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Abstract

Interactive Question Answering (IQA) requires
an intelligent agent to interact with a dynamic
environment in order to gather information nec-
essary to answer a question. IQA tasks have
been proposed as means of training systems
to develop language or visual comprehension
abilities. To this end, the Question Answering
with Interactive Text (QAit) task was created
to produce and benchmark interactive agents
capable of seeking information and answering
questions in unseen environments. While prior
work has exclusively focused on IQA as a re-
inforcement learning problem, such methods
suffer from low sample efficiency and poor ac-
curacy in zero-shot evaluation. In this paper,
we propose the use of the recently proposed
Decision Transformer architecture to provide
improvements upon prior baselines. By utilis-
ing a causally masked GPT-2 Transformer for
command generation and a BERT model for
question answer prediction, we show that the
Decision Transformer achieves performance
greater than or equal to current state-of-the-art
RL baselines on the QAit task in a sample ef-
ficient manner. In addition, these results are
achievable by training on sub-optimal random
trajectories, therefore not requiring the use of
online agents to gather data.

1 Introduction

Traditional methods for question answering (QA)
and machine reading comprehension (MRC) are
primarily concerned with the retrieval of declara-
tive knowledge, that is, explicitly stated or static
descriptions of entities in text documents or within
a knowledge base (KB) (Trischler et al., 2017).
These models tend to answer questions primarily
through basic pattern matching skills, further dif-
ferentiating their abilities from those of humans.
Conversely, procedural knowledge is the sequence
of actions required to perform a task (Georgeff and
Lansky, 1986). To this end, interactive question an-
swering (IQA) has been proposed as a framework

for teaching MRC systems to gather the informa-
tion necessary for question answering (Yuan et al.,
2019).

IQA requires an agent to interact with some dy-
namic environment in order to gather the required
knowledge to answer a question (Gordon et al.,
2018). As such, the task is well-suited to be ap-
proached as a reinforcement learning (RL) prob-
lem. Yuan et al. (2019) proposed Question An-
swering using interactive text (QAit) as a means of
testing the knowledge gathering capabilities of an
agent required to answer a question about its envi-
ronment. Here an agent interacts with a partially
observable text-based environment, created using
Microsoft TextWorld (Côté et al., 2018), in order
to gather information and answer questions about
the attributes, location, and existence of objects.
The QAit task thus aims to benchmark generalisa-
tion and provides an environment to train agents
capable of gathering information and answering
questions.

Yuan et al.’s proposed baselines (using DQN
(Mnih et al., 2015), DDQN (Van Hasselt et al.,
2016), and Rainbow (Hessel et al., 2018)) all suf-
fered from low sample efficiency and relatively
poor performance on all three question types (loca-
tion, attribute, and existence). These shortcomings
suggest that alternative architectures and method-
ologies are required to improve performance within
the QAit setting.

Transformers (Vaswani et al., 2017) have shown
success in modelling a diverse range of high-
dimensional problems (Brown et al., 2020; Ramesh
et al., 2021; Devlin et al., 2019). Additionally,
existing language models such as BERT (Bidirec-
tional Encoder Representations from Transform-
ers) and GPT (Generative Pre-Trained) (Radford
et al., 2019) have been utilised to reduce the size
of datasets required for training downstream lan-
guage tasks (Lee and Hsiang, 2019; Mager et al.,
2020). These benefits coupled with the demon-
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strated ability of Transformers to model long se-
quences by utilising the self-attention mechanism
makes this architecture ideal for IQA. Recent work
(Chen et al., 2021; Janner et al., 2021) have shown
the applicability of Transformers to sequential deci-
sion making problems as an alternative solution to
RL problems. These approaches frame RL trajec-
tories as sequences of states, actions, and rewards
modelled autoregressively by a Transformer. This
sequence modelling approach is referred to as the
Decision Transformer (DT) (Chen et al., 2021).

In this paper we apply the Decision Transformer
to QAit, replacing the online interaction and train-
ing methodology of RL approaches with a Decision
Transformer that utilises the GPT-2 (Radford et al.,
2019) architecture, closely following the method-
ology outlined by (Chen et al., 2021). We propose
an additional QA module that is a fine-tuned BERT
model, with the aim of leveraging pre-trained lan-
guage models to provide more accurate answers
to questions. We show that by framing the QAit
task as a sequence modelling problem, a Decision
Transformer matches or exceeds the performance
of previous RL-based benchmarks when trained on
random episodic rollouts, while using significantly
less data. Our main contributions are as follows:

1. We show that an offline reinforcement learn-
ing method is able to match the performance
of online value-based reinforcement learning
baselines in the QAit environment.

2. We show that by framing IQA as a sequence
modelling problem, the performance of the
QAit baselines can be matched using signifi-
cantly less training data.

3. We show that the Decision Transformer archi-
tecture is able to learn policies comparable to
those of online reinforcement learning meth-
ods from purely random data, illustrating the
architecture’s ability to find structure in inher-
ently noisy data.

