraries of digital and digitalized text, and even
if they had, speech and writing represent different
registers. A corpus will not represent how the a
language is spoken unless it consists entirely of
accurate transcripts, given the many differences
between speech and writing noted and theorized
by Ong, Halliday (1989) and others (e.g. Lukin
et al., 2011). These have often been automatically
distinguished using computational linguistics sys-
tems (e.g. Murata and Isahara, 2002; Ortmann and
Dipper, 2019).

Additionally, humans do not uniformly sample
from a fixed database of possible word pairs or com-
pound words in their minds. Chain continuations
are uttered based on common speech, idioms and
expressions, individual backgrounds and history,
cultural backgrounds, current events, the physical
setting of the game, previous conversations players
have had with each other, and so on. In addition to

factors that are not conscious, explicit decisionmak-
ing plays a role. Players may sometimes choose
uncommon continuations as “curve-balls” to make
the game more interesting. And finally, the store of
pairs within the mind may be large, but certainly is
constrained.

5 CRT, a Bot to Play Chain Reaction with
Humans

Chain Reaction Time (CRT) is a simple prototype
system, developed in Python, for playing Chain Re-
action. In developing CRT we were not interested
in providing a surrogate social environment and
having a single human player use the computer as a
partner in this game. The point of developing CRT,
and any future automated players of games like
Chain Reaction, is to be able to add these computer
players to groups of several humans and make the
dynamics of a multi-player game even more un-
usual and fun.

5.1 System Architecture

Readying CRT for play begins by formulating one
or more lists of valid word pairs that can be used
by computer players in-game. This is achieved via
a learning mechanism that gleans word pairs from
arbitrary textual corpora. As a data-transforming
mechanism, the learning module has no innate pref-
erence toward textual or oral modes of thought.
Although oral culture is primarily maintained in
our system as discussed in the analysis of Ong’s
characteristics of orality, we have chosen to also
embody this aspect by only using a casual spoken-
word corpus, the Santa Barbara Corpus of Spoken
American English (Du Bois et al., 2000). At the
cost of omitting new and emerging word pairs, we
use this method to ensure that pairs have a real-life
oral basis and reflect the orally-based cognition
used in casual daily conversations.

CRT has a model of pairs that allows for the sys-
tem to treat words and symbols as oral tokens rather
than textual ones, although of course, like any com-
puter system, it is based on inscribed, recorded that
relates more to literature culture. The existing inter-
face can also, unfortunately, highlight the lexical,
written aspects of the system.

Nevertheless, the pairs model not only function-
ally achieves orally-based responses, but acts as a
core component of the oral nature of the broader
system. To achieve this, the pairs model first trans-
forms the ending word of the chain into a list of
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all its possible phonetic representations given by
the CMU Pronouncing Dictionary (Weide, 1998).
Pairs then uses a dictionary of homophones to find
all lexemes of all pronunciations of the word in
question. Lastly, a continuation is chosen from the
list of all possible continuations found for all lex-
emes. This results in an oral system that is function-
ally ambivalent to the rigid textual representation
of a word and can naturally switch between word
meanings, lexemes, and homophones.

5.2 Player Interface

Traditional human-computer I/O follows almost ex-
clusively our textual and literate traditions. (CRT
was developed before the smart speakers became
as pervasive as they are today, but even these sys-
tems only do a little to diminish the influence of
literate culture in HCI overall.) One fundamental
characteristic of orality is the ephemerality of the
word and its inescapable attachment to the present
moment. A spoken word can be heard for only
the moment it sounds in the air. Textual systems
embody the polar opposite of this characteristic:
written or printed text (on paper or on a computer
terminal) endures and can be read again.

Although we have not released CRT yet, we
wanted to build it on accessible free/libre/open
source technologies, and sought to implement a
minimum viable system. These inclinations led
us, in our early work, to use the textual display of
words on the screen and a keyboard interface for
input. Although not ideal, we specialized this inter-
face to present some of the most important features
of oral exchange.

The Python curses library was used to achieve
the key oral element of ephemerality as well as
present-moment-attachment of the word, allowing
us to emulate those aspects of speech. This inter-
face is currently named OralTyping. Although text
is still used, the timing and visual presentation of
the text aims to recapture key elements of orality
lost in standard textual displays. For interface sys-
tems without an auditory component, OralTyping
performs well in its intended purpose of represent-
ing the ephemerality of oral poetic production in
text. Of course, a two-way verbal interface would
make for a better play experience, and we do plan
to implement one.

As a step toward this, we developed a second
interface using the pyttsx3 text to speech module.
This allows CRT to speak the chain aloud when

it is the system’s turn to play. Without having
conducted any formal evaluation, it is clear that
this interface improves play in addition to being
more faithful to the underlying oral principles of
Chain Reaction. It is important to note that this
system currently only provides speech output; hu-
man players must still inform computerized players
of the latest chain additions before the computer
can consider and output a continuation to the chain.
In future versions of the system, we plan to use
modern machine learning models for both speech
synthesis (such as Tacotron 2), as well as speech
recognition (such as wav2vec) in order to remove
current text input limitations.

6 Principles of Oral Poetics as They
Apply to Chain Reaction and CRT

In Orality and Literacy, Walter Ong outlines nine
unique characteristics that distinguish primary oral
thought processes from textually based cognition
(Ong, 2002). While Ong is certainly not the last
word on orality — he is, rather, the first major
scholar and theorist of it — we believe his princi-
ples remain critical to understanding oral impro-
visation and oral culture. Our selection of Chain
Reaction and development of CRT to play it em-
bodies these characteristics as follows.

6.1 Additive rather than subordinate

Oral works tend to use linear, additive grammati-
cal structures, whereas literate texts employ more
complex structures to give contextual information
that would otherwise be found in real-world ora-
tion. The Chain Reaction game is effectively the
most direct functional implementation of additive
structure, since its core mechanic is the retention
of active chain followed by the addition of one
word forming a new ending pair. CRT does not
modify this mechanic, and thus exhibits this oral
characteristic.

6.2 Aggregative rather than analytic

In orature, descriptive archetype pairs occur of-
ten as small-scale formulas. As Ong states, “The
elements of orally based thought and expression
tend to be not so much simple integers as clusters
of integers, such as parallel terms or phrases or
clauses, antithetical terms or phrases or clauses,
epithets.” Given that Chain Reaction is entirely
founded on culturally memorable consecutive word
pairs (“things”), the game prioritizes these pairs as
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the underlying root structure of thinking-in-play.
Although these pairs have greater constraints than
called for by the general aggregative trait of orality,
their existence as the cognitive root of Chain Reac-
tion (and CRT by extension) indicate a strong oral
foundation.

6.3 Redundant or “copious”

Oral works repeat many story elements previously
stated including events, characters, and associated
descriptions. The requirement that players orally
repeat the entire chain is a direct example of this
redundancy. Indeed, many of the underlying mo-
tives for this redundancy in oral cultures can be
experienced firsthand in Chain Reaction gameplay.
In particular, Ong states, “Not everyone in a large
audience understands every word a speaker utters,
if only because of acoustical problems. It is advan-
tageous for the speaker to say the same thing, or
equivalently the same thing, two or three times.”

6.4 Conservative or traditionalist

A primary objective of oral works is to preserve
the knowledge gained by the culture, given that
in primary oral cultures the spoken word is the
sole method of record-keeping. In Chain Reaction
gameplay, the creation of truly novel word pairs is
effectively prohibited, since one criterion for a pair
to be valid is that it must be recognized as preexist-
ing. This ensures that although chains created may
be new, their constituent elements are conservative
by definition and rule. From a different perspec-
tive, given that words in the chain need not have
any logical relation other than being consecutive
word pairs, this can result in chains that grow more
bizarre and more amusing with each expansion,
which can be seen as a source of novelty. Even so,
this novelty is grounded in a locally conservative
requirement.

6.5 Close to the human lifeworld

As Ong states, “In the absence of elaborate ana-
lytic categories that depend on writing to structure
knowledge at a distance from lived experience, oral
cultures must conceptualize and verbalize all their
knowledge with more or less close reference to the
human lifeworld, assimilating the alien, objective
world to the more immediate, familiar interaction
of human beings.” Pairs that come to mind in Chain
Reaction are likely to stem from everday human
experience. While there is no design element of

CRT that works toward this principle, the use of an
orally-based corpus is meant to help address it.

6.6 Situational rather than abstract
Continuations are likely to draw on the immediate
context of the player, with more abstract elements
being less likely. Players’ physical location, the
time of day, the weather, the social setting, dynam-
ics between players, and other factors will lead
gameplay to be simultaneously grounded in the
active, present lives of the players (6.5) and situa-
tionally based by context (6.6). We have observed
players looking at and even pointing to others in
the circle as they go around recalling words in the
chain, and players have told us that they sometimes
try to remember who said each word to aid their
recollection. Although not presently implemented,
we recognize this element of orality and intend to
eventually model some aspects of it in CRT.

6.7 Agonistically toned
A distinctive signature of oral works, Ong states, is
the embedding of the work and spoken word in an
agonistic context of struggle. In Chain Reaction,
the act of playing can be seen as a struggle between
players to properly recite the growing chain while
adding on to it. As discussed earlier, the strong
formulation of agonistic struggle is tempered by the
essential nature of this game as cooperative. Thus,
there is an additional dynamic at play: An implicit
goal of continuing the game as long as possible,
rather than purposefully trying to gain an upper
hand on other players. So while this game has an
element of being agonistically toned (reflected in
CRT as well), it is in the service of cooperation and
group enjoyment.

6.8 Empathetic and participatory rather than
objectively distanced

This characteristic ties in strongly with (6.5) Close
to the human lifeworld, in that it indicates an innate
connection between the work and the speaker or
speakers. In the case of Chain Reaction, the par-
ticipatory nature of the game itself, along with its
human context, encourages empathetic response
through the creation of additional pairs.

6.9 Homeostatic
Ong characterizes the homeostatic nature of oral
cultures by stating that they “live very much in a
present which keeps itself in equilibrium or home-
ostasis by sloughing off memories which no longer
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have present relevance.” The nature of orality pre-
cludes the use of dictionaries or other written ref-
erences to learn about the past: All there is is the
present. Chain Reaction is not played with refer-
ence books, of course. And our pairs knowledge
bases derive not from such texts but from modern
transcripts of oral conversations. It would work
against this principle to use textual data derived
from historical written books or dictionaries, which
could result in anachronistic responses from com-
puter players as well as an unrealistic store of infor-
mation that would not accurately model the thought
processes of human players in Chain Reaction.

7 Reflections on Play with CRT

An example transcript of a play session with two
human players and CRT is given in Appendix A.

We have not undertaken any formal evaluation
of CRT, but can share some reflections based on
our informal participation in and observation of
the game when CRT participates. The CRT sys-
tem does work and can participate in play with
human players. Including one or more computer-
ized players in a group of human players can inflect
gameplay in an interesting way, as the computer
player is able to participate, but in a way that is
sometimes noticeably nonhuman. Its pace of recita-
tion is unusually regular. It is capable of forming
good continuations, but currently, not ones that are
influenced by pairs earlier in the chain or by the hu-
man context. Generally, the current system’s ability
to form continuations is not currently near a human
level, so games often end with the automated play-
ers unable to find continuations that human players
have in mind.

The limited but noticeable success of CRT
proves that even a simple system can embody al-
most all major the aspects of oral poetics as the-
orized by Ong. It highlights the aspects that are
most challenging to model, including those that
rely on physical, temporal, and social contexts of
play. We hope that this design directions for other
work in oral improvisation and poetics, specifically,
pointing out (1) what aspects of orature are easy
to model and should be implemented in related
systems, and (2) helping to show what aspects are
more challenging and should be a focus for future
research.

7.1 Improving Chain Continuation

We believe that learning from additional corpora
and forming a larger pairs knowledge base would
be the simplest way to address current limitations.
A significant concern is how to integrate corpora of
written texts in a way that is suitable for this orally-
grounded project. We of course do not have access
to the smart speaker recordings of human conversa-
tion collected by Amazon and Google — sparing us
any ethical dilemmas regarding the use of this data.
We may be able to use available written corpora
that are contemporary and vernacular, and address
the written origins of this textual data by filtering
it so that offhand and more or less improvisational
writings, rather than ones that involved the consul-
tation of sources and revision, are emphasized.

7.2 Solid Compounds

One important limitation of the current learning
mechanism is that of detecting valid pairs written
as solid compounds, e.g., “signpost” and “news-
paper.” The learning submodule does not detect
this. This highlights an underlying structural dif-
ference in how words are perceived orally versus
textually. “Written words are residue. Oral tradi-
tion has no such residue or deposit.”(Ong, 2002)
Ong argues that in authentic oral cultures, “sign-
post” and “sign post” are delivered in the same
way; even attempting to formulate a distinction
between them is impossible within an oral frame-
work. This is not an impairment of orality; this
equality of word representation reveals some of
the ontological commitments textual cultures have
made in order to enable literate representation of
the spoken word. From an a priori perspective, it is
not evident which unitary ideas should be written
separately and which should be written as com-
pound words. Further evidence of this can be seen
in the common shifting of these boundaries, in such
cases as “to morrow,” “after noon,” “mail box,” and
“class room.” This is one example of an element of
orality directly encountered in the development of
CRT, manifested as a concrete problem that must
be solved. A partial solution to this problem may
be to include a list of valid compounds (based on an
auto-generated list, but edited) in the pairs model.

7.3 Making Memory Worse

Computerized players currently do not have a
model of fallible memory; that is, an automated
player can only fail by being unable to find a con-
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tinuation. We plan to implement a temporal model
whereby computerized players may forget parts of
the chain as a function of increasing time as well
as the difficulty or atypicality of pairs (judged by
relative frequency of a given pair across learning
data). This would model the human tendency to
forget, and thus provide a more accurate experience
that can be tweaked via parameters.

Having the system forget a chain is not a high
priority for us, even though memory is an impor-
tant aspect of Chain Reaction. Generally, it is not
fun for the game to end, and it may leave players
disappointed if an automated player were to stum-
ble and end the game. An exception to this may
be when there is a very tenuous continuation at
some point in the chain, or when the game is pro-
gressing poorly because many players have made
obscure continuations. In this case, players can be
relieved and appreciate the ability to start over, and
to form a better chain. Still, it is not essential that
an automated player be the one to end such a game.

7.4 Explaining Continuations
CRT could be developed to explain the reasoning
behind a particular continuation after the end of a
game, as a human would reasonably be expected
to do if asked. Without developing general AI, it
would be straightforward to implement a mecha-
nism by which CRT could justify its chain continu-
ations as influenced by categories such as “food,”
“furniture,” and “expression.” When questioned
about a chosen continuation, a computer player
could respond adequately by stating the association
it was reminded of and the word that caused this
association to activate. Work on this aspect of the
system might help us develop better methods of
continuing the chain.

7.5 Embodying Cultural and Individual
Differences

Perhaps most interesting to us would be elaborating
CRT to have custom pairs databases, with custom
weights, to model of cultural and individual differ-
ences. In alignment with our earlier comments, the
computational model of a Canadian or American
player might give more weight to “station eleven”
while a British player model gave more to “station
stop.” Such cultural differences would be the first
step of in modeling different sorts of players. Be-
yond this, we might be able to model how certain
individuals watched a good deal of TV and others
none at all, which would affect the weighting of

two-word or compound TV show titles. With these
sorts of nuances, computer players could introduce
additional interesting twists into games of Chain
Reaction.

7.6 Allowing More Elaborate Improvisation
We have in mind ways to relax the constraint on
what a pair can be and have played sample games
with different rules. Even with a very minimal
framework for oral improvisation and poetics, we
are likely to determine a different game that al-
lows for more types of creativity, and enhance our
system to play this game.

From there, we could elaborate the system to
utter rhymed couplets in response to previous ut-
terances. This would allow it to participate in a
minimal rap cypher. By building up from a seem-
ingly trivial system and maintaining a connection
to principles of orature throughout the process, we
would be taking a very different approach from that
of complex multimodal systems that devise lyrics
as part of their improvisations.

Complex systems can be impressive, but they
can also face difficulties. If they succeed, it is hard
to know the basis for their success: Which of the
many components of the system were crucial to
the positive improvisational performance? If they
fail, it is, similarly, hard to know why. By taking a
bottom-up, step-by-step approach, we hope to be
able to answer questions that more elaborate bots,
although impressive and admirable in many ways,
have not been able to address.
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A Chain Reaction Played with CRT

The following is a transcript of play undertaken by
two human players and CRT on May 10, 2022.

• Player 1: new year
• Player 2: new year book
• CRT, as Player 3: new year book club
• Player 1: new year book club sandwich
• Player 2: new year book club sandwich bag
• CRT: new year book club sandwich bag clip
• Player 1: new year book club sandwich bag

clip art
• Player 2: new year book club sandwich bag

clip art studio
• CRT: new year book club sandwich bag clip

art studio apartment
• Player 1: new year book club sandwich bag

clip art studio apartment building
• Player 2: new year book club sandwich bag

clip art studio apartment building code
• CRT: Hmm... Nope, I don’t know
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Abstract

Non-Player Characters (NPCs) significantly en-
hance the player experience in many games.
Historically, players’ interactions with NPCs
have tended to be highly scripted, to be limited
to natural language responses to be selected by
the player, and to not involve dynamic change
in game state. In this work, we demonstrate that
use of a few example conversational prompts
can power a conversational agent to generate
both natural language and novel code. This ap-
proach can permit development of NPCs with
which players can have grounded conversa-
tions that are free-form and less repetitive. We
demonstrate our approach using OpenAI Codex
(GPT-3 finetuned on GitHub), with Minecraft
game development as our test bed. We show
that with a few example prompts1, a Codex-
based agent can generate novel code, hold
multi-turn conversations and answer questions
about structured data. We evaluate this applica-
tion using experienced gamers in a Minecraft
realm and provide analysis of failure cases and
suggest possible directions for solutions.

1 Introduction

The recent advent of large pre-trained language
models such as GPT-2 (Radford et al., 2019) and
GPT-3 (Brown et al., 2020) has fostered spectacular
advances in text-generation. In this work, we focus
on the potential application of these large language
models in video games. In games, Non-Player
Characters (NPCs) enhance the player experience
by providing interaction, often involving conversa-
tion. Currently players’ conversations with NPCs
are highly scripted: in a typical scenario players
must select from a set of preset responses that they
can give to the NPC. Moreover, this interaction
is limited to natural language responses, and does
not directly involve dynamic game state change as

1We release the prompt and the wrapper code in
this repository https://github.com/microsoft/
interactive-minecraft-npcs

Figure 1: A Minecraft player interacting with a Codex-
powered NPC in in two scenarios: question answering
(top) and task completion (bottom).

part of the interaction. Below, we explore some
first steps towards creating functionally agentive
NPCs with which players can hold free-form con-
versations that are grounded in the game and which
players can instruct to perform actions that change
the game state by having the NPC adaptively gener-
ate code that calls functions exposed by the game
API. This is done by a single language model that
generates both natural language and code. To this
end, we use OpenAI Codex (Chen et al., 2021)
(a GPT-3 model finetuned on GitHub data). We
demonstrate that by simply including examples of
both natural language conversations and code in the
prompt, Codex can generalize to interesting new
settings, opening up intriguing possibilities for en-
hanced player experiences and game development.

We employ Minecraft as our test bed. First, this
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Figure 2: Sample prompt given to the Codex model to power an NPC in Minecraft.

is an open-world game where players creatively
build artifacts in the environment. This makes
Minecraft a good use case for providing NPCs
that can converse and perform tasks for the player,
something that Minecraft currently does not do.
Second, Minecraft has rich game APIs in scripting
languages,2 that permit models to write function
calls that allow the NPC perform in-game actions.

We investigate these Codex-powered NPCs
through an exploratory user study. We ask ex-
perienced gamers to interact with the NPC to ac-
complish tasks in a Minecraft realm: obtain craft-
ing recipes, mine resources, craft items and, lastly,
break out of two escape rooms. Figure 1 shows
two sample interactions. We analyze these interac-
tions, and discuss fail cases and what modifications
might be needed to handle them. We also present
discussion of some interesting avenues of future re-
search in the gaming space that might be achieved
by fine-tuning on game APIs.

2We use the open-source Mineflayer API. Microsoft re-
cently released a first-party API with similar functionality in
its GameTest Framework SimulatedPlayer class. This is still
under development and was not available for us at the time we
conducted our experiments.

2 Related Work

The Minecraft gaming environment is increasingly
widely used as a platform for researching agents
and machine-human collaboration. MALMO
(Johnson et al., 2016) is a test-bed for machine
learning architectures trained on reinforcement
learning. (Rose, 2014) showcases dialog in which
players provide NPCs with information and the
NPCs retain episodic memory and identify player’s
sentiments. (Szlam et al., 2019) lays out the moti-
vation for building assistants in Minecraft. (Gray
et al., 2019) describes a framework for dialog-
enabled interactive agents using high-level, hand-
written composable actions. (Jayannavar et al.,
2020) study collaborative conversation between
a builder and an architect about structure building.
IGLU: Interactive Grounded Language Understand-
ing in a Collaborative Environment has emerged a
competition to explore interactions in a Minecraft
environment. (Kiseleva et al., 2021).

The model we explore here is distinct from the
previous Minecraft-related work in that it generates
novel code that allows the NPC 1) to perform con-
textually viable actions (moving around, mining,
crafting, etc), 2) to answer questions about struc-
tured Minecraft data (such as crafting recipes) and
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3) to engage in multi-turn conversations.
This richness does not emerge in a vacuum:

it draws on several convergent lines of research.
Large pre-trained language models (PLMs) such
as GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020) and GPT-J have become the predom-
inant paradigm for text generation. Research in
neural modelling of dialog has focused on pow-
erful new models derived from these, such as Di-
aloGPT(Zhang et al., 2020), Meena (Adiwardana
et al., 2020), PLATO-XL(Bao et al., 2021), and
LaMDA (Thoppilan et al., 2022) that offer rich po-
tential for open-ended conversational applications.

The application of new prompting functions to
large PLMs enables them to perform few-shot or
zero-shot learning to adapt to new scenarios with lit-
tle or no data (Liu et al., 2021). This approach, too,
is rapidly being mainstreamed in dialog generation.
(Madotto et al., 2021) employ prompting to select
different dialogue skills, access multiple knowl-
edge sources, generate human-like responses, and
track user preferences. (Zheng and Huang, 2021)
use prompt-based few-shot learning for grounded
dialog generation, in an approach similar to ours.

PLMs that have been tuned on code reposito-
ries, typically GitHub, are have begun to be used
to automate coding processes and generate code
according to programmer’s textual specifications,
e.g., (Chen et al., 2021) and PaLm-Coder (Chowd-
hery et al., 2022). (Shin and Durme, 2021) suggest
that models pre-trained on code may also benefit
semantic parsing for natural language understand-
ing. (Nijkamp et al., 2022) explore conversational
program synthesis within this framework, and is
close in spirit to the current work by virtue of its
focus on emergent conversational properties.

3 Methodology

Our model is based on few-shot prompting of a
large language model, in which a small number
of sample instances in the prompt generalize to
new unseen input (Brown et al., 2020). We use
Codex (the code-davinci-002 model) and the Mine-
flayer API, together with MineCraft (Java Edition
v.1.17.1). Our goal is to have the NPC respond
to the player’s input appropriately according to
whether the input requires a purely natural lan-
guage response or a call to a function to perform
some action. Figure 2 shows a section of the
prompt we provide to the model. The prompt
begins with the following statement: “This file

contains Minecraft bot commands and the code
needed to accomplish them using the Mineflayer
JavaScript library. If asked something conversa-
tional, the bot should use bot.chat() to answer."
This tells the model that the prompt includes nat-
ural language commands and the code needed to
accomplish them. We include in the prompt the nat-
ural language commands and the code that need to
be generated to enable basic NPC functionalities3.

A new command from the player is appended
to this seed prompt and sent to the Codex model.
In the abstracted code, we evaluate the generated
completion. When the completion includes a func-
tion call to the game API, the corresponding action
is performed by the NPC inside the game. When
it includes a call to the bot.chat() function, (dis-
cussed below) the response string is displayed on
the chat interface. For each subsequent input, the
prompt includes the seed prompt plus the previous
player commands and model completions. When
the prompt exceeds the allowed token limit (2048
tokens), we revert to the seed prompt and report to
the player that the context has been reset.

We further refine this prompting approach using
the following strategies:

Using a stop sequence: Since we want only to
generate NPC responses (and not an entire conver-
sation), we use a stop sequence (comment operator).
Player input always starts with the stop sequence.

Syntactic sugaring: The Mineflayer API con-
tains lower-level functions that might be hard to
map to a natural language command. We therefore
wrap it in more abstract code4 to be handled by
the Codex model, e.g., the functions locateBlock,
openChest and listItemsInChest in Figure 2.

Using the bot.chat() function: We use the chat
interface within the Minecraft game for interac-
tion between player and NPC. The model calls the
bot.chat() function whenever the NPC needs to re-
spond using natural language.

Function chaining: Player instructions may re-
quire the NPC to perform multiple actions, in par-
ticular, map to multiple function calls where sub-
sequent calls depend on the success or failure of
previous calls. In Figure 2, the instruction “open
the chest" triggers a chain of functions where the
bot first locates the chest, opens it, then finally
responds with the result.

3A full list of these functions is provided in Appendix A
4We release the wrapper code in this GitHub

repository https://github.com/microsoft/
interactive-minecraft-npcs
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Figure 3: Sample of the second prompt that gets called during question answering.

Autoregressive prompting: Also known as
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020). For prompts that require knowledge
of game state, e.g., inventory/crafting queries, we
create a call through Codex that first gathers the
requisite information and then self-generates a call
to itself with the needed information.The last com-
mand shown in Figure 2 responds to crafting ques-
tions by first obtaining an ingredient list, then calls
createQueryPrompt to generate a secondary com-
pletion on a sub-prompt (Figure 3) using the data.

4 User Study

We conduct a user study to evaluate our NPC.
We invite eight participants who have previously
played Minecraft. Each participant had an hour to
complete the study and to answer the post study
survey questions. The study consists of five parts:

4.1 Get Crafting Recipe

Participants interacted with the NPC to determine
the ingredients and their count necessary to craft 5
items: wooden pickaxe, furnace, clock, pumpkin
pie, and any resource of their choice.

Table 4 shows sample player inputs and gener-
ated code. We find that participants used different
phrases (see table 1) to frame their questions and
the NPC was usually able to correctly map these
to the right function call. It was able handle mi-
nor variation in the resource name (‘wood pick-
axe’ instead of ‘wooden pickaxe’), misspellings
(‘fornace’), contextual phrasing (‘what goes into
a pumpkin pie’ since its a food item), and non-
question phrasing (‘recipe for clock’). Some partic-
ipants held extensive conversations with the NPC

Figure 4: Participant interacting with the NPC to get the
crafting recipes of different resources

where they asked additional questions about the
resource or its ingredients5.

Overall, across all participants, excluding cases
where the resource did not have a crafting recipe,
the success rate for the 4 specified resources was
85%, whereas that for the ‘any resource’ category
was 75%. The fail cases split into two categories:
those where resources had a crafting recipe and
those where resources did not. When a resource
had a crafting recipe, all fail cases belonged to
the ‘natural language response instead of function
call’ category. This happened primarily when the
query was preceded by a lengthy language-only
conversation without calls to code. Table 2 includes
fail cases for resources without a crafting recipe. In
the first two cases, the NPC’s response (“could not
find recipe”) seems appropriate but uninformative.
In the third case the NPC hallucinates a recipe:
nether portal is not an object that can be crafted.

5Analysis included in the Appendix.
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Resource User query NPC Response
Wooden pickaxe what do I need to create a wood pickaxe? You need 3 oak planks and 2 sticks to make

a wooden pickaxe.
Furnace how can I build a fornace? You need 8 cobblestones to make a furnace.
Pumpkin pie what goes into a pumpkin pie? You need 1 pumpkin, 1 egg and 1 sugar to make

a pumpkin pie.
Clock what items are needed to build a clock, yo? You need 4 gold ingots and 1 redstone to make a clock.
Clock recipe for clock You need 4 gold ingots and 1 redstone to make a clock.
Beacon what do I need for a beacon? You need 5 glass, 1 nether star, and 3 obsidian to make

a beacon.

Table 1: Different participant queries and NPC responses to get ingredients and count required to create resource

User utterance NPC Response Reason for failure
How do I make a sword? Could not find recipe for sword There are multiple types of sword.
how to craft saddle Could not find recipe for saddle You can’t craft a saddle.
how to build nether portal You need 3 dark oak planks to Nether portal is not something you can craft.

build a nether portal

Table 2: Participant queries that failed to generate the expected response from the NPC.

4.2 Mine Resource
Participants asked the NPC to mine 1 dirt and 4
oak logs. Table 3 shows sample interactions. The
last column shows the code generated with each
NPC response. In the first case, in response to
the player command “can you get me 1 dirt?", the
NPC checked whether it had dirt in its inventory.
Since it didn’t, it responded “I don’t have any dirt
in my inventory" and then mined the dirt for the
player. However, after mining the dirt, it failed to
give it to the player by dropping it near them. In
the second case, when the user said “go cut down
an oak log", the model called the function cutTree
that did not exist. When the user followed up by
being more Minecraft-specific (“mine the tree"),
the model was able to generalize tree to “oak log".
Additional example interactions and their analysis
may be found in the appendix.