2 Background

2.1 QAit
QAit is implemented in TextWorld1 (Côté et al.,
2018), an open-source simulator for training rein-
forcement learning (RL) agents for decision mak-
ing and language comprehension. QAit text-based

1https://www.microsoft.com/en-
us/research/project/textworld/

environments are generated procedurally via sam-
pling from a distribution of world settings. There
are two environment map types: A fixed map con-
tains six rooms, whereas random maps sample
their number of rooms from a uniform distribution
U(2, 12). QAit requires an agent to answer ques-
tions about the location, existence and attributes
of objects in an environment. An agent interacts
with a QAit environment using text commands that
consist of an action, modifier, and object triplet,
e.g., "open black oven". A generated environ-
ment consists of rooms each containing randomly
assigned objects and location names. The agent
moves around in the environment for a pre-defined
number of time steps or until the predicted com-
mand action is "wait". TextWorld responds to agent
commands with a state string containing informa-
tion about the room the agent is in and the objects
present.

2.1.1 Question types
An agent is required to answer one of three question
types:

• Location questions assess an agent’s ability to
navigate the environment to find the location
of an object. For example, "Where is copper
key?" could be answered with "garden" or
"toolbox".

• Existence questions requires the agent to nav-
igate and interact with the environment to
gather knowledge and determine whether an
object exists. Questions are phrased as "is
there any X in the world?", where X is an en-
tity in the vocabulary, and answers are either
yes ("1") or no ("0").

• Attribute questions require that the agent in-
teracts with an object to determine whether it
has a particular characteristic or quality. For
such question types, the level of interaction
and movement required in observing a suffi-
cient amount of information to answer a ques-
tion greatly exceeds location and existence
questions. Answers are also either yes or no.
For example, "Is stove hot?" requires an agent
to find and interact with "stove" to answer the
question correctly. Comprehension of both
the question and the environment are required.
Entities often have arbitrary names and at-
tributes, making memorisation impossible.
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Figure 1: The Decision Transformer (Chen et al., 2021) architecture as adapted to QAit. States St and commands At

have their token sequences encoded with GRUs. An embedding is also learnt for the returns-to-go Rt. Each of these
three embeddings (St, At, Rt) are concatenated with a positional embedding for time step t, and fed into a GPT-2
causal Transformer. Commands are predicted autoregressively through linear decoders for the next command’s
action at+1, modifier mt+1, and object ot+1 components. A fourth decoder predicts the answer to the question at
each time step.

2.1.2 Rewards
Yuan et al. (2019) proposed two reward types:

Sufficient Information: Sufficient information
is a metric used to evaluate the amount of informa-
tion gathered by the agent and whether or not the
information was sufficient to answer the question
(Yuan et al., 2019). It is also used as part of the re-
ward function. The sufficient information score is
calculated when the agent decides to stop the inter-
action and answer the question. For each question
type, the sufficient information score is calculated
as follows:

• Location: A score of 1 is given if, when the
agent decides to stop the interaction, the entity
mentioned in the question is present in the
final observation. This indicates the agent has
witnessed the information it needs to answer
the question successfully. If the mentioned
entity is not present in the final observation
then a score of 0 is given.

• Existence: If the true answer to the question
is yes then a score of 1 is given if the entity
mentioned in the question is present in the
final observation. If the true answer to the
question is no, then a score between 0 and 1

is given proportional to the amount of explo-
ration coverage of the environment the agent
has performed. Intuitively this can be seen as
a confidence score - if the agent witnesses the
entity, it is 100% confident of its existence;
otherwise, until it explores the entire environ-
ment, it cannot be completely confident.

• Attribute: Attribute questions have a set of
heuristics defined to verify each attribute and
assign a score of sufficient information. Each
attribute has specific commands that need to
be executed for sufficient information to be
gathered. This also depends on the agent be-
ing in certain states for these outcomes to be
observed correctly, e.g. an agent needs to be
holding an object to try to eat the object.

Exploration Reward: The agent is also given an
exploration reward (Yuan et al., 2018) whenever en-
tering a previously unseen state in order to promote
exploration of the environment.

2.1.3 Evaluation
(Yuan et al., 2019) trained agents on multiple Num-
ber of Games settings, i.e., number of unique envi-
ronments that an agent interacts with during train-
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ing. In this paper, we restrict our experiments to the
500 games setting when generating offline training
data for the Decision Transformer.

We measure an agent’s performance through
both sufficient information score and question an-
swering accuracy. Models are evaluated in a zero-
shot evaluation on the QAit test set in order to
assess agents’ generalisation abilities. Each ques-
tion type and map type have their own unique set
of 500 never-before-seen games, each containing a
single question.

2.2 Decision Transformer
The Decision Transformer (Chen et al., 2021) ar-
chitecture approaches reinforcement learning prob-
lems by autoregressively modelling a trajectory
of actions/commands, states, and rewards. Com-
mand triples (action, modifier, noun) are condi-
tioned upon the total reward that can still be gath-
ered from interacting with the environment. This
is referred to as the returns-to-go (RTG) Rt =∑T

t′=t rt′ where T is the trajectory length and
rt is the reward at time step t. Thus the ini-
tial return-to-go R1 represents the total reward
to be gained from a given episode. After every
episodic play-through, the trajectory is represented
as (R1, s1, a1, R2, s2, a2...RT , sT , aT ), where Rt

is the RTG, s is a state, and a an action/command.
An example QAit trajectory is shown in Figure

2. The trajectory representation enables training
a sequence model such as GPT-2 (Radford et al.,
2019), as command prediction is based on gaining
some future reward, rather than on how much re-
ward has already been obtained. During testing the
model is conditioned on total desired reward by set-
ting R1 and the starting state to generate command
sequences autoregressively. If an agent obtains
some reward while interacting with the world, this
is deducted from its RTG in subsequent time steps.