4.3 Craft Item
Participants asked the NPC to craft an oak plank,
a crafting table and a chest. The third example in
table 3 shows an interaction involving crafting an
oak plank. When the player asked if the NPC can
craft an oak plank, the NPC generated a chain of
functions where it first obtained the ingredients of
an oak plank and then created a query for the ques-
tion answering prompt where it checked whether
it had those ingredients in its inventory. Since it
did not have them, it threw an error message indi-
cating that it couldn’t make the plank. The player
followed up by asking what is needed to make the
plank and the NPC responded with the recipe for
making oak plank. The player then asked the NPC
to get the oak log and make the plank. The NPC

Figure 5: Player instructing the NPC to craft items

then mined the oak log and crafted the oak plank.
See the appendix for further examples.

4.4 Gather Minecraft knowledge

To get an idea what kinds of questions a typical
Minecraft player might want to ask an NPC, we
had participants ask freeform general knowledge
questions of the NPC. Figure 6 shows a sample in-
teraction. Participants tested the NPC’s knowledge
of of the game. They were interested in whether
the NPC can get numerical facts correct, how much
it knows about where to mine or find resources,
whether can it answer comparative questions, does
it know the purpose of different things in Minecraft,
and does it have a personality of its own. More ex-
ample queries are found in the appendix.

4.5 Escape from Two Rooms

Participants collaborated with the NPC to success-
fully escape from two rooms. In the first, both
player and NPC had to stand on two separate pres-
sure plates simultaneously to release a diamond
pickaxe that the player could use to break out. Dif-
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Player Utterance NPC Response Generated Code
can you get me 1 dirt? No, I don’t have any if(isInInventory(bot, ‘dirt’)) {

dirt in my inventory; goToPlayer(bot, username)
I got your dirt .then(() => dropItem(bot, ‘dirt’))

.then(() => bot.chat(“I got your dirt"))
} else {

bot.chat(“No, I don’t have any dirt in my inventory;’)̈
.then(() => mineBlock(bot, ‘dirt’))
.then(() => goToPlayer(bot, username))
.then(() => bot.chat(“I got your dirt"))

}
go cut down an oak log cutTree is not defined
mine the tree Here you go! mineBlock(bot, ‘oak_log’)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“Here you go!"))
give me the oak log Here you go! dropItem(bot, ‘oak_log’)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“Here you go!"))
can you craft an oak plank? I’ll craft you an oak plank! getIngredients(bot, ’oak_planks’)

I couldn’t make the oak plank. .then(ingredients => createQueryPrompt(bot, ingredients,
‘Can you craft an oak plank’))

.then(queryPrompt => model.getCompletion(queryPrompt))

.then(completion => evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 1))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ? bot.chat("I made an oak plank!") :
_throw("I couldn’t make the oak plank"));

can you get an oak log and Here you go! getIngredients(bot, ’oak_planks’)
then make the oak plank? I made an oak plank .then(ingredients => createQueryPrompt(bot, ingredients,

’Can you get an oak log and then make the oak plank’))
.then(queryPrompt => model.getCompletion(queryPrompt))
.then(completion => evaluateCode(completion, true))
.then(() => mineBlock(bot, ’oak_log’, 1))
.then(() => craftItem(bot, ’oak_planks’, 1))
.then(() => equipItem(bot, ’oak_planks’))
.then(success => success ? bot.chat("I made an oak plank!") :

_throw("I couldn’t make the oak plank"));

Table 3: Player and NPC interaction for mining 1 dirt, mining 4 oak logs and crafting an oak plank.

Figure 6: Player asking NPC questions about Minecraft

ferent participants used different strategies to get
the NPC to stand on the plate. In most cases, par-
ticipants used the phrase “stand on the pressure
plate”. In a few cases, they used phrases such as
“stand on this square” and “stand on that purple
tile” which failed because the NPC lacks the ability
to map square or purple tile to the pressure plate.
Similarly, the phrase “stand where I am looking”
also failed because NPC lacks visual capabilities.
All participants were able to escape the room, with
the average time being 2 mins 30 secs.

In the second room, the player was trapped in
a cobweb. A chest placed at a distance held the
ingredients necessary to make an iron sword. To
escape, participants needed to get the NPC to make
the sword and give it to them. Table 4 shows a
sample interaction between participant and NPC
in this room. We found that the NPC is able to
generate complex code (with novel function chains)
during these interactions. Of the 8 participants, 7
successfully escaped with the help of the NPC,
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Figure 7: Participant responses for different questions
in post study survey.

taking an average 4 mins 40 secs.
Upon finishing, if time permitted, participants

were allowed to interact freely with the NPC.

4.6 Post Study Survey

Participants filled out a survey where they rated
their overall experience interacting with the NPC.
They were asked to judged the fluency, relevancy
and informativeness of the NPC responses, com-
pare this NPC experience with other in-game NPC
experiences, and finally provide feedback on how
this experience could be improved.6

Figure 7 shows the results of the survey. 6 out
of the 7 participants7 found the interaction with the
NPC fun and said they would interact with it if it ex-
isted in a game, thus showing value in pursuing this
direction further. Some thought the NPC was help-
ful and its responses were fluent and informative.
Most thought the responses were only somewhat
relevant and also often hurt the game experience.
This suggests the need for further improving the
proposed model and working on the shortcomings
of prompt-based approach.

5 NPC Capabilities

On analyzing interactions in the user study, we find
that the NPC exhibits the following capabilities:

Parse unseen commands: The NPC can under-
stand player commands that are not in the prompt
but correspond to an existing functionality. It can
map the command ‘make me a chest’ (not in the
prompt) to the right function calls and create the
chest or explain why it can’t.

Generalize to new functionality: For some low-
level functionality, the NPC can generalize to un-

6Appendix B contains the full list of questions.
7Only 7 of the 8 participants filled the survey.

seen functions. For example, since the command
‘move forward’ is included in the prompt, the NPC
knows how to call the right functions to move in
other directions (backward, right and left).

Hold multi-turn conversation: The NPC can
retain the context (both code and language) and
maintain a multi-turn conversation in which the
NPC both responds using natural language and
takes actions within the game.

Generate language about code: The NPC can
remember multi-turn context and answering ques-
tions about the code (and the language) generated
in previous contexts. It can answer questions such
as “What did you just do?” and “What directions
have you moved?” .

Switch between code & language generation:
Depending on the player command and the pre-
vious context, the NPC is able to automatically
decide when to respond using natural language and
when to generate a function call.

Question answering: The NPC is able to an-
swer questions about its inventory (e.g. “what do u
have in your inventory?”, “do you have X?”, “how
many of X do you have” etc), about crafting recipes
(e.g. “how can I make a chest?”, “how many cob-
blestones do I need to make a furnace”) and answer
questions that require both inventory and crafting
recipe information (e.g. “how many more cobble-
stones do I need to make a furnace?”). It can also
answer questions generally about Minecraft. (The
training data for GPT-3 includes Minecraft infor-
mation available on the web.).

Generate novel function chains: Depending on
the player command, the NPC is able to generate
novel function chains by combining functions in
an order unseen in the prompt. Table 3 includes
multiple examples of such novel function chains.

6 Issues with Prompting

We also observed issues in our prompt-based ap-
proach. Many of are known issues in large lan-
guage models, and more specifically in prompt
engineering (Reynolds and McDonell, 2021; Liu
et al., 2022) and longer conversations with agents
in general (Xu et al., 2021). Principled solutions
pose interesting avenues for future investigation.

Calling non-existent functions: In response to
command, the NPC may attempt to call a function
that does not exist in the API. For example, when
the user asks the NPC to put a block down, the
NPC calls the placeBlock function which is not in
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Player Utterance NPC Response Generated Code
get what is on the chest Looks like 64 iron ingot locateBlock(bot, ’chest’, 1)

and 64 stick .then(chestBlock => listItemsInChest(bot, chestBlock))
.then(response => bot.chat(’Looks like ’ + response))

take everything takeAllItemsFromChest is not defined
take the 64 iron ingots I got your iron ingots and sticks! locateBlock(bot, ’chest’, 1)
and the 64 sticks .then(chestBlock => getItemFromChest(bot, chestBlock,

’iron_ingot’, 64))
.then(chestBlock => getItemFromChest(bot, chestBlock,

’stick’, 64))
.then(success => success ?

bot.chat("I got your iron ingots and sticks!") :
_throw("I couldn’t get your iron ingots and sticks!"))

craft an iron sword OK I’ll craft you an iron sword! getIngredients(bot, ’iron_sword’)
I made an iron sword!. .then(ingredients => createQueryPrompt(bot, ingredients,

‘craft an iron sword’))
.then(queryPrompt => model.getCompletion(queryPrompt))
.then(completion => evaluateCode(completion, true))
.then(() => craftItem(bot, ’iron_sword’, 1))
.then(() => equipItem(bot, ’iron_sword’))
.then(success => success ? bot.chat("I made an iron sword!") :

_throw("I couldn’t make the iron sword"));
give me the iron sword Here you go! goToPlayer(bot, username)

.then(() => dropItem(bot, ‘iron_sword’, 4) )

.then(() => bot.chat(“Here you go!"))

Table 4: Player utterance, NPC response and the code generated during the second escape room interaction.

the codebase. This might solved by providing the
model with a list of existing functions (perhaps in
the prompt), but a more principled solution may lie
in fine-tuning the model on the game API itself.

Context exceeding prompt token limit: When
the conversation exceeds the prompt’s token limit,
the prompt needs to be reset. This makes the NPC
lose the context of the conversation. Instead of eras-
ing the conversational history, it may be possible to
prune irrelevant parts of the context to keep within
the token limit. Some form of multi-stage prompt-
ing (Liu et al., 2022) may provide a solution.

Conversational response instead of function
call: The NPC sometimes responds conversation-
ally when the correct behavior would be to call a
function. We observe that this happens when the
player’s command is preceded by a long language-
only conversation thus priming the model for a
language only response. On the other hand, if the
preceding context includes function calls, then the
same user command triggers the right function call.
It may be difficult to fix this issue purely by prompt
engineering. A better solution may be to fine-tune
the Codex model on curated player NPC conversa-
tions that include by function calls.

Factual Inaccuracies: When the player asks
general questions about Minecraft, the NPC gets
the answer wrong. Table 11 includes instances of
factual inaccuracies. A potential fix could be to
incorporate a mechanism whereby the NPC can

refer to an external knowledge source, e.g., as in
retrieval-augmented methods (Lewis et al., 2020).

Inconsistencies: The NPC does not always have
a consistent persona. In a few cases, it responds
with a different answer for the same user query
depending on the context, even when the question
pertains to something that shouldn’t change with
the context. This could be addressed by enforcing
a strategy wherein the NPC maintains its persona
throughout the conversation; Again, multi-stage
prompting (Liu et al., 2022) may help.

Repetition: The NPC starts repeating itself.
This is especially likely when player and NPC en-
gage in a long conversation that doesn’t involve
calls to code. In table 11, the player queries “what
have you built?” and “have you built a house?”,
receive the same response: “I have built a lot of
things”. This may be addressable by metaprompt
programming (Reynolds and McDonell, 2021) or
multi-stage prompting (Liu et al., 2022).

Recency bias: The NPC can be biased by the
most recent context and answers questions incor-
rectly. For example, if player has been convers-
ing about things found in an ocean, and then asks
“where is the best place to look for diamonds?”, the
NPC responds incorrectly “The best place to look
for diamonds is in the ocean”. Retrieval-augmented
methods, e.g., (Lewis et al., 2020; Xu et al., 2021),
may provide the needed factual grounding.
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7 Conclusion

Codex-powered NPCs can integrate both conver-
sational and task-oriented language interactions al-
most seamlessly with code generation in asset-rich
contexts, and suggest huge potential for new kinds
of gaming experience, including the generation of
side quests (Appendix F). Gaming, moreover, is a
rich sandbox-like environment for exploring com-
plex agent interactions with code and addressing
issues faced by large language models. The behav-
ior of NPCs shed light many of the challenges en-
countered by large pretrained models of language
and code in sustaining persona, goals, and intents
over the course of interactions. It remains to be
seen whether solutions can be found within exist-
ing training and tuning strategies or whether they
must be sought outside these models. These are im-
portant, ongoing research questions, as are the huge
challenges remaining in mapping these interactions
to image recognition and to game state.

Ethical Considerations

The use of very large language models runs the risk
of exposing users to offensive or sensitive language
that might be contained in training data. Poten-
tial harms include, but are not limited to, offensive
references to classes of people and beliefs, encour-
agement of violence outside the game, and socially
inappropriate sexual references. Any implemen-
tation outside a sandboxed research environment
will need to build guardrails appropriate to the au-
dience and game environment, and especially to
provide protections for minors. In addition, im-
plementations must be able to handle adversarial
probes designed to elicit offensive language.

A further concern is that this technology may
make it easier for users to manipulate NPCs to per-
form in socially inappropriate ways or to construct
socially inappropriate objects. Longer-term, the
ability to enable users themselves to generate code
that can affect game state may pose security threats.
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A NPC functionalities

We include in the prompt the natural language com-
mands and the code that should be generated to
enable the following basic NPC functionalities:
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• Move forward

• Jump

• Look at the player

• Come to the player

• Follow the player

• Locate a block

• Mine a block

• Get the crafting recipe of an item

• Craft an item

• Open a chest

• Take items from chest

• Put items into the chest

• Close the chest

• List all items in inventory

• Check if item is in the inventory

• Get count of item in inventory

• Give item to player

B Post user study survey questions

Following the study, the participants filled out a
survey that had the following questions:

(a) How would you rate your skill in Minecraft?

(b) How would you rate your skill as a gamer in
general?

(c) Did you have fun while interacting with the
NPC in this study?

(d) How did you find this NPC interaction in com-
parison to the interactions you might have had
with dialog-capable NPCs in other games (e.g,
Skyrim)?

(e) How fluent were the NPC’s responses?

(f) How relevant were the NPC’s responses?

(g) How informative were the NPC’s responses?

(h) Did you feel like you were interacting with an
NPC with a consistent persona?

(i) When the NCP’s response was incorrect, how
much did that hurt your game experience?

(j) How magical did the experience of interacting
with an NPC feel? If it didn’t, can you explain
why not?

(k) What could be done to improve the experience
of interacting with the NPC?

(l) How useful were your interactions with this
NPC in helping you better understand how to
play Minecraft?

(m) More generally, would you prefer interacting
with such an NPC to learn a new game, as
opposed to a tutorial or an FAQ?

(n) Would you ever want to interact with an NPC
like this generally in any game?

(o) What are some useful applications of this kind
of NPC to enrich game experiences (in gen-
eral, not only in Minecraft)?

(p) If this technology could reach the level of a
companion (like an AI-gamer friend) that you
could take to any game, would you want to
use it?

C User study analysis

C.1 Get Crafting Recipe
In this part of the user study, some participants had
a longer conversation with the NPC around the re-
source. Table 5 includes such an interaction around
wooden pickaxe. The NPC is able to effectively
switch between code calling and natural language
response. In this particular example, the partici-
pant asked “can I only use oak to make a wooden
pickaxe, why not pine?” to understand if the NPC
knows that wooden pickaxes can be of various dif-
ferent types. Interestingly, the NPC first called the
recipe function to respond that you need sticks in
addition to oak planks to make the pickaxe. And
then it generated a natural language response where
it said you can use any wood to make the pickaxe.
This shows the kind of complex behavior that can
be generated by the codex model.

Table 6 is an example of a fail case for question
answering. Although the initial query ‘how do
I make a furnace’ correctly mapped to a recipe
function call, the later query ‘How do I make a
clock’ failed to do so since it was preceded with a
length language-only conversation. The participant,
however, was able to recover by asking a more
specific question ‘in terms of raw materials, what
do I need to make a clock?’.

C.2 Mine Resource
Table 7 shows sample interactions for mining task.
In the first case, the user’s query was similar to
that in table 3, however this time the NPC only
checked for dirt in its inventory and when it didn’t
find any dirt, it said “I have no dirt". But it did not
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Player utterance NPC response
I want a wooden pickaxe I don’t have the ingredients needed for a wooden pickaxe!

I couldn’t make the wooden pickaxe
how do I make a wooden pickaxe You need 3 oak planks and 2 sticks to make

a wooden pickaxe.
where do I get planks? You need to craft oak planks from oak logs.

You need to chop down some oak trees.
how many logs do I need for 3 planks? You need 3 logs to make 3 planks
does it have to be oak? Yes, you will need 1 oak log to make 4 oak planks.

Yes, you will need to use oak logs to make oak planks.
can I only use oak to make a wooden pickaxe, why not pine? No, you can’t make a wooden pickaxe with only oak planks,

you need to use oak planks and sticks.
You can use any wood to make a wooden pickaxe.

Table 5: Interaction between a participant and NPC around creation of a wooden pickaxe

Player utterance NPC response
how do I make a furnace You need 8 cobblestones to make a furnace.
where do I find cobblestone? You can find cobblestone in the ground
does depth matter? No, depth does not matter.
do I need anything to collect cobblestone? You need a shovel to collect cobblestone
how do I pick up cobblestone? You need to mine cobblestone
how do you mine cobblestone? You need a pickaxe to mine cobblestone
How do I make a clock? You need a clock to tell the time.
is there a way to make a clock I think you can make a clock by combining a clock

and a compass
in terms of raw materials, what do I need to make a clock? You need 4 gold ingots and 1 redstone to make a clock.

Table 6: Sample interaction where the NPC failed to map user query to recipe function for a resource that has a
crafting recipe. The user query preceded with lengthy context that required purely natural language response.

follow it with mining the dirt as it did in the first
case. When the user explicitly used the term ‘mine’
in their next utterance, the NPC mined the dirt for
them. This suggests that the model is not able to
always generalize “bring me" to the mine action.
In the second case, the player was more direct and
said “mine dirt" and in response the NPC mined
the dirt. Next the player said “drop dirt" and the
NPC went to the player and dropped the dirt close
to the player.

The third case is similar to the first. The notable
difference is that the model is able to understand
the compound instruction “can you mine some dirt
and give it to me" and correctly generates the code
to first mine and then drop the item near the user.
The fourth case depicts an instance of fail case be-
longing to the ‘natural language response instead of
function call’ category. Although this player used
the same utterance as in the first case, the NPC’s
response was purely natural language. When the
player followed this with “get me one dirt" and “i
want one dirt", both times, the model tried to call a
function getItem() that did not exist. After doing a
reset of the prompt, however, the user was able to
get the NPC to mine them the dirt.

The fifth case is a successful interaction around
mining of oak logs. In additon to generating the

correct code, the NPC’s responses (“I’m chopping
the oak logs" and “I dropped the oak logs") were
customized to the player’s phrasing (“please chop
oak logs" and “drop oak logs"). The sixth case de-
picts a success case for mining of 4 oak logs. The
last case depicts a failure case. when the user says
“bring me some oak logs please", they were expect-
ing the NPC to mine the logs and then give them
to the user. However, the model only generated
the code for mining the oak logs. When the user
followed it up with a verbose utterance (“you are
holding the logs, please throw them at my feed"),
the model was not able to map this to dropping of
the oak logs. Likewise, the phrase “pass me the
logs" also did not map to dropping of the oak logs.
Instead, in both these cases it generated a purely
natural language response (“I am holding the oak
logs").

C.3 Gather Minecraft Knowledge

Table 11 contains example queries where par-
ticipants tested NPC’s general knowledge about
Minecraft. We group them by different aspects.
In the first four aspects, the models gets several
questions wrong, suggesting the need for the inte-
gration of Minecraft specific knowledge base into
the model. The last aspect (personality of the NPC)
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Figure 8: Clues for the first escape room: ‘I wonder
what these pressure plates do?’, ‘I think we need to
stand on both at the same time’.

Figure 9: Clues for the second escape room: ‘Maybe
that chest has what I need to get out’, ‘I think I can get
out if I get my hands on an Iron Sword’

suggests that users would like the NPC to have a
persona and a history of its previous game experi-
ence.

D Details of Escape Rooms

Both rooms had clues written on the wall or on
boards that helped users figure out the path to es-
cape. Figures 8 and 9 shows the clues written on
the wall/boards in the two rooms.

E Need for Visual Capabilities

During the user study, we found multiple instances
where participants were expecting the NPC to be
able to see the things in the games, just like a player
does. Figure 10 shows one such instance where
player pointed at a crafting table and asked the
NPC “what is this”. The NPC responded “this is a
chat” since it had only textual context. Figure 11
shows another instance where participant pointed at
a location and told the NPC “place the crafting table
here”. Lastly, during the escape room interaction,
one participant looked at the pressure plate and
told the NPC “stand where I am looking”. These
cases strongly suggest the need for the NPC to have
visual capabilities.

Figure 10: Player pointing at an object and asking NPC
‘what is this?’

Figure 11: Player pointing at a location and asking the
NPC to place a block there.

Figure 12: Player asking the NPC to stand where they
are looking.
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F Side Quest Generation

We also experiment with the idea of side quest gen-
eration. Side quests represent a large amount of
content that players engage with, they spend hours
wandering worlds based on instructions given by
NPCs. The more quests we can create automat-
ically, the longer the player can spend exploring
their favorite world. This technology is meant for
open-world games like in Fallout, the OuterWorlds,
or Skyrim. We design a separate prompt with few
sample quests. When the player asks for a quest,
the NPC generates a new quest where it requests
one or more items from the player and devises a
relevant backstory as to why the requested items
are needed.The NPC then checks whether or not
the player has completed the quest, and provides
a reward if so. The necessary code to execute this
logic is generated by the Codex model.

1. For example, if the player asks, "Do you have
a quest for me?". User (U) says hello to Quest-
Giver (Q), which is a prompt-based model
that is given some summary of the state of the
game (including items that exist in the game).

2. Q specifies in response: (a) backstory; (b)
reward; (c) quests; and (d) code logic that
checks for quest completion. Quests are items
to retrieve. An example of a quest backstory
would be: "The recent festival was wonderful,
but I fear my children were just a bit too ram-
bunctious. I hear there is a new potion for sale
that would slow down anyone who drinks it. I
would like to try it out on my kids. Please get
me some", in reference to a slowness potion.

3. U gets an item X

4. U says to Q some paraphrase of "I got the
X that you asked for", this triggers code that
results in U /give X to Q, followed by Q in-
specting inventory to verify it was given X
and that it previously asked for X

5. If all quests completed, Q says "here is your
reward", with an associated /give to U
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Player Utterance NPC Response Generated Code
Please bring me 1 dirt I have no dirt if(isInInventory(bot, ‘dirt’)) {

goToPlayer(bot, username)
.then(() => dropItem(bot, ‘dirt’))
.then(() => bot.chat(“Here you go!"))

} else {
bot.chat(“I have no dirt");

}
please mine 1 dirt for me Here you go! mineBlock(bot, ‘dirt’)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“Here you go!"))
mine dirt I mined the dirt! mineBlock(bot, ‘dirt’)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“I mined the dirt"))
drop dirt I dropped the dirt! goToPlayer(bot, username)

.then(() => dropItem(bot, ‘dirt’))

.then(() => bot.chat(“I dropped the dirt!"))
can you get me a piece of dirt I have no dirt if(isInInventory(bot, ‘dirt’)) {

goToPlayer(bot, username)
.then(() => dropItem(bot, ‘dirt’))
.then(() => bot.chat(“Here you go!"))

} else {
bot.chat(“I have no dirt");

}
can you mine some dirt and Here you go! mineBlock(bot, ‘dirt’)
give it to me .then(() => goToPlayer(bot, username))

.then(() => dropItem(bot, ‘dirt’))

.then(() => bot.chat(“Here you go!"))
can you get me one dirt? I can get you some dirt!
get me one dirt getItem is not defined
i want one dirt getItem is not defined
reset
bring me one dirt I have no dirt if(isInInventory(bot, ‘dirt’)) {

goToPlayer(bot, username)
.then(() => dropItem(bot, ‘dirt’))
.then(() => bot.chat(“Here you go!"))

} else {
bot.chat(“I have no dirt");

}
mine one dirt I got your dirt mineBlock(bot, ‘dirt’)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“I got your dirt"))
please chop oak logs I’m chopping the oak logs mineBlock(bot, ‘oak_log’)

.then(() => bot.chat(“I’m chopping the oak logs"))
drop oak logs I dropped the oak logs dropItem(bot, ‘oak_log’)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“I dropped the oak logs"))
I need 4 oak logs. Can you help? Here you go! mineBlock(bot, ‘oak_log’, 4)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“Here you go!"))
please give me the oak logs Here you go! dropItem(bot, ‘oak_log’, 4)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“Here you go!"))
bring me some oak logs please I got your oak logs mineBlock(bot, ‘oak_log’)

.then(() => goToPlayer(bot, username))

.then(() => bot.chat(“I got your oak logs"))
you are holding the logs, I am holding the oak logs
please throw them at my feet pass me the logs
I am holding the oak logs

Table 7: Player utterance, NPC response and generated code during mining interaction.
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Player Utterance NPC Response Generated Code
craft an oak plank OK, I’ll craft you an oak plank! getIngredients(bot, ’oak_planks’)

I made an oak plank .then(ingredients => createQueryPrompt(bot,
ingredients, ’Craft an oak plank’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 1))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ?
bot.chat("I made an oak plank!") :
_throw("I couldn’t make the oak plank"));

give me the oak plank Here you go! goToPlayer(bot, 3, username)
.then(success => success ?

dropItem(bot, ’oak_planks’, 1) :
_throw("I couldn’t drop the oak plank"))

.then(success => success
&& bot.chat("Here you go!"));

how do you make an oak plank? You need 1 oak log to make 1 oak getIngredients(bot, ’oak_planks’)
plank. I made an oak plank! .then(ingredients =>

createQueryPrompt(bot, ingredients,
’How do you make an oak plank’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 1))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ?
bot.chat("I made oak planks!") :
_throw("I couldn’t make the oak plank"));

make me an oak plank I’ll make some oak planks! getIngredients(bot, ’oak_planks’)
I couldn’t make the oak plank .then(ingredients =>

createQueryPrompt(bot, ingredients,
’Make an oak plank’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 1))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ?
bot.chat("I made oak planks!") :
_throw("I couldn’t make the oak plank"));

<user dropped 1 oak log> <NPC picked it up the oak log>
make me an oak plank OK, I’ll make you an oak plank. getIngredients(bot, ’oak_planks’)

I made oak planks! .then(ingredients =>
createQueryPrompt(bot, ingredients,
’Make an oak plank’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 1))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ?
bot.chat("I made oak planks!") :
_throw("I couldn’t make the oak plank"));

Table 8: Player utterance, NPC response and generated code for interaction around crafting an oak plank.
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User Utterance NPC Response Generated Code
build a crafting table I’ll build you a crafting table. getIngredients(bot, ’crafting_table’)

I built a crafting table .then(ingredients =>
createQueryPrompt(bot, ingredients,
’Build a crafting table’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’crafting_table’, 1))

.then(() => equipItem(bot, ’crafting_table’))

.then(success => success ?
bot.chat("I built a crafting table!") :
_throw("I couldn’t build a crafting table"))

please make a crafting tabel OK, I’ll make you a crafting table. getIngredients(bot, ’crafting_table’)
I couldn’t make the crafting table. .then(ingredients =>

createQueryPrompt(bot, ingredients,
’Please make a crafting table’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’crafting_table’, 1))

.then(() => equipItem(bot, ’crafting_table’))

.then(success => success ?
bot.chat("I built a crafting table!") :
_throw("I couldn’t build a crafting table"))

what do you need to make You need 4 oak planks to make getIngredients(bot, ’crafting_table’)
a crafting table? a crafting table. .then(ingredients =>

createQueryPrompt(bot, ingredients,
’What do you need to make a crafting table’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

make me 4 oak planks please OK, I’ll make you 4 oak planks! getIngredients(bot, ’oak_planks’)
I made 4 oak planks. .then(ingredients =>

createQueryPrompt(bot, ingredients,
’Make me 4 oak planks’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 4))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ?
bot.chat("I made 4 oak planks!") :
_throw("I couldn’t make the 4 oak planks"))

what resources do you have now? I have 16 oak planks in createQueryPrompt(bot, ,
my inventory ’What resources do you have now’)

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

please craft a crafting table OK, I’ll craft you a crafting table! getIngredients(bot, ’crafting_table’)
I made a crafting table. .then(ingredients =>

createQueryPrompt(bot, ingredients,
’Craft a crafting table’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’crafting_table’, 1))

.then(() => equipItem(bot, ’crafting_table’))

.then(success => success ?
bot.chat("I made a crafting table!") :
_throw("I couldn’t make the crafting table"));

Table 9: Player utterance, NPC response and generated code for interaction around crafting a crafting table.
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User Utterance NPC Response Generated Code
how do you make a chest? You need 8 oak planks to make a chest. getIngredients(bot, ’chest’)

I couldn’t make the chest. .then(ingredients =>
createQueryPrompt(bot, ingredients,
’How do you make a chest’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

make oak planks OK, I’ll make you some oak planks! getIngredients(bot, ’oak_planks’)
I couldn’t make the oak planks .then(ingredients =>

createQueryPrompt(bot, ingredients,
’Make oak planks’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 8))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ?
bot.chat("I made oak planks!") :
_throw("I couldn’t make the oak planks"))

chop oak I chopped 4 oak logs! locateBlock(bot, ’oak_log’, 0)
.then(success => success ?

chopTree(bot, ’oak_log’, 4) :
_throw("I couldn’t find any oak logs!"))