3 Approach

Training a Decision Transformer requires offline
training data for supervised learning. Online rein-
forcement learning, in contrast, sees an agent con-
tinually interacting with the environment to gather
experience and update its policy based on observed
rewards.

3.1 Training data generation with random
rollouts

We generate offline training data using random
rollouts for each map type and question type in

Map
Type

Question Mean
Reward

Maximum
Reward

Training
Set Size

Fixed Location 0.526 4.10 44k
Existence 0.554 3.80 39k
Attribute 0.498 3.73 36k

Random Location 0.565 4.10 41k
Existence 0.606 3.94 42k
Attribute 0.542 4.03 82k

Table 1: Size of each of the training datasets, i.e. num-
ber of trajectories generated with random rollouts. The
average and maximum total rewards gained per trajec-
tory are also given.

the 500 games setting. The rollouts are generated
using a random agent which uniformly samples
commands from all admissible commands for a
particular time step. This restriction stems from the
sparsity of the action space (approximately 16543

possible commands compared to approximately 8
admissible commands): sampling commands from
the complete vocabulary results in mostly invalid
commands. Thus, by only using admissible com-
mands in data generation, we intend for the Deci-
sion Transformer to learn which command triplets
are admissible (as this is unknown during testing).
The sequence of commands and observed states are
recorded along with the reward for each command.
Training dataset statistics are given in Table 1.

3.2 Decision Transformer

The maximum trajectory input length of the De-
cision Transformer is set to K = 50 time steps,
which is the maximum length of a QAit episode.
This allows the DT to access the entire trajectory
for command generation and question answering.
Token embeddings for states and command se-
quences are obtained using a single embedding
layer. At each time step the sequence of tokens
representing the current state of the environment is
encoded with a GRU (Cho et al., 2014) with the fi-
nal hidden state hn representing the entire encoded
environment state. We concatenate the question to
the end of each state sequence, separated by a “<|>”
delimiter token. Commands, which can consist of
up to 3 tokens, are similarly encoded with another
GRU. Embeddings for returns-to-go Rt are also
learnt and projected to the embedding dimension.
Finally, a positional embedding representing the en-
vironment time step t is concatenated to each input
(returns, states & commands) after the embedding
and GRU layers. The embedded and positionally
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Figure 2: An example QAit trajectory in the form (r1, s1, a1, r2, s2, a2, . . . , sT , aT ). Each time step consists of the
reward rt, state st and command at. The question and correct answer are also given, along with the returns-to-go
Rt.

encoded command, state, and return-to-go inputs
are fed into the GPT model. Figure 1 shows the
Decision Transformer architecture with example
input.

At each time step t, the Decision Transformer
encoding xt is fed into four linear decoders. Three
decoders predict the next command’s action, mod-
ifier, and object components, while the fourth de-
coder predicts the answer to the question (this is
the same at each time step). Although we also use a
separate QA module to predict the final answer, the
answer decoder allows the Decision Transformer
to learn some primitive level of question answer-
ing, thereby allowing the QA loss to help guide
command generation. Chen et al. (2021) found
that predicting states and returns-to-go at each time
step did not improve performance. This motivates
exclusively predicting command triples, along with
answers to questions.

The model is trained to optimize the sum of
the cross-entropy losses of action, modifier, ob-
ject, and answer prediction. For each question and
map type configuration, a set of unique validation
games were generated wherein an agent must inter-
act with an environment to answer a question. Dur-
ing training, the Decision Transformer is evaluated
on the set of hold-out games every 250 iterations to
monitor sufficient information scores and to avoid
overfitting.

3.3 QA module

The QA module consists of a pretrained BERT
encoder with a linear classification layer. The
per-time step state sequences are joined into a sin-

gle long sequence of tokens with the question ap-
pended at the end. A [CLS] token is added to
the beginning of the sequence, and a [SEP] token
before and after the question. This concatenated
sequence is tokenised by a Bert-Base-Uncased to-
keniser (Devlin et al., 2019) and padded or front-
truncated (keeping the most recent part of the state
sequence) to return a 512 token sequence which is
then fed to the BERT encoder. We subsequently
pass BERT’s output vector corresponding to the
CLS token to a linear layer. For attribute and exis-
tence questions this model performs binary classifi-
cation (to predict “yes” or “no”), while for location
questions it produces a softmax over the vocabu-
lary. We use cross-entropy to calculate the loss
between predicted and correct answers.

Training and validation sets that consist entirely
of valid trajectories are created for the QA module.
We use the validation set (20% of the generated
trajectories) to save the model with the highest
validation QA accuracy (after 30 training epochs).
In order to simulate more realistic QA training
data, we feed the QA training examples back into
the trained DT and use it to predict where to cut
off the generated sequence, as during testing there
is no guarantee that the DT would have explored
up until the correct answer has been found. The
sequence is cut off when the DT predicts the stop
action (wait) or the time step limit is exceeded.

3.4 Decoding

To generate the command sequence from the DT
during testing, instead of greedy decoding we sam-
ple each next command from the probability distri-
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Model Location Existence Attribute

Fixed Random Fixed Random Fixed Random

DQN 0.224(0.244) 0.204(0.216) 0.674(0.279) 0.678(0.214) 0.534(0.014) 0.530(0.017)
DDQN 0.218(0.228) 0.222(0.246) 0.626(0.213) 0.656(0.188) 0.508(0.026) 0.486(0.023)
Rainbow 0.190(0.196) 0.172(0.178) 0.656(0.207) 0.678(0.191) 0.496(0.029) 0.494(0.017)

DT 0.168(0.232) 0.104(0.264) 0.668(0.254) 0.722(0.277) 0.504(0.057) 0.526(0.058)
DT-BERT 0.232(0.232) 0.270(0.264) 0.626(0.258) 0.654(0.277) 0.524(0.058) 0.538(0.060)

DT-10K 0.146(0.302) 0.102(0.220) 0.688(0.240) 0.618(0.255) 0.488(0.058) 0.490(0.048)
DT-BERT-10K 0.124(0.302) 0.076(0.204) 0.612(0.241) 0.676(0.223) 0.552(0.060) 0.518(0.049)

Table 2: QA accuracy and sufficient information score (in brackets) of each model following zero-shot evaluation
on the test set in the 500 games setting. A bold value indicates a score to be the highest of that question and map
type configuration.

butions over the action, modifier, and object. This
motivation is similar to that of stochastic decod-
ing algorithms in natural language generation: The
stochasticity minimises the risk of the Decision
Transformer entering a loop in which the same
command is generated repeatedly, and more closely
mirrors natural language which avoids utterances
with too high probability (Zarrieß et al., 2021). In
the case of answer prediction, we deterministically
take the argmax of the output.

3.5 Returns Tuning

A shortcoming in the DT’s methodology is the ex-
pectation for the environment’s maximum achiev-
able return to be known a priori. Using an inap-
propriate value can greatly hamper performance,
resulting in premature halting or needlessly exces-
sive exploration. Thus, we tune the value of the
initial returns-to-go R1 as a hyperparameter. We
create a validation set of 50 games to evaluate the
question answering performance of both the DT’s
answer prediction head and BERT model. For each
question and map type we consider R1 either set as
a fixed value or sampled from an exponential distri-
bution. Following the methodology used by Yuan
et al. (2019) for selecting the best model during
training, we tune R1 to maximize the sum of the
sufficient information score and question answer-
ing accuracy. See Appendix A for details.

4 Results

We evaluate the Decision Transformer both where
its own answer prediction head is used for ques-
tions answering and where this is done with the
BERT QA model. Test set results on the 500 games
setting are given in Table 2, together with with RL

model results as reported by Yuan et al. (2019). We
also report results of training the DT on reduced
datasets with only 10,000 episodes, in order to fur-
ther evaluate the sample efficiency of our approach
(see section 4.5). Training results are available in
the Appendix in Tables 7 and 8. Table 3 gives the
BERT QA model’s validation accuracy. We discuss
the results for each question type.

Overall, DT-BERT outperforms the Decision
Transformer’s answer prediction head in location
and attribute type questions, while the DT gives a
higher accuracy on existence questions. At a high
level, these performance differences depend on the
state and action space that the model was required
to learn and navigate. Existence type and attribute
type questions may depend on long-range depen-
dencies. For example, existence type questions
require the ability to know whether an object has
been witnessed or not. When the answer is that
an object doesn’t exist, the problem is more than
just word matching within the last few states. We
believe that this is why the Decision Transformer
QA head outperforms the BERT model on exis-
tence and attribute questions since it has access
to the entire state trajectory. On questions whose
answers were more likely to be found within the
last 512 tokens, DT-BERT achieves higher question
answering accuracy than the Decision Transformer.

4.1 Location Questions

The DT’s answer prediction head has a lower QA
accuracy than previous RL approaches on both
fixed and random maps. However its sufficient
information scores, reflecting the DT’s information
gathering capacities, are higher. For location type
questions, QA accuracy normally matches suffi-
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Question Map Type BERT BERT-10K

Attribute Fixed 0.780 0.730
Random 0.616 0.703

Existence Fixed 0.778 0.762
Random 0.779 0.778

Location Fixed 0.987 0.831
Random 0.988 0.835

Table 3: QA accuracy of the BERT model and the BERT-
10K model on the QA validation data.

cient information results due to QA modules effec-
tively performing word matching once an agent
arrives in the correct state. We see this in the
RL methods’ results as their sufficient informa-
tion scores are very close to their QA accuracies.
This indicates that the DT’s question answering
prediction head is underfitting the training data.

DT-BERT outperforms the QA accuracy of the
RL models on both fixed and random maps. On
random maps, QA accuracy is slightly higher than
sufficient information, suggesting that in a small
number of cases the BERT model may be able to
deduce the answer from the context even when it
does not explicitly appears in the trajectory. The
performance gap between the BERT QA model and
the DT means that a question can still be correctly
answered even if the DT stops in an incorrect state.
The high BERT QA accuracy for location questions
can also be seen in Table 3.

We suggest two reasons for the BERT QA model
answering location type questions more accurately
than the Decision Transformer’s prediction head.
First, it is easier for BERT model to learns skills
basic pattern matching skills such as identifying
entity and location names from state strings. Sec-
ond, exploration is not as highly encouraged with
location questions as with existence and attribute
types. Less exploration means fewer states visited,
allowing the state context window to contain less
noisy state strings than other question types.