.then(success => success
&& bot.chat("I chopped 4 oak logs!"));

make oak planks I made oak planks! getIngredients(bot, ’oak_planks’)
.then(ingredients =>

createQueryPrompt(bot, ingredients,
’Make oak planks’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’oak_planks’, 8))

.then(() => equipItem(bot, ’oak_planks’))

.then(success => success ?
bot.chat("I made oak planks!") :
_throw("I couldn’t make the oak planks"))

how many oak planks I have 12 oak planks in my inventory createQueryPrompt(bot, ,
’How many oak planks do you have’)

do you have? .then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

make a chest I made a chest! getIngredients(bot, ’chest’)
.then(ingredients =>

createQueryPrompt(bot, ingredients,
’Make a chest’))

.then(queryPrompt =>
model.getCompletion(queryPrompt))

.then(completion =>
evaluateCode(completion, true))

.then(() => craftItem(bot, ’chest’, 1))

.then(() => equipItem(bot, ’chest’))

.then(success => success ?
bot.chat("I made a chest!") :
_throw("I couldn’t make the chest"))

place chest placeBlock is not a function locateBlock(bot, ’chest’, 1)
.then(chestBlock =>

placeBlock(bot, chestBlock))
.then(success => success ?

bot.chat("I placed the chest!") :
_throw("I couldn’t place the chest")) height

Table 10: Player utterance, NPC response and generated code for interaction around crafting a chest.
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User utterance NPC response
Numerical facts
how much hunger does steak restore Steak restores 4 hunger
how much damage does a creeper do? A creeper does 5 damage
how many mobs spawn in a raid? There are about 20 mobs that spawn in a raid!
what is the build limit? The build limit is 256 blocks!
how long is a Minecraft day? A day in Minecraft is 20 minutes.
how many different potions are there? There are currently 16 different potions.
Location of things
where can I find sponges? You can find sponges in the ocean!
where is the best place to look for diamonds? The best place to look for diamonds is in the ocean
where is the best place to look for coal? The best place to look for diamonds is in the ocean
where do I find a nether star? A nether star is dropped by the Wither.
Where do I find zombies? Zombies are in the nether!
Where can I find diamond Diamond can be found in the ground
Where do I find pigs? Pigs are in the forest!
Comparisons
what has longer pulse, a stone or a wooden button? A stone has a longer pulse!
which is worse, a creeper or a the dragon? The dragon is worse than the creeper
who would win between a skeleton and a zombie? The zombie would win!
Purpose of things
What is redstone used for? Redstone is used to power things like furnaces and redstone torches
What does an oven do? An oven is uded to cook things like bread and cake
what does a tree drop A tree drops oak logs!
what does the ground drop? The ground drops dirt!
what is a nether star used for? A nether star is used to cure a zombie villager.
Personality of the NPC
are you an NPC? I’m not an NPC, I’m a bot!
what do you like to do? I like to build things!
what have you built? I have built a lot of things
have you built a house? I have built a lot of things
where did you get your name? I was named after the bot in the movie ’Ace Ventura: Pet Detective’
What do you like to do in Minecraft? I like to make things in Minecraft!
What kinds of things do you like to make? I like to make things like furnaces, pickaxes, and crafting tables!

Table 11: Users testing NPC’s general knowledge about Minecraft.
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Abstract

Interactive Question Answering (IQA) requires
an intelligent agent to interact with a dynamic
environment in order to gather information nec-
essary to answer a question. IQA tasks have
been proposed as means of training systems
to develop language or visual comprehension
abilities. To this end, the Question Answering
with Interactive Text (QAit) task was created
to produce and benchmark interactive agents
capable of seeking information and answering
questions in unseen environments. While prior
work has exclusively focused on IQA as a re-
inforcement learning problem, such methods
suffer from low sample efficiency and poor ac-
curacy in zero-shot evaluation. In this paper,
we propose the use of the recently proposed
Decision Transformer architecture to provide
improvements upon prior baselines. By utilis-
ing a causally masked GPT-2 Transformer for
command generation and a BERT model for
question answer prediction, we show that the
Decision Transformer achieves performance
greater than or equal to current state-of-the-art
RL baselines on the QAit task in a sample ef-
ficient manner. In addition, these results are
achievable by training on sub-optimal random
trajectories, therefore not requiring the use of
online agents to gather data.

1 Introduction

Traditional methods for question answering (QA)
and machine reading comprehension (MRC) are
primarily concerned with the retrieval of declara-
tive knowledge, that is, explicitly stated or static
descriptions of entities in text documents or within
a knowledge base (KB) (Trischler et al., 2017).
These models tend to answer questions primarily
through basic pattern matching skills, further dif-
ferentiating their abilities from those of humans.
Conversely, procedural knowledge is the sequence
of actions required to perform a task (Georgeff and
Lansky, 1986). To this end, interactive question an-
swering (IQA) has been proposed as a framework

for teaching MRC systems to gather the informa-
tion necessary for question answering (Yuan et al.,
2019).

IQA requires an agent to interact with some dy-
namic environment in order to gather the required
knowledge to answer a question (Gordon et al.,
2018). As such, the task is well-suited to be ap-
proached as a reinforcement learning (RL) prob-
lem. Yuan et al. (2019) proposed Question An-
swering using interactive text (QAit) as a means of
testing the knowledge gathering capabilities of an
agent required to answer a question about its envi-
ronment. Here an agent interacts with a partially
observable text-based environment, created using
Microsoft TextWorld (Côté et al., 2018), in order
to gather information and answer questions about
the attributes, location, and existence of objects.
The QAit task thus aims to benchmark generalisa-
tion and provides an environment to train agents
capable of gathering information and answering
questions.

Yuan et al.’s proposed baselines (using DQN
(Mnih et al., 2015), DDQN (Van Hasselt et al.,
2016), and Rainbow (Hessel et al., 2018)) all suf-
fered from low sample efficiency and relatively
poor performance on all three question types (loca-
tion, attribute, and existence). These shortcomings
suggest that alternative architectures and method-
ologies are required to improve performance within
the QAit setting.

Transformers (Vaswani et al., 2017) have shown
success in modelling a diverse range of high-
dimensional problems (Brown et al., 2020; Ramesh
et al., 2021; Devlin et al., 2019). Additionally,
existing language models such as BERT (Bidirec-
tional Encoder Representations from Transform-
ers) and GPT (Generative Pre-Trained) (Radford
et al., 2019) have been utilised to reduce the size
of datasets required for training downstream lan-
guage tasks (Lee and Hsiang, 2019; Mager et al.,
2020). These benefits coupled with the demon-
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strated ability of Transformers to model long se-
quences by utilising the self-attention mechanism
makes this architecture ideal for IQA. Recent work
(Chen et al., 2021; Janner et al., 2021) have shown
the applicability of Transformers to sequential deci-
sion making problems as an alternative solution to
RL problems. These approaches frame RL trajec-
tories as sequences of states, actions, and rewards
modelled autoregressively by a Transformer. This
sequence modelling approach is referred to as the
Decision Transformer (DT) (Chen et al., 2021).

In this paper we apply the Decision Transformer
to QAit, replacing the online interaction and train-
ing methodology of RL approaches with a Decision
Transformer that utilises the GPT-2 (Radford et al.,
2019) architecture, closely following the method-
ology outlined by (Chen et al., 2021). We propose
an additional QA module that is a fine-tuned BERT
model, with the aim of leveraging pre-trained lan-
guage models to provide more accurate answers
to questions. We show that by framing the QAit
task as a sequence modelling problem, a Decision
Transformer matches or exceeds the performance
of previous RL-based benchmarks when trained on
random episodic rollouts, while using significantly
less data. Our main contributions are as follows:

1. We show that an offline reinforcement learn-
ing method is able to match the performance
of online value-based reinforcement learning
baselines in the QAit environment.

2. We show that by framing IQA as a sequence
modelling problem, the performance of the
QAit baselines can be matched using signifi-
cantly less training data.

3. We show that the Decision Transformer archi-
tecture is able to learn policies comparable to
those of online reinforcement learning meth-
ods from purely random data, illustrating the
architecture’s ability to find structure in inher-
ently noisy data.

2 Background

2.1 QAit
QAit is implemented in TextWorld1 (Côté et al.,
2018), an open-source simulator for training rein-
forcement learning (RL) agents for decision mak-
ing and language comprehension. QAit text-based

1https://www.microsoft.com/en-
us/research/project/textworld/

environments are generated procedurally via sam-
pling from a distribution of world settings. There
are two environment map types: A fixed map con-
tains six rooms, whereas random maps sample
their number of rooms from a uniform distribution
U(2, 12). QAit requires an agent to answer ques-
tions about the location, existence and attributes
of objects in an environment. An agent interacts
with a QAit environment using text commands that
consist of an action, modifier, and object triplet,
e.g., "open black oven". A generated environ-
ment consists of rooms each containing randomly
assigned objects and location names. The agent
moves around in the environment for a pre-defined
number of time steps or until the predicted com-
mand action is "wait". TextWorld responds to agent
commands with a state string containing informa-
tion about the room the agent is in and the objects
present.

2.1.1 Question types
An agent is required to answer one of three question
types:

• Location questions assess an agent’s ability to
navigate the environment to find the location
of an object. For example, "Where is copper
key?" could be answered with "garden" or
"toolbox".

• Existence questions requires the agent to nav-
igate and interact with the environment to
gather knowledge and determine whether an
object exists. Questions are phrased as "is
there any X in the world?", where X is an en-
tity in the vocabulary, and answers are either
yes ("1") or no ("0").

• Attribute questions require that the agent in-
teracts with an object to determine whether it
has a particular characteristic or quality. For
such question types, the level of interaction
and movement required in observing a suffi-
cient amount of information to answer a ques-
tion greatly exceeds location and existence
questions. Answers are also either yes or no.
For example, "Is stove hot?" requires an agent
to find and interact with "stove" to answer the
question correctly. Comprehension of both
the question and the environment are required.
Entities often have arbitrary names and at-
tributes, making memorisation impossible.
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Figure 1: The Decision Transformer (Chen et al., 2021) architecture as adapted to QAit. States St and commands At

have their token sequences encoded with GRUs. An embedding is also learnt for the returns-to-go Rt. Each of these
three embeddings (St, At, Rt) are concatenated with a positional embedding for time step t, and fed into a GPT-2
causal Transformer. Commands are predicted autoregressively through linear decoders for the next command’s
action at+1, modifier mt+1, and object ot+1 components. A fourth decoder predicts the answer to the question at
each time step.

2.1.2 Rewards
Yuan et al. (2019) proposed two reward types:

Sufficient Information: Sufficient information
is a metric used to evaluate the amount of informa-
tion gathered by the agent and whether or not the
information was sufficient to answer the question
(Yuan et al., 2019). It is also used as part of the re-
ward function. The sufficient information score is
calculated when the agent decides to stop the inter-
action and answer the question. For each question
type, the sufficient information score is calculated
as follows:

• Location: A score of 1 is given if, when the
agent decides to stop the interaction, the entity
mentioned in the question is present in the
final observation. This indicates the agent has
witnessed the information it needs to answer
the question successfully. If the mentioned
entity is not present in the final observation
then a score of 0 is given.

• Existence: If the true answer to the question
is yes then a score of 1 is given if the entity
mentioned in the question is present in the
final observation. If the true answer to the
question is no, then a score between 0 and 1

is given proportional to the amount of explo-
ration coverage of the environment the agent
has performed. Intuitively this can be seen as
a confidence score - if the agent witnesses the
entity, it is 100% confident of its existence;
otherwise, until it explores the entire environ-
ment, it cannot be completely confident.

• Attribute: Attribute questions have a set of
heuristics defined to verify each attribute and
assign a score of sufficient information. Each
attribute has specific commands that need to
be executed for sufficient information to be
gathered. This also depends on the agent be-
ing in certain states for these outcomes to be
observed correctly, e.g. an agent needs to be
holding an object to try to eat the object.

Exploration Reward: The agent is also given an
exploration reward (Yuan et al., 2018) whenever en-
tering a previously unseen state in order to promote
exploration of the environment.

2.1.3 Evaluation
(Yuan et al., 2019) trained agents on multiple Num-
ber of Games settings, i.e., number of unique envi-
ronments that an agent interacts with during train-
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ing. In this paper, we restrict our experiments to the
500 games setting when generating offline training
data for the Decision Transformer.

We measure an agent’s performance through
both sufficient information score and question an-
swering accuracy. Models are evaluated in a zero-
shot evaluation on the QAit test set in order to
assess agents’ generalisation abilities. Each ques-
tion type and map type have their own unique set
of 500 never-before-seen games, each containing a
single question.

2.2 Decision Transformer
The Decision Transformer (Chen et al., 2021) ar-
chitecture approaches reinforcement learning prob-
lems by autoregressively modelling a trajectory
of actions/commands, states, and rewards. Com-
mand triples (action, modifier, noun) are condi-
tioned upon the total reward that can still be gath-
ered from interacting with the environment. This
is referred to as the returns-to-go (RTG) Rt =∑T

t′=t rt′ where T is the trajectory length and
rt is the reward at time step t. Thus the ini-
tial return-to-go R1 represents the total reward
to be gained from a given episode. After every
episodic play-through, the trajectory is represented
as (R1, s1, a1, R2, s2, a2...RT , sT , aT ), where Rt

is the RTG, s is a state, and a an action/command.
An example QAit trajectory is shown in Figure

2. The trajectory representation enables training
a sequence model such as GPT-2 (Radford et al.,
2019), as command prediction is based on gaining
some future reward, rather than on how much re-
ward has already been obtained. During testing the
model is conditioned on total desired reward by set-
ting R1 and the starting state to generate command
sequences autoregressively. If an agent obtains
some reward while interacting with the world, this
is deducted from its RTG in subsequent time steps.

3 Approach

Training a Decision Transformer requires offline
training data for supervised learning. Online rein-
forcement learning, in contrast, sees an agent con-
tinually interacting with the environment to gather
experience and update its policy based on observed
rewards.

3.1 Training data generation with random
rollouts

We generate offline training data using random
rollouts for each map type and question type in

Map
Type

Question Mean
Reward

Maximum
Reward

Training
Set Size

Fixed Location 0.526 4.10 44k
Existence 0.554 3.80 39k
Attribute 0.498 3.73 36k

Random Location 0.565 4.10 41k
Existence 0.606 3.94 42k
Attribute 0.542 4.03 82k

Table 1: Size of each of the training datasets, i.e. num-
ber of trajectories generated with random rollouts. The
average and maximum total rewards gained per trajec-
tory are also given.

the 500 games setting. The rollouts are generated
using a random agent which uniformly samples
commands from all admissible commands for a
particular time step. This restriction stems from the
sparsity of the action space (approximately 16543

possible commands compared to approximately 8
admissible commands): sampling commands from
the complete vocabulary results in mostly invalid
commands. Thus, by only using admissible com-
mands in data generation, we intend for the Deci-
sion Transformer to learn which command triplets
are admissible (as this is unknown during testing).
The sequence of commands and observed states are
recorded along with the reward for each command.
Training dataset statistics are given in Table 1.

3.2 Decision Transformer

The maximum trajectory input length of the De-
cision Transformer is set to K = 50 time steps,
which is the maximum length of a QAit episode.
This allows the DT to access the entire trajectory
for command generation and question answering.
Token embeddings for states and command se-
quences are obtained using a single embedding
layer. At each time step the sequence of tokens
representing the current state of the environment is
encoded with a GRU (Cho et al., 2014) with the fi-
nal hidden state hn representing the entire encoded
environment state. We concatenate the question to
the end of each state sequence, separated by a “<|>”
delimiter token. Commands, which can consist of
up to 3 tokens, are similarly encoded with another
GRU. Embeddings for returns-to-go Rt are also
learnt and projected to the embedding dimension.
Finally, a positional embedding representing the en-
vironment time step t is concatenated to each input
(returns, states & commands) after the embedding
and GRU layers. The embedded and positionally
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Figure 2: An example QAit trajectory in the form (r1, s1, a1, r2, s2, a2, . . . , sT , aT ). Each time step consists of the
reward rt, state st and command at. The question and correct answer are also given, along with the returns-to-go
Rt.

encoded command, state, and return-to-go inputs
are fed into the GPT model. Figure 1 shows the
Decision Transformer architecture with example
input.

At each time step t, the Decision Transformer
encoding xt is fed into four linear decoders. Three
decoders predict the next command’s action, mod-
ifier, and object components, while the fourth de-
coder predicts the answer to the question (this is
the same at each time step). Although we also use a
separate QA module to predict the final answer, the
answer decoder allows the Decision Transformer
to learn some primitive level of question answer-
ing, thereby allowing the QA loss to help guide
command generation. Chen et al. (2021) found
that predicting states and returns-to-go at each time
step did not improve performance. This motivates
exclusively predicting command triples, along with
answers to questions.

The model is trained to optimize the sum of
the cross-entropy losses of action, modifier, ob-
ject, and answer prediction. For each question and
map type configuration, a set of unique validation
games were generated wherein an agent must inter-
act with an environment to answer a question. Dur-
ing training, the Decision Transformer is evaluated
on the set of hold-out games every 250 iterations to
monitor sufficient information scores and to avoid
overfitting.

3.3 QA module

The QA module consists of a pretrained BERT
encoder with a linear classification layer. The
per-time step state sequences are joined into a sin-

gle long sequence of tokens with the question ap-
pended at the end. A [CLS] token is added to
the beginning of the sequence, and a [SEP] token
before and after the question. This concatenated
sequence is tokenised by a Bert-Base-Uncased to-
keniser (Devlin et al., 2019) and padded or front-
truncated (keeping the most recent part of the state
sequence) to return a 512 token sequence which is
then fed to the BERT encoder. We subsequently
pass BERT’s output vector corresponding to the
CLS token to a linear layer. For attribute and exis-
tence questions this model performs binary classifi-
cation (to predict “yes” or “no”), while for location
questions it produces a softmax over the vocabu-
lary. We use cross-entropy to calculate the loss
between predicted and correct answers.

Training and validation sets that consist entirely
of valid trajectories are created for the QA module.
We use the validation set (20% of the generated
trajectories) to save the model with the highest
validation QA accuracy (after 30 training epochs).
In order to simulate more realistic QA training
data, we feed the QA training examples back into
the trained DT and use it to predict where to cut
off the generated sequence, as during testing there
is no guarantee that the DT would have explored
up until the correct answer has been found. The
sequence is cut off when the DT predicts the stop
action (wait) or the time step limit is exceeded.

3.4 Decoding

To generate the command sequence from the DT
during testing, instead of greedy decoding we sam-
ple each next command from the probability distri-
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Model Location Existence Attribute

Fixed Random Fixed Random Fixed Random

DQN 0.224(0.244) 0.204(0.216) 0.674(0.279) 0.678(0.214) 0.534(0.014) 0.530(0.017)
DDQN 0.218(0.228) 0.222(0.246) 0.626(0.213) 0.656(0.188) 0.508(0.026) 0.486(0.023)
Rainbow 0.190(0.196) 0.172(0.178) 0.656(0.207) 0.678(0.191) 0.496(0.029) 0.494(0.017)

DT 0.168(0.232) 0.104(0.264) 0.668(0.254) 0.722(0.277) 0.504(0.057) 0.526(0.058)
DT-BERT 0.232(0.232) 0.270(0.264) 0.626(0.258) 0.654(0.277) 0.524(0.058) 0.538(0.060)

DT-10K 0.146(0.302) 0.102(0.220) 0.688(0.240) 0.618(0.255) 0.488(0.058) 0.490(0.048)
DT-BERT-10K 0.124(0.302) 0.076(0.204) 0.612(0.241) 0.676(0.223) 0.552(0.060) 0.518(0.049)

Table 2: QA accuracy and sufficient information score (in brackets) of each model following zero-shot evaluation
on the test set in the 500 games setting. A bold value indicates a score to be the highest of that question and map
type configuration.

butions over the action, modifier, and object. This
motivation is similar to that of stochastic decod-
ing algorithms in natural language generation: The
stochasticity minimises the risk of the Decision
Transformer entering a loop in which the same
command is generated repeatedly, and more closely
mirrors natural language which avoids utterances
with too high probability (Zarrieß et al., 2021). In
the case of answer prediction, we deterministically
take the argmax of the output.

3.5 Returns Tuning

A shortcoming in the DT’s methodology is the ex-
pectation for the environment’s maximum achiev-
able return to be known a priori. Using an inap-
propriate value can greatly hamper performance,
resulting in premature halting or needlessly exces-
sive exploration. Thus, we tune the value of the
initial returns-to-go R1 as a hyperparameter. We
create a validation set of 50 games to evaluate the
question answering performance of both the DT’s
answer prediction head and BERT model. For each
question and map type we consider R1 either set as
a fixed value or sampled from an exponential distri-
bution. Following the methodology used by Yuan
et al. (2019) for selecting the best model during
training, we tune R1 to maximize the sum of the
sufficient information score and question answer-
ing accuracy. See Appendix A for details.

4 Results

We evaluate the Decision Transformer both where
its own answer prediction head is used for ques-
tions answering and where this is done with the
BERT QA model. Test set results on the 500 games
setting are given in Table 2, together with with RL

model results as reported by Yuan et al. (2019). We
also report results of training the DT on reduced
datasets with only 10,000 episodes, in order to fur-
ther evaluate the sample efficiency of our approach
(see section 4.5). Training results are available in
the Appendix in Tables 7 and 8. Table 3 gives the
BERT QA model’s validation accuracy. We discuss
the results for each question type.

Overall, DT-BERT outperforms the Decision
Transformer’s answer prediction head in location
and attribute type questions, while the DT gives a
higher accuracy on existence questions. At a high
level, these performance differences depend on the
state and action space that the model was required
to learn and navigate. Existence type and attribute
type questions may depend on long-range depen-
dencies. For example, existence type questions
require the ability to know whether an object has
been witnessed or not. When the answer is that
an object doesn’t exist, the problem is more than
just word matching within the last few states. We
believe that this is why the Decision Transformer
QA head outperforms the BERT model on exis-
tence and attribute questions since it has access
to the entire state trajectory. On questions whose
answers were more likely to be found within the
last 512 tokens, DT-BERT achieves higher question
answering accuracy than the Decision Transformer.

4.1 Location Questions

The DT’s answer prediction head has a lower QA
accuracy than previous RL approaches on both
fixed and random maps. However its sufficient
information scores, reflecting the DT’s information
gathering capacities, are higher. For location type
questions, QA accuracy normally matches suffi-
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Question Map Type BERT BERT-10K

Attribute Fixed 0.780 0.730
Random 0.616 0.703

Existence Fixed 0.778 0.762
Random 0.779 0.778

Location Fixed 0.987 0.831
Random 0.988 0.835

Table 3: QA accuracy of the BERT model and the BERT-
10K model on the QA validation data.

cient information results due to QA modules effec-
tively performing word matching once an agent
arrives in the correct state. We see this in the
RL methods’ results as their sufficient informa-
tion scores are very close to their QA accuracies.
This indicates that the DT’s question answering
prediction head is underfitting the training data.

DT-BERT outperforms the QA accuracy of the
RL models on both fixed and random maps. On
random maps, QA accuracy is slightly higher than
sufficient information, suggesting that in a small
number of cases the BERT model may be able to
deduce the answer from the context even when it
does not explicitly appears in the trajectory. The
performance gap between the BERT QA model and
the DT means that a question can still be correctly
answered even if the DT stops in an incorrect state.
The high BERT QA accuracy for location questions
can also be seen in Table 3.

We suggest two reasons for the BERT QA model
answering location type questions more accurately
than the Decision Transformer’s prediction head.
First, it is easier for BERT model to learns skills
basic pattern matching skills such as identifying
entity and location names from state strings. Sec-
ond, exploration is not as highly encouraged with
location questions as with existence and attribute
types. Less exploration means fewer states visited,
allowing the state context window to contain less
noisy state strings than other question types.

4.2 Existence Questions
The DT outperforms RL baselines on sufficient in-
formation and QA accuracy in the random maps
setting for existence questions. However on fixed
maps it performs worse than the DQN. The BERT
QA model underperforms the DT answer predic-
tion head here in both map types, suggesting that
jointly optimising answer and command prediction
leads to improved performance on existence type

questions.
Reasoning about the existence of an object

within a TextWorld environment requires knowl-
edge about the entirety of the world. Therefore, ex-
istential questions require an agent to fully explore
an environment to answer whether or not an entity
exists within it. The Decision Transformer’s self-
attention mechanism makes performing long-term
credit assignments possible. The answer prediction
head of the DT can thus draw upon information
gathered in all previous states to inform question
answering. As a result, the ability to model de-
pendencies that stretch throughout all states en-
countered allows the DT to outperform the BERT
model, whose context window is constrained to
512 tokens.

4.3 Attribute Questions
None of the models achieve results that are sub-
stantially above 50% on attribute questions, con-
firming the challenge of this question type. The
Decision Transformer did obtain higher sufficient
information than all RL baselines. DT-BERT ob-
tains higher QA accuracies than the DT answer
prediction head; it obtains the highest QA accu-
racy among all the models on random maps, and
performs slightly worse than the DQN on fixed
maps.

Despite the Decision Transformer’s ability to
learn long-term dependencies via its attention
mechanism, we posit that the contextualised embed-
dings of BERT are able to model a richer semantic
representation of TextWorld’s state-strings than the
embeddings learnt by the DT. This better capturing
of the semantic space enables BERT to more fully
utilise the context with which it was provided by
using pre-existing understanding to help answer
questions posed in natural language.

4.4 Rewards and Performance
Based on validation set performance, the optimal
initial return-to-go for location type questions was
determined to be 2.0 for both fixed and random
map settings. This is lower than for existence and
attribute types, indicating that exploration is not
as highly encouraged. In location type questions,
the entity definitively exists somewhere within the
environment. This means that the action space re-
quired to answer questions of locality is reduced
to traversals and basic interactions with contain-
ers. Therefore, less exploration is needed as the
information to answer a question is more easily ac-
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quired. Too high an initial reward would promote
unnecessary actions with a high likelihood of lead-
ing the agent astray from stopping in the correct
state.

Existence questions require far more exploration
of an environment than location type questions.
Higher starting rewards reflect this need for greater
exploration and are associated with better QA and
sufficient information scores, as seen in Table 5
in the Appendix. These higher values promote a
more complete traversal of the world, allowing for
gathering information required to answer the ques-
tion. However, too high an initial reward means
that entering a correct state and receiving a reward
of 1.0 may not affect the model’s decision making.
If the DT has a current RTG of 5.0 and enters the
correct state that rewards 1.0, the RTG from then
onwards is 4.0. The return-to-go of 4.0 does not
suggest to the model that it has entered the correct
state, meaning it carries on exploring and gathering
information. Likewise, too small a reward could
prematurely cause an agent to stop exploring due
to gaining rewards for entering new states via the
exploration bonus. Therefore, we observe that the
best RTG values err on the larger side, which en-
courages greater world exploration.

Attribute type questions are considered the most
sparsely rewarded of all three types (Yuan et al.,
2019). We therefore expected higher rewards to
be associated with better accuracies. The results,
however, paint a different picture. In a fixed map,
where the state space is, on average, smaller than
that of random maps, we see that a smaller reward
yields the best score. This reduction is likely a re-
sult of the reduced state and action space making
too much exploration and interaction with the envi-
ronment degrade performance. On the other hand,
in a random map setting higher rewards yields bet-
ter QA and sufficient information scores, allowing
us to conclude that higher rewards promote more
exploration and thus allows the model to better
answer the question.

4.5 Sample Efficiency
The RL agents in QAit were trained for more than
200K episodes. In comparison, most of our De-
cision Transformers were trained on around 40K
episodes (Table 1). The test set results therefore
show that DT is able to match or outperform the pre-
vious RL methods when trained on approximately
25% of the number of episodes. Moreover, all train-
ing data used for the DT was generated via random

rollouts - indicating that the Decision Transformer
has the ability to learn optimal policies from subop-
timal data. We also found that fine-tuning a BERT
model for QA on the random rollout data works
well, as long as the DT is used to determine where
to cut off the trajectory.

In order to further elucidate the DT’s sample
efficient learning capabilities, we generated new
datasets for all question and map types that only
contained 10 thousand episodes. The validation
results can be seen Table 6 in the Appendix. These
experiments indicate that the DT trained on even
fewer offline trajectories can achieve results on par
with or better than both previous baselines as well
as identical models trained on more data. Here we
see fixed map sufficient information scores being
improved for all question types and QA accuracy in-
creasing for attribute and existence questions. How-
ever, QA accuracy for location type questions is
worse than previous baselines in both random and
fixed maps (see Table 2). While the results are
not consistently better, they do further indicate the
sample efficiency of the Decision Transformer.

5 Conclusion

We showed that interactive question answering
can be framed as a sequence modelling prob-
lem by training Transformers for action genera-
tion and answer prediction using random roll-outs.
Results show that the Decision Transformer ap-
proach matches or outperforms current reinforce-
ment learning approaches for QAit on most ques-
tion types and maps type configurations in the 500
game setting. Additionally, the approach is more
sample efficient than reinforcement learning ap-
proaches, reducing the amount of training data
required even though the data generated via ran-
dom rollouts is suboptimal. Fine-tuning a BERT
model for question answering on the same gener-
ated dataset improves performance over using the
Decision Transformer directly for question answer-
ing in two of the three question types.
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A Hyperparameter Tuning

Hyperparameters of the DT and BERT are given in
Table 4.