4.2 Existence Questions
The DT outperforms RL baselines on sufficient in-
formation and QA accuracy in the random maps
setting for existence questions. However on fixed
maps it performs worse than the DQN. The BERT
QA model underperforms the DT answer predic-
tion head here in both map types, suggesting that
jointly optimising answer and command prediction
leads to improved performance on existence type

questions.
Reasoning about the existence of an object

within a TextWorld environment requires knowl-
edge about the entirety of the world. Therefore, ex-
istential questions require an agent to fully explore
an environment to answer whether or not an entity
exists within it. The Decision Transformer’s self-
attention mechanism makes performing long-term
credit assignments possible. The answer prediction
head of the DT can thus draw upon information
gathered in all previous states to inform question
answering. As a result, the ability to model de-
pendencies that stretch throughout all states en-
countered allows the DT to outperform the BERT
model, whose context window is constrained to
512 tokens.

4.3 Attribute Questions
None of the models achieve results that are sub-
stantially above 50% on attribute questions, con-
firming the challenge of this question type. The
Decision Transformer did obtain higher sufficient
information than all RL baselines. DT-BERT ob-
tains higher QA accuracies than the DT answer
prediction head; it obtains the highest QA accu-
racy among all the models on random maps, and
performs slightly worse than the DQN on fixed
maps.

Despite the Decision Transformer’s ability to
learn long-term dependencies via its attention
mechanism, we posit that the contextualised embed-
dings of BERT are able to model a richer semantic
representation of TextWorld’s state-strings than the
embeddings learnt by the DT. This better capturing
of the semantic space enables BERT to more fully
utilise the context with which it was provided by
using pre-existing understanding to help answer
questions posed in natural language.

4.4 Rewards and Performance
Based on validation set performance, the optimal
initial return-to-go for location type questions was
determined to be 2.0 for both fixed and random
map settings. This is lower than for existence and
attribute types, indicating that exploration is not
as highly encouraged. In location type questions,
the entity definitively exists somewhere within the
environment. This means that the action space re-
quired to answer questions of locality is reduced
to traversals and basic interactions with contain-
ers. Therefore, less exploration is needed as the
information to answer a question is more easily ac-
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quired. Too high an initial reward would promote
unnecessary actions with a high likelihood of lead-
ing the agent astray from stopping in the correct
state.

Existence questions require far more exploration
of an environment than location type questions.
Higher starting rewards reflect this need for greater
exploration and are associated with better QA and
sufficient information scores, as seen in Table 5
in the Appendix. These higher values promote a
more complete traversal of the world, allowing for
gathering information required to answer the ques-
tion. However, too high an initial reward means
that entering a correct state and receiving a reward
of 1.0 may not affect the model’s decision making.
If the DT has a current RTG of 5.0 and enters the
correct state that rewards 1.0, the RTG from then
onwards is 4.0. The return-to-go of 4.0 does not
suggest to the model that it has entered the correct
state, meaning it carries on exploring and gathering
information. Likewise, too small a reward could
prematurely cause an agent to stop exploring due
to gaining rewards for entering new states via the
exploration bonus. Therefore, we observe that the
best RTG values err on the larger side, which en-
courages greater world exploration.

Attribute type questions are considered the most
sparsely rewarded of all three types (Yuan et al.,
2019). We therefore expected higher rewards to
be associated with better accuracies. The results,
however, paint a different picture. In a fixed map,
where the state space is, on average, smaller than
that of random maps, we see that a smaller reward
yields the best score. This reduction is likely a re-
sult of the reduced state and action space making
too much exploration and interaction with the envi-
ronment degrade performance. On the other hand,
in a random map setting higher rewards yields bet-
ter QA and sufficient information scores, allowing
us to conclude that higher rewards promote more
exploration and thus allows the model to better
answer the question.

4.5 Sample Efficiency
The RL agents in QAit were trained for more than
200K episodes. In comparison, most of our De-
cision Transformers were trained on around 40K
episodes (Table 1). The test set results therefore
show that DT is able to match or outperform the pre-
vious RL methods when trained on approximately
25% of the number of episodes. Moreover, all train-
ing data used for the DT was generated via random

rollouts - indicating that the Decision Transformer
has the ability to learn optimal policies from subop-
timal data. We also found that fine-tuning a BERT
model for QA on the random rollout data works
well, as long as the DT is used to determine where
to cut off the trajectory.

In order to further elucidate the DT’s sample
efficient learning capabilities, we generated new
datasets for all question and map types that only
contained 10 thousand episodes. The validation
results can be seen Table 6 in the Appendix. These
experiments indicate that the DT trained on even
fewer offline trajectories can achieve results on par
with or better than both previous baselines as well
as identical models trained on more data. Here we
see fixed map sufficient information scores being
improved for all question types and QA accuracy in-
creasing for attribute and existence questions. How-
ever, QA accuracy for location type questions is
worse than previous baselines in both random and
fixed maps (see Table 2). While the results are
not consistently better, they do further indicate the
sample efficiency of the Decision Transformer.

5 Conclusion

We showed that interactive question answering
can be framed as a sequence modelling prob-
lem by training Transformers for action genera-
tion and answer prediction using random roll-outs.
Results show that the Decision Transformer ap-
proach matches or outperforms current reinforce-
ment learning approaches for QAit on most ques-
tion types and maps type configurations in the 500
game setting. Additionally, the approach is more
sample efficient than reinforcement learning ap-
proaches, reducing the amount of training data
required even though the data generated via ran-
dom rollouts is suboptimal. Fine-tuning a BERT
model for question answering on the same gener-
ated dataset improves performance over using the
Decision Transformer directly for question answer-
ing in two of the three question types.
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A Hyperparameter Tuning

Hyperparameters of the DT and BERT are given in
Table 4.

DT BERT

Hyperparameters Value

Number of layers 2 12
Number of attention heads 8 12
Embedding dimension 256 768
Batch size 128 12
State context window tokens 180 512
Context length (K) 50 -
Max Epochs 2000 30
Dropout 0.5 0.1
Learning rate 1× 10−4 1× 10−5

Adam betas (0.9, 0.95)
Grad norm clip 0.25
Weight decay 0.1

Table 4: Decision Transformer and the BERT QA hy-
perparameters. For the DT, Context length K refers
to the amount of previous time steps with which the
Transformer can conditiona on. Context State context
window refers to the number of tokens from the state to
be used for prediction. Adam (Kingma and Ba, 2015)
is used as optimiser in conjunction with the specified
learning rate, linear warmup and cosine weight decay.

A.1 Decision Transformer
A.1.1 Location
As can be seen in Table 5, the sufficient information
score peaking at R1 = 2 indicates optimal state-
space exploration for location questions when the
potential for future reward is moderate for random
and fixed map types. While the QA accuracy was
highest for both settings when the initial reward

was the maximum of the training set, we opted to
test the DT’s question answering and information
gathering capabilities at R1 = 2 as this yielded the
highest combined sufficient information and QA
accuracy score.

A.1.2 Existence
Using both sufficient information and QA accuracy,
the optimal initial reward for fixed map existence
questions was determined to be 4.0, with the DT
achieving a QA accuracy of 0.660 and a sufficient
information score of 0.263 on the validation set. In
random map settings, the DT scored a validation
accuracy of 0.720 with a corresponding sufficient
information score of 0.298, where the initial reward
was determined to be the maximum of the training
set 3.94.

A.1.3 Attribute
The best sufficient information and QA accuracy
combinations for the Decision Transformer were
achieved at an initial reward of 2.0 for fixed and
5.0 for random map types. On the validation set,
the fixed map DT achieved a QA accuracy of 0.533
and a SI score of 0.056. Random map saw a similar
SI of 0.057 but worse QA accuracy of 0.460.

A.2 BERT Model

A.2.1 Location
Based on data gathered using the online-evaluation
dataset, the optimal initial return-to-go for location
type questions was 2.0. Using the BERT model for
QA yielded an accuracy of 0.227 for fixed maps
and 0.393 for random maps. The BERT model
achieved a higher QA accuracy than sufficient in-
formation score during evaluation, indicating that
the context window spanning multiple states was a
boon to QA accuracy. During training, the BERT
model achieved almost perfect scores for question-
answering on the held-out set of offline trajectories,
seen in Table 3.

A.2.2 Existence
Using the online-validation set, we determined op-
timal starting reward values of 3.0 for fixed map
and 3.94 for random. These values were associated
with a QA accuracy of 0.64 for fixed and 0.647 for
random map types. However, scores were signif-
icantly lower than the offline validation set used
during training, where QA accuracy of 0.778 and
0.779 was achieved for fixed and random maps,
respectively.
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A.2.3 Attribute
In the offline validation set, the BERT model scored
a QA accuracy of 0.616 for random and 0.780 for
fixed map settings. On the online validation set,
we observed the maximum combination of QA and
sufficient information for the BERT model at an
R1 of 3.0 for fixed and 2.0 for random where the
BERT QA model had an accuracy of 0.507 and
0.660 for random and fixed map types, respectively.
However, we opted to use the maximum of the train
set 4.03 when evaluating on the test set for random
map types. This is due to the BERT QA model
having a high standard deviation of 0.156 and an
average QA accuracy of 0.640, indicating greater
potential for high QA accuracy. Moreover, the
sufficient information score associated with this
accuracy is 0.056 - higher than the random map
with an initial reward of 2.0.
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Figure 3: Barplot showing QA accuracy of the BERT QA model on the validation set when trained in the 500 games
setting with different initial returns-to-go (RTG). See results in Table 5.

Figure 4: Barplot showing QA accuracy of the Decision Transformer’s answer-prediction head on the validation set
when trained in the 500 games setting with different initial returns-to-go (RTG). See results in Table 5.
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Question Type

Attribute

Fixed Random

Initial RTG BERT DT SI BERT DT SI

1 0.427 ± 0.0416 0.493 ± 0.0306 0.052 ± 0.0135 0.567 ± 0.0306 0.433 ± 0.0231 0.050 ± 0.0083
2 0.473 ± 0.0503 0.533 ± 0.0115 0.056 ± 0.0094 0.660 ± 0.0200 0.453 ± 0.0306 0.048 ± 0.0039
3 0.367 ± 0.0503 0.480 ± 0.0400 0.051 ± 0.0043 0.620 ± 0.0529 0.447 ± 0.0503 0.054 ± 0.0034
4 0.507 ± 0.0643 0.480 ± 0.0529 0.056 ± 0.0058 0.560 ± 0.1058 0.400 ± 0.0693 0.054 ± 0.0014
5 0.487 ± 0.0503 0.500 ± 0.0200 0.056 ± 0.0007 0.620 ± 0.0000 0.460 ± 0.0346 0.057 ± 0.0033