DT BERT

Hyperparameters Value

Number of layers 2 12
Number of attention heads 8 12
Embedding dimension 256 768
Batch size 128 12
State context window tokens 180 512
Context length (K) 50 -
Max Epochs 2000 30
Dropout 0.5 0.1
Learning rate 1× 10−4 1× 10−5

Adam betas (0.9, 0.95)
Grad norm clip 0.25
Weight decay 0.1

Table 4: Decision Transformer and the BERT QA hy-
perparameters. For the DT, Context length K refers
to the amount of previous time steps with which the
Transformer can conditiona on. Context State context
window refers to the number of tokens from the state to
be used for prediction. Adam (Kingma and Ba, 2015)
is used as optimiser in conjunction with the specified
learning rate, linear warmup and cosine weight decay.

A.1 Decision Transformer
A.1.1 Location
As can be seen in Table 5, the sufficient information
score peaking at R1 = 2 indicates optimal state-
space exploration for location questions when the
potential for future reward is moderate for random
and fixed map types. While the QA accuracy was
highest for both settings when the initial reward

was the maximum of the training set, we opted to
test the DT’s question answering and information
gathering capabilities at R1 = 2 as this yielded the
highest combined sufficient information and QA
accuracy score.

A.1.2 Existence
Using both sufficient information and QA accuracy,
the optimal initial reward for fixed map existence
questions was determined to be 4.0, with the DT
achieving a QA accuracy of 0.660 and a sufficient
information score of 0.263 on the validation set. In
random map settings, the DT scored a validation
accuracy of 0.720 with a corresponding sufficient
information score of 0.298, where the initial reward
was determined to be the maximum of the training
set 3.94.

A.1.3 Attribute
The best sufficient information and QA accuracy
combinations for the Decision Transformer were
achieved at an initial reward of 2.0 for fixed and
5.0 for random map types. On the validation set,
the fixed map DT achieved a QA accuracy of 0.533
and a SI score of 0.056. Random map saw a similar
SI of 0.057 but worse QA accuracy of 0.460.

A.2 BERT Model

A.2.1 Location
Based on data gathered using the online-evaluation
dataset, the optimal initial return-to-go for location
type questions was 2.0. Using the BERT model for
QA yielded an accuracy of 0.227 for fixed maps
and 0.393 for random maps. The BERT model
achieved a higher QA accuracy than sufficient in-
formation score during evaluation, indicating that
the context window spanning multiple states was a
boon to QA accuracy. During training, the BERT
model achieved almost perfect scores for question-
answering on the held-out set of offline trajectories,
seen in Table 3.

A.2.2 Existence
Using the online-validation set, we determined op-
timal starting reward values of 3.0 for fixed map
and 3.94 for random. These values were associated
with a QA accuracy of 0.64 for fixed and 0.647 for
random map types. However, scores were signif-
icantly lower than the offline validation set used
during training, where QA accuracy of 0.778 and
0.779 was achieved for fixed and random maps,
respectively.
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A.2.3 Attribute
In the offline validation set, the BERT model scored
a QA accuracy of 0.616 for random and 0.780 for
fixed map settings. On the online validation set,
we observed the maximum combination of QA and
sufficient information for the BERT model at an
R1 of 3.0 for fixed and 2.0 for random where the
BERT QA model had an accuracy of 0.507 and
0.660 for random and fixed map types, respectively.
However, we opted to use the maximum of the train
set 4.03 when evaluating on the test set for random
map types. This is due to the BERT QA model
having a high standard deviation of 0.156 and an
average QA accuracy of 0.640, indicating greater
potential for high QA accuracy. Moreover, the
sufficient information score associated with this
accuracy is 0.056 - higher than the random map
with an initial reward of 2.0.
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Figure 3: Barplot showing QA accuracy of the BERT QA model on the validation set when trained in the 500 games
setting with different initial returns-to-go (RTG). See results in Table 5.

Figure 4: Barplot showing QA accuracy of the Decision Transformer’s answer-prediction head on the validation set
when trained in the 500 games setting with different initial returns-to-go (RTG). See results in Table 5.
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Question Type

Attribute

Fixed Random

Initial RTG BERT DT SI BERT DT SI

1 0.427 ± 0.0416 0.493 ± 0.0306 0.052 ± 0.0135 0.567 ± 0.0306 0.433 ± 0.0231 0.050 ± 0.0083
2 0.473 ± 0.0503 0.533 ± 0.0115 0.056 ± 0.0094 0.660 ± 0.0200 0.453 ± 0.0306 0.048 ± 0.0039
3 0.367 ± 0.0503 0.480 ± 0.0400 0.051 ± 0.0043 0.620 ± 0.0529 0.447 ± 0.0503 0.054 ± 0.0034
4 0.507 ± 0.0643 0.480 ± 0.0529 0.056 ± 0.0058 0.560 ± 0.1058 0.400 ± 0.0693 0.054 ± 0.0014
5 0.487 ± 0.0503 0.500 ± 0.0200 0.056 ± 0.0007 0.620 ± 0.0000 0.460 ± 0.0346 0.057 ± 0.0033

Sampling 0.487 ± 0.0416 0.453 ± 0.0231 0.051 ± 0.0050 0.593 ± 0.0503 0.433 ± 0.0231 0.052 ± 0.0097
Max 0.487 ± 0.0503 0.493 ± 0.0643 0.055 ± 0.0021 0.640 ± 0.1562 0.440 ± 0.0200 0.056 ± 0.0020

Existence

Fixed Random

Initial RTG BERT DT SI BERT DT SI

1 0.600 ± 0.0721 0.640 ± 0.0200 0.216 ± 0.0314 0.680 ± 0.0917 0.747 ± 0.0115 0.200 ± 0.0416
2 0.533 ± 0.0702 0.660 ± 0.0346 0.259 ± 0.0051 0.653 ± 0.0611 0.687 ± 0.0306 0.277 ± 0.0441
3 0.640 ± 0.0721 0.647 ± 0.0115 0.265 ± 0.0161 0.607 ± 0.0306 0.733 ± 0.0115 0.269 ± 0.0075
4 0.580 ± 0.0529 0.660 ± 0.0400 0.263 ± 0.0180 0.633 ± 0.0577 0.707 ± 0.0306 0.291 ± 0.0476
5 0.633 ± 0.0702 0.680 ± 0.0200 0.222 ± 0.0166 0.620 ± 0.0721 0.700 ± 0.0200 0.310 ± 0.0205

Sampling 0.613 ± 0.0416 0.647 ± 0.0231 0.180 ± 0.0467 0.653 ± 0.0416 0.707 ± 0.0416 0.250 ± 0.0070
Max 0.587 ± 0.0306 0.640 ± 0.0200 0.270 ± 0.0409 0.647 ± 0.0115 0.720 ± 0.0400 0.298 ± 0.0302

Location

Fixed Random

Initial RTG BERT DT SI BERT DT SI

1 0.165 ± 0.0191 0.175 ± 0.0379 0.165 ± 0.0191 0.267 ± 0.0306 0.107 ± 0.0115 0.267 ± 0.0306
2 0.227 ± 0.0231 0.167 ± 0.0115 0.233 ± 0.0115 0.393 ± 0.0416 0.080 ± 0.0200 0.387 ± 0.0503
3 0.187 ± 0.0416 0.167 ± 0.0306 0.187 ± 0.0416 0.307 ± 0.0306 0.120 ± 0.0200 0.307 ± 0.0306
4 0.173 ± 0.0115 0.133 ± 0.0231 0.173 ± 0.0115 0.360 ± 0.0400 0.093 ± 0.0115 0.347 ± 0.0306
5 0.167 ± 0.0462 0.160 ± 0.0200 0.167 ± 0.0462 0.340 ± 0.0346 0.080 ± 0.0346 0.333 ± 0.0306

Sampling 0.160 ± 0.0200 0.167 ± 0.0416 0.167 ± 0.0115 0.287 ± 0.0757 0.107 ± 0.0306 0.287 ± 0.0757
Max 0.193 ± 0.0231 0.187 ± 0.0115 0.193 ± 0.0231 0.333 ± 0.0945 0.120 ± 0.0200 0.327 ± 0.0702

Table 5: Question-answering accuracy of the BERT model’s and the Decision Transformer’s answer prediction head
as well as the Decision Transformer’s average sufficient information (SI) score on validation set at different initial
return-to-go (RTG) values. Bold values indicate the combined highest QA and sufficient information score with
the associated initial RTG value also bolded. Sampling indicates R1 was randomly sampled from an exponential
distribution. Max represents the maximum of the training set for that experiment configuration (see Table 1).
Summary statistics were calculated over 4 seeds - see code implementation for details.
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Question Type

Attribute

Fixed Random

Initial RTG BERT-10K DT-10K SI BERT-10K DT-10K SI

1 0.515 ± 0.0719 0.590 ± 0.0258 0.054 ± 0.0074 0.490 ± 0.0529 0.410 ± 0.0258 0.053 ± 0.0123
2 0.485 ± 0.0342 0.580 ± 0.0542 0.051 ± 0.0094 0.510 ± 0.1013 0.410 ± 0.0115 0.044 ± 0.0061
3 0.450 ± 0.0600 0.550 ± 0.0258 0.055 ± 0.0023 0.450 ± 0.0416 0.420 ± 0.0432 0.047 ± 0.0082
4 0.440 ± 0.0163 0.580 ± 0.0365 0.056 ± 0.0040 0.430 ± 0.0775 0.445 ± 0.0191 0.051 ± 0.0071
5 0.525 ± 0.0526 0.560 ± 0.0163 0.055 ± 0.0019 0.470 ± 0.0825 0.410 ± 0.0200 0.050 ± 0.0026

Sampling 0.455 ± 0.0681 0.545 ± 0.0300 0.052 ± 0.0100 0.490 ± 0.0200 0.415 ± 0.0100 0.044 ± 0.0042
Max 0.420 ± 0.0283 0.560 ± 0.0163 0.051 ± 0.0052 0.470 ± 0.0476 0.410 ± 0.0383 0.054 ± 0.0102

Existence

Fixed Random

Initial RTG BERT-10K DT-10K SI BERT-10K DT-10K SI

1 0.595 ± 0.0574 0.590 ± 0.0258 0.165 ± 0.0148 0.740 ± 0.0400 0.705 ± 0.0300 0.165 ± 0.0143
2 0.575 ± 0.0412 0.625 ± 0.0252 0.195 ± 0.0256 0.640 ± 0.0566 0.680 ± 0.0283 0.219 ± 0.0318
3 0.610 ± 0.0258 0.645 ± 0.0342 0.232 ± 0.0235 0.620 ± 0.1007 0.690 ± 0.0600 0.233 ± 0.0303
4 0.650 ± 0.0346 0.640 ± 0.0365 0.251 ± 0.0538 0.685 ± 0.0252 0.670 ± 0.0346 0.240 ± 0.0175
5 0.560 ± 0.0283 0.690 ± 0.0663 0.286 ± 0.0421 0.645 ± 0.0661 0.685 ± 0.0473 0.253 ± 0.0362

Sampling 0.645 ± 0.0551 0.655 ± 0.0300 0.214 ± 0.0305 0.660 ± 0.0283 0.725 ± 0.0252 0.179 ± 0.0372
Max 0.635 ± 0.0823 0.630 ± 0.0702 0.229 ± 0.0471 0.630 ± 0.0577 0.675 ± 0.0379 0.243 ± 0.0328

Location

Fixed Random

Initial RTG BERT-10K DT-10K SI BERT-10K DT-10K SI

1 0.150 ± 0.0346 0.130 ± 0.0115 0.195 ± 0.0300 0.130 ± 0.0258 0.130 ± 0.0115 0.170 ± 0.0476
2 0.135 ± 0.0342 0.155 ± 0.0500 0.190 ± 0.0115 0.130 ± 0.0258 0.105 ± 0.0300 0.165 ± 0.0100
3 0.155 ± 0.0300 0.150 ± 0.0383 0.220 ± 0.0432 0.155 ± 0.0526 0.105 ± 0.0342 0.135 ± 0.0300
4 0.135 ± 0.0500 0.130 ± 0.0258 0.230 ± 0.0200 0.145 ± 0.0300 0.120 ± 0.0432 0.150 ± 0.0346
5 0.135 ± 0.0300 0.135 ± 0.0473 0.230 ± 0.0258 0.160 ± 0.0432 0.110 ± 0.0383 0.170 ± 0.0200

Sampling 0.150 ± 0.0383 0.145 ± 0.0100 0.180 ± 0.0163 0.125 ± 0.0412 0.105 ± 0.0100 0.160 ± 0.0163
Max 0.145 ± 0.0252 0.150 ± 0.0115 0.240 ± 0.0327 0.145 ± 0.0300 0.120 ± 0.0432 0.150 ± 0.0346

Table 6: Question-answering accuracy of the 10K variation BERT model’s and Decision Transformer’s answer
prediction head as well as the Decision Transformer’s average sufficient information (SI) score on validation set at
different initial return-to-go (RTG) values. Bold values indicate the combined highest QA and sufficient information
score with the associated initial RTG value also bolded. Both models were trained on only 10 thousand episodes of
data.
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Fixed

Model Location Existence Attribute
Train Test Train Test Train Test

Random - 0.027 - 0.497 - 0.496

500 games

DQN 0.430 (0.430) 0.224 (0.244) 0.742 (0.136) 0.674 (0.279) 0.700 (0.015) 0.534 (0.014)
DDQN 0.406 (0.406) 0.218 (0.228) 0.734 (0.173) 0.626 (0.213) 0.714 (0.021) 0.508 (0.026)

Rainbow 0.358 (0.358) 0.190 (0.196) 0.768 (0.187) 0.656 (0.207) 0.736 (0.032) 0.496 (0.029)
DT - 0.168 (0.232) - 0.668 (0.254) - 0.504 (0.057)

DT-BERT - 0.232 (0.232) - 0.626 (0.258) - 0.524 (0.058)

DT - 10K - 0.146 (0.302) - 0.688 (0.240) - 0.488 (0.058)
DT-BERT - 10K - 0.124 (0.302) - 0.612 (0.241) - 0.552 (0.060)

Table 7: Results of Fixed Map Experiments

Random

Model Location Existence Attribute
Train Test Train Test Train Test

Random - 0.034 - 0.5 - 0.499

500 games

DQN 0.430 (0.430) 0.204 (0.216) 0.752 (0.162) 0.678 (0.214) 0.678 (0.019) 0.530 (0.017)
DDQN 0.458 (0.458) 0.222 (0.246) 0.754 (0.158) 0.656 (0.188) 0.716 (0.024) 0.486 (0.023)

Rainbow 0.370 (0.370) 0.172 (0.178) 0.748 (0.275) 0.678 (0.191) 0.636 (0.020) 0.494 (0.017)
DT - 0.104 (0.264) - 0.722 (0.277) - 0.526 (0.058)

DT-BERT - 0.270 (0.264) - 0.654 (0.277) - 0.538 (0.060)

DT - 10K - 0.102 (0.220) - 0.618 (0.255) - 0.490 (0.048)
DT-BERT - 10K - 0.076 (0.204) - 0.676 (0.223) - 0.518 (0.049)

Table 8: Results of Random Map Experiments
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This extended abstract discusses the opportu-
nities and challenges of studying intrinsically-
motivated agents for exploration in textual envi-
ronments.