Sampling 0.487 ± 0.0416 0.453 ± 0.0231 0.051 ± 0.0050 0.593 ± 0.0503 0.433 ± 0.0231 0.052 ± 0.0097
Max 0.487 ± 0.0503 0.493 ± 0.0643 0.055 ± 0.0021 0.640 ± 0.1562 0.440 ± 0.0200 0.056 ± 0.0020

Existence

Fixed Random

Initial RTG BERT DT SI BERT DT SI

1 0.600 ± 0.0721 0.640 ± 0.0200 0.216 ± 0.0314 0.680 ± 0.0917 0.747 ± 0.0115 0.200 ± 0.0416
2 0.533 ± 0.0702 0.660 ± 0.0346 0.259 ± 0.0051 0.653 ± 0.0611 0.687 ± 0.0306 0.277 ± 0.0441
3 0.640 ± 0.0721 0.647 ± 0.0115 0.265 ± 0.0161 0.607 ± 0.0306 0.733 ± 0.0115 0.269 ± 0.0075
4 0.580 ± 0.0529 0.660 ± 0.0400 0.263 ± 0.0180 0.633 ± 0.0577 0.707 ± 0.0306 0.291 ± 0.0476
5 0.633 ± 0.0702 0.680 ± 0.0200 0.222 ± 0.0166 0.620 ± 0.0721 0.700 ± 0.0200 0.310 ± 0.0205

Sampling 0.613 ± 0.0416 0.647 ± 0.0231 0.180 ± 0.0467 0.653 ± 0.0416 0.707 ± 0.0416 0.250 ± 0.0070
Max 0.587 ± 0.0306 0.640 ± 0.0200 0.270 ± 0.0409 0.647 ± 0.0115 0.720 ± 0.0400 0.298 ± 0.0302

Location

Fixed Random

Initial RTG BERT DT SI BERT DT SI

1 0.165 ± 0.0191 0.175 ± 0.0379 0.165 ± 0.0191 0.267 ± 0.0306 0.107 ± 0.0115 0.267 ± 0.0306
2 0.227 ± 0.0231 0.167 ± 0.0115 0.233 ± 0.0115 0.393 ± 0.0416 0.080 ± 0.0200 0.387 ± 0.0503
3 0.187 ± 0.0416 0.167 ± 0.0306 0.187 ± 0.0416 0.307 ± 0.0306 0.120 ± 0.0200 0.307 ± 0.0306
4 0.173 ± 0.0115 0.133 ± 0.0231 0.173 ± 0.0115 0.360 ± 0.0400 0.093 ± 0.0115 0.347 ± 0.0306
5 0.167 ± 0.0462 0.160 ± 0.0200 0.167 ± 0.0462 0.340 ± 0.0346 0.080 ± 0.0346 0.333 ± 0.0306

Sampling 0.160 ± 0.0200 0.167 ± 0.0416 0.167 ± 0.0115 0.287 ± 0.0757 0.107 ± 0.0306 0.287 ± 0.0757
Max 0.193 ± 0.0231 0.187 ± 0.0115 0.193 ± 0.0231 0.333 ± 0.0945 0.120 ± 0.0200 0.327 ± 0.0702

Table 5: Question-answering accuracy of the BERT model’s and the Decision Transformer’s answer prediction head
as well as the Decision Transformer’s average sufficient information (SI) score on validation set at different initial
return-to-go (RTG) values. Bold values indicate the combined highest QA and sufficient information score with
the associated initial RTG value also bolded. Sampling indicates R1 was randomly sampled from an exponential
distribution. Max represents the maximum of the training set for that experiment configuration (see Table 1).
Summary statistics were calculated over 4 seeds - see code implementation for details.
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Question Type

Attribute

Fixed Random

Initial RTG BERT-10K DT-10K SI BERT-10K DT-10K SI

1 0.515 ± 0.0719 0.590 ± 0.0258 0.054 ± 0.0074 0.490 ± 0.0529 0.410 ± 0.0258 0.053 ± 0.0123
2 0.485 ± 0.0342 0.580 ± 0.0542 0.051 ± 0.0094 0.510 ± 0.1013 0.410 ± 0.0115 0.044 ± 0.0061
3 0.450 ± 0.0600 0.550 ± 0.0258 0.055 ± 0.0023 0.450 ± 0.0416 0.420 ± 0.0432 0.047 ± 0.0082
4 0.440 ± 0.0163 0.580 ± 0.0365 0.056 ± 0.0040 0.430 ± 0.0775 0.445 ± 0.0191 0.051 ± 0.0071
5 0.525 ± 0.0526 0.560 ± 0.0163 0.055 ± 0.0019 0.470 ± 0.0825 0.410 ± 0.0200 0.050 ± 0.0026

Sampling 0.455 ± 0.0681 0.545 ± 0.0300 0.052 ± 0.0100 0.490 ± 0.0200 0.415 ± 0.0100 0.044 ± 0.0042
Max 0.420 ± 0.0283 0.560 ± 0.0163 0.051 ± 0.0052 0.470 ± 0.0476 0.410 ± 0.0383 0.054 ± 0.0102

Existence

Fixed Random

Initial RTG BERT-10K DT-10K SI BERT-10K DT-10K SI

1 0.595 ± 0.0574 0.590 ± 0.0258 0.165 ± 0.0148 0.740 ± 0.0400 0.705 ± 0.0300 0.165 ± 0.0143
2 0.575 ± 0.0412 0.625 ± 0.0252 0.195 ± 0.0256 0.640 ± 0.0566 0.680 ± 0.0283 0.219 ± 0.0318
3 0.610 ± 0.0258 0.645 ± 0.0342 0.232 ± 0.0235 0.620 ± 0.1007 0.690 ± 0.0600 0.233 ± 0.0303
4 0.650 ± 0.0346 0.640 ± 0.0365 0.251 ± 0.0538 0.685 ± 0.0252 0.670 ± 0.0346 0.240 ± 0.0175
5 0.560 ± 0.0283 0.690 ± 0.0663 0.286 ± 0.0421 0.645 ± 0.0661 0.685 ± 0.0473 0.253 ± 0.0362

Sampling 0.645 ± 0.0551 0.655 ± 0.0300 0.214 ± 0.0305 0.660 ± 0.0283 0.725 ± 0.0252 0.179 ± 0.0372
Max 0.635 ± 0.0823 0.630 ± 0.0702 0.229 ± 0.0471 0.630 ± 0.0577 0.675 ± 0.0379 0.243 ± 0.0328

Location

Fixed Random

Initial RTG BERT-10K DT-10K SI BERT-10K DT-10K SI

1 0.150 ± 0.0346 0.130 ± 0.0115 0.195 ± 0.0300 0.130 ± 0.0258 0.130 ± 0.0115 0.170 ± 0.0476
2 0.135 ± 0.0342 0.155 ± 0.0500 0.190 ± 0.0115 0.130 ± 0.0258 0.105 ± 0.0300 0.165 ± 0.0100
3 0.155 ± 0.0300 0.150 ± 0.0383 0.220 ± 0.0432 0.155 ± 0.0526 0.105 ± 0.0342 0.135 ± 0.0300
4 0.135 ± 0.0500 0.130 ± 0.0258 0.230 ± 0.0200 0.145 ± 0.0300 0.120 ± 0.0432 0.150 ± 0.0346
5 0.135 ± 0.0300 0.135 ± 0.0473 0.230 ± 0.0258 0.160 ± 0.0432 0.110 ± 0.0383 0.170 ± 0.0200

Sampling 0.150 ± 0.0383 0.145 ± 0.0100 0.180 ± 0.0163 0.125 ± 0.0412 0.105 ± 0.0100 0.160 ± 0.0163
Max 0.145 ± 0.0252 0.150 ± 0.0115 0.240 ± 0.0327 0.145 ± 0.0300 0.120 ± 0.0432 0.150 ± 0.0346

Table 6: Question-answering accuracy of the 10K variation BERT model’s and Decision Transformer’s answer
prediction head as well as the Decision Transformer’s average sufficient information (SI) score on validation set at
different initial return-to-go (RTG) values. Bold values indicate the combined highest QA and sufficient information
score with the associated initial RTG value also bolded. Both models were trained on only 10 thousand episodes of
data.
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Fixed

Model Location Existence Attribute
Train Test Train Test Train Test

Random - 0.027 - 0.497 - 0.496

500 games

DQN 0.430 (0.430) 0.224 (0.244) 0.742 (0.136) 0.674 (0.279) 0.700 (0.015) 0.534 (0.014)
DDQN 0.406 (0.406) 0.218 (0.228) 0.734 (0.173) 0.626 (0.213) 0.714 (0.021) 0.508 (0.026)

Rainbow 0.358 (0.358) 0.190 (0.196) 0.768 (0.187) 0.656 (0.207) 0.736 (0.032) 0.496 (0.029)
DT - 0.168 (0.232) - 0.668 (0.254) - 0.504 (0.057)

DT-BERT - 0.232 (0.232) - 0.626 (0.258) - 0.524 (0.058)

DT - 10K - 0.146 (0.302) - 0.688 (0.240) - 0.488 (0.058)
DT-BERT - 10K - 0.124 (0.302) - 0.612 (0.241) - 0.552 (0.060)

Table 7: Results of Fixed Map Experiments

Random

Model Location Existence Attribute
Train Test Train Test Train Test

Random - 0.034 - 0.5 - 0.499

500 games

DQN 0.430 (0.430) 0.204 (0.216) 0.752 (0.162) 0.678 (0.214) 0.678 (0.019) 0.530 (0.017)
DDQN 0.458 (0.458) 0.222 (0.246) 0.754 (0.158) 0.656 (0.188) 0.716 (0.024) 0.486 (0.023)

Rainbow 0.370 (0.370) 0.172 (0.178) 0.748 (0.275) 0.678 (0.191) 0.636 (0.020) 0.494 (0.017)
DT - 0.104 (0.264) - 0.722 (0.277) - 0.526 (0.058)

DT-BERT - 0.270 (0.264) - 0.654 (0.277) - 0.538 (0.060)

DT - 10K - 0.102 (0.220) - 0.618 (0.255) - 0.490 (0.048)
DT-BERT - 10K - 0.076 (0.204) - 0.676 (0.223) - 0.518 (0.049)

Table 8: Results of Random Map Experiments
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