Humans begin their life with very few skills, and
over the course of only a few years learn complex
motor coordination and locomotion capabilities, be-
gin mastering vocalization and language, and form
a rich model of their physical and social surround-
ings. One of the main drivers of this phenomenal
knowledge acquisition is intrinsically-motivated ex-
ploration (Oudeyer and Kaplan, 2007), for instance
through exploratory play (Chu and Schulz, 2020;
Davidson et al., 2022). The developmental perspec-
tive on AI tries to emulate this exploratory behavior
in artificial agents to achieve mastery of diverse
and complex repertoires of skills (Forestier et al.,
2017). When placed in open-ended environments,
a successful intrinsically motivated agent will ex-
plore the space of interesting and diverse outcomes,
ignoring random and unachievable subspaces of
the world, reusing its previously acquired skills
as stepping stones (Stanley and Lehman, 2015) to
discover new ones.

One possible implementation of exploration in
RL agents are so-called autotelic agents (Colas,
2021), that is, goal-conditioned Reinforcement
Learning (RL) agents operating in rewardless en-
vironments that are able to choose what goal to
pursue. In this case, the reward is given by a goal-
satisfaction function and not extrinsically by the
environment. Goal-conditioned policies have been
extensively studied in the case of extrinsic goals
(Schaul et al., 2015). In the case of intrinsically
chosen goals, the goal-selection mechanism allows
autotelic agents to form a self-curriculum, progress-
ing from easier to increasingly harder goals until all
achievable skills have been mastered. In this per-
spective, the goal representation is of paramount
importance. Most previous works (for instance
Andrychowicz et al. (2017)) have used concrete

end-state representations such as raw observations,
images or embeddings, which has some drawbacks.
A goal should be insensitive to changes in the envi-
ronment that are uncontrollable (such as the color
of the sky), to avoid the agent targeting impossi-
ble goals (for instance changing the sky color), or
to provide useful abstraction for goal achievement
(such as considering the goal of navigating to the
garden is satisfied regardless of sky color). Further-
more, the agent should ideally be able to combine
known goals into novel ones. Goals expressed as
language (Tam et al., 2022; Colas et al., 2020; Mu
et al., 2022) fulfill both conditions: they are at once
abstract and combinatorial (Szabó, 2020); they are
thus a prime way for autotelic agents to self-specify
goals to be executed in the environment.

1 A bridge between autotelic agents and
text environments

The main point of this essay is the relevance of
studying language autotelic agents in textual en-
vironments (Côté et al., 2018; Hausknecht et al.,
2020; Wang et al., 2022), both for testing explo-
ration methods in a context that is at once simple
experimentally and rich from the perspective of
environment interactions; and for transferring the
skills of general-purpose agents trained to explore
in an autonomous way to the predefined tasks of
textual environment benchmarks. We identify three
key properties, plus one additional benefit, of text
worlds:

1. Depth of learnable skills: skills learnable
in the world should involve multiple low-level ac-
tions and be nested, such that mastering one skill
opens up the possibility of mastering more com-
plex skills. Interactive fiction (IF) (Hausknecht
et al., 2020) games usually feature an entire narra-
tive and extensive maps, such that navigating and
passing obstacles requires many successful actions
(and subgoals) to be completed. While the origi-
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nal TextWorld levels were not as deep as would be
desirable, other non-IF text worlds such as Science-
World feature nested repertoires of skills (such as
learning to navigate to learn to grow plants to learn
the rules of Mendelian genomics);

2. Breadth of the world: there should be many
paths to explore in the environment; this ensures
that we train agents that are able to follow a wide
diversity of possible goals, instead of learning to
achieve goals along a linear path. This allows us to
study generally-capable agents. Some IF games are
very linear, having a clear progression from start
to finish (e.g., Acorn Court, Detective; others have
huge maps that an agent has to explore before it
can progress in the quest (e.g., Zork, Hitchhiker’s
Guide to the Galaxy). Exploration heuristics are a
part of some successful methods for playing IF with
RL (Yao et al., 2020). ScienceWorld (Wang et al.,
2022) has an underlying physical engine allowing
for a combinatorial explosion of possibilities like
making new objects, combining existing objects,
changing states of matter, etc.

3. Niches of progress: real-world environments
have both easy skills and unlearnable skills. Our
simulated environments should mimic this property
to test the agent’s ability to focus only on highly
learnable parts of the space and avoid spending
effort on uncontrollable aspects of the environment.
In textual environments, high depth implies that
some skills are much more learnable than others,
already implementing some progress niches. The
combinatorial property of language goals allows
us to define many unfeasible goals, goals that an
autotelic agent has to avoid spending too many
resources on.

4. Language representation for goals: a
language-conditioned agent has to learn to ground
its goal representation in its environment (Harnad,
1990; Hill et al., 2020), to know when a given ob-
servation or sequence of observations satisfies a
given goal, or to know what goals were achieved
in a given trajectory. This grounding is made much
simpler in environments with a single modality;
relating language goals to language observations is
simpler than grounding language in pixels or im-
age embeddings. This allows us to study language-
based exploration in a simpler context.

2 Drivers of exploration in autotelic
agents

We identify three main drivers of exploration in
autotelic agents. Environments we use should sup-
port exploration algorithms that implement these
principles; the resulting agents then have a chance
to acquire a diverse set of skills that can be re-
purposed for solving the benchmarks proposed by
textual environments.

1. Goal self-curriculum: automatic goal se-
lection (Portelas et al., 2020) allows the agent to
refine its skills on the edge of what it currently
masters. Among metrics used to select goals are
novelty/surprise of a goal (Tam et al., 2022; Burda
et al., 2018), intermediate competence on goals
(Campero et al., 2020), ensemble disagreement
(Pathak et al., 2019), or (absolute) learning progress
(Colas et al., 2019). Progress niches in textual en-
vironments support such goal curriculum;

2. Additional exploration after goal achieve-
ment: after achieving a given goal, the agent con-
tinue to run for a time to push the boundary of
explored space (Ecoffet et al., 2021). The depth
of text worlds makes goal chaining relevant, such
that an agent that has achieved a known goal can
imagine additional goals to pursue. Random explo-
ration can also be used once a known goal has been
achieved. Agents exploring in textual environments
and choosing uniformly among the set of valid ac-
tions in a given state have a high chance of effecting
meaningful changes in the environment, making
discovery of new skills probable. This property is
relevant in any environment with high depth, and
both IF and ScienceWorld fit this description.

3. Goal composition: as mentioned above, this
means using the compositionality afforded by lan-
guage goals to imagine novel goals in the envi-
ronment (Colas et al., 2020). Goal-chaining is an
example of composition, but language offers many
other composition possibilities, such as recombin-
ing known verbs, nouns and attributes in novel
ways, or making analogies. This is relevant if there
exists some transfer between the skills required to
accomplish similar goal constructions (e.g., pick-
ing up an apple and picking up a carrot requires
very similar actions if both are in the kitchen). This
is at least partially true in textual environments
where objects of the same type usually have similar
affordances.
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3 Challenges for autotelic textual agents

Text worlds bring a set of unique challenges for
autotelic agents, among which we foresee:

1. The goal space can be very large. An agent
with a limited training budget needs to focus on
a subset of the goal space, possibly discovering
only a fraction of what is discoverable within the
environment. This calls for finer goal-sampling
approaches that encourage the agent at making the
most out of its allocated time to explore the environ-
ment. In addition, we need better methods to push
the agent’s exploration towards certain parts of the
space (e.g., warm-starting the replay buffer with
existing trajectories, providing linguistic common-
sense knowledge);

2. The action space is also very large in tex-
tual environments, making exploration (especially
methods based on random action selection) poten-
tially challenging.

3. Agents must be trajectory-efficient for a given
goal; complex goals might be seen only once;

4. Catastrophic forgetting needs to be alleviated,
so that learning to achieve new goals does not im-
pair the skills learned previously;

5. Partial observability means that agent archi-
tectures need to include some form of memory.

Agents trained in such environments will learn a
form of language use, not by predicting the most
likely sequence of words from a large-scale dataset
(Radford and Narasimhan, 2018; Brown et al.,
2020) but by learning to use it pragmatically to
effect changes in the environment. Of course, the
limits of the autotelic agent’s world will mean the
limits of its language; an interesting development
is to build agents that explore textual environments
to refine external linguistic knowledge provided
by a pretrained language model. This external
knowledge repository can be seen as culturally-
accumulated common sense, a perspective that is
related to so-called Vygotskian AI (Colas, 2021) in
which a developmental agent learns by interacting
with an external social partner that imparts outside
language knowledge and organizes the world so as
to facilitate the autotelic agent’s exploration.

To conclude, textual environments are ideal
testbeds for autotelic language-conditioned agents,
and conversely such agents can bring progress on
text world benchmarks. There is also promise
in the interaction between exploratory agents and
large language models encoding exterior linguis-

tic knowledge. Preliminary steps have been taken
in this direction (Madotto et al., 2020) but the full
breadth of drivers of exploration we identify has yet
to be studied. We hope to foster discussion, define
concrete implementations and identify challenges
by bringing together the developmental perspective
on AI and the textual environment community.

References
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas

Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. 2017. Hindsight experience replay.
Advances in neural information processing systems,
30.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg
Klimov. 2018. Exploration by random network dis-
tillation. arXiv preprint arXiv:1810.12894.

Andres Campero, Roberta Raileanu, Heinrich Küttler,
Joshua B Tenenbaum, Tim Rocktäschel, and Edward
Grefenstette. 2020. Learning with amigo: Adver-
sarially motivated intrinsic goals. arXiv preprint
arXiv:2006.12122.

Junyi Chu and Laura Schulz. 2020. Play, curiosity,
and cognition. Annual Review of Developmental
Psychology, 2.

Cédric Colas. 2021. Towards Vygotskian Autotelic
Agents : Learning Skills with Goals, Language and
Intrinsically Motivated Deep Reinforcement Learn-
ing. Theses, Université de Bordeaux.

Cédric Colas, Pierre Fournier, Mohamed Chetouani,
Olivier Sigaud, and Pierre-Yves Oudeyer. 2019. Cu-
rious: intrinsically motivated modular multi-goal re-
inforcement learning. In International conference on
machine learning, pages 1331–1340. PMLR.

Cédric Colas, Tristan Karch, Nicolas Lair, Jean-Michel
Dussoux, Clément Moulin-Frier, Peter Dominey, and
Pierre-Yves Oudeyer. 2020. Language as a cognitive
tool to imagine goals in curiosity driven exploration.
Advances in Neural Information Processing Systems,
33:3761–3774.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2018. Textworld: A learning environ-
ment for text-based games. In Workshop on Com-
puter Games, pages 41–75. Springer.

61



Guy Davidson, Todd M Gureckis, and Brenden M Lake.
2022. Creativity, compositionality, and common
sense in human goal generation.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Ken-
neth O Stanley, and Jeff Clune. 2021. First return,
then explore. Nature, 590(7847):580–586.

Sébastien Forestier, Rémy Portelas, Yoan Mollard, and
Pierre-Yves Oudeyer. 2017. Intrinsically motivated
goal exploration processes with automatic curriculum
learning. arXiv preprint arXiv:1708.02190.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1-3):335–346.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interactive
fiction games: A colossal adventure. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7903–7910.

Felix Hill, Olivier Tieleman, Tamara von Glehn,
Nathaniel Wong, Hamza Merzic, and Stephen Clark.
2020. Grounded language learning fast and slow.
arXiv preprint arXiv:2009.01719.

Andrea Madotto, Mahdi Namazifar, Joost Huizinga,
Piero Molino, Adrien Ecoffet, Huaixiu Zheng,
Alexandros Papangelis, Dian Yu, Chandra Khatri,
and Gokhan Tur. 2020. Exploration based lan-
guage learning for text-based games. arXiv preprint
arXiv:2001.08868.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi
Jiang, Noah Goodman, Tim Rocktäschel, and Ed-
ward Grefenstette. 2022. Improving intrinsic explo-
ration with language abstractions. arXiv preprint
arXiv:2202.08938.

Pierre-Yves Oudeyer and Frederic Kaplan. 2007. What
is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6–6.
18958277[pmid].

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta.
2019. Self-supervised exploration via disagreement.
In International conference on machine learning,
pages 5062–5071. PMLR.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hof-
mann, and Pierre-Yves Oudeyer. 2020. Automatic
curriculum learning for deep rl: A short survey. arXiv
preprint arXiv:2003.04664.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Tom Schaul, Dan Horgan, Karol Gregor, and David
Silver. 2015. Universal value function approximators.
page 1312–1320.

Kenneth O. Stanley and Joel Lehman. 2015. Why Great-
ness Cannot Be Planned: The Myth of the Objective.
Springer Publishing Company, Incorporated.

Zoltán Gendler Szabó. 2020. Compositionality. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy, Fall 2020 edition. Metaphysics Research
Lab, Stanford University.

Allison C Tam, Neil C Rabinowitz, Andrew K
Lampinen, Nicholas A Roy, Stephanie CY Chan,
DJ Strouse, Jane X Wang, Andrea Banino, and Fe-
lix Hill. 2022. Semantic exploration from language
abstractions and pretrained representations. arXiv
preprint arXiv:2204.05080.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint
arXiv:2203.07540.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep calm and explore:
Language models for action generation in text-based
games. arXiv preprint arXiv:2010.02903.

62



Author Index

Bartlett Fernandez, Sebastian, 16
Brockett, Chris, 25
Buys, Jan, 44

Côté, Marc-Alexandre, 59

Deng, Olivia, 25
DesGarennes, Gabriel, 25
Dolan, Bill, 25

Furman, Gregory, 44

Jansen, Peter, 1

Malhotra, Akanksha, 25
Montfort, Nick, 16

Oudeyer, Pierre-Yves, 59

Rao, Sudha, 25

Shock, Jonathan Phillip, 44

Teodorescu, Laetitia, 59
Toledo, Edan, 44

Van Durme, Benjamin, 25
Volum, Ryan, 25

Xu, Michael, 25

Yuan, Xingdi, 59

63


