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Abstract

We investigate different systems for extracting
mathematical entities from English texts in the
mathematical field of category theory as a first
step for constructing a mathematical knowl-
edge graph. We consider four different term
extractors and compare their results. This small
experiment showcases some of the issues with
the construction and evaluation of terms ex-
tracted from noisy domain text. We also make
available two open corpora in research mathe-
matics, in particular in category theory: a small
corpus of 755 abstracts from the journal TAC
(3188 sentences), and a larger corpus from the
nLab community wiki (15,000 sentences).1

1 Introduction

The majority of scientific research is communicated
using natural language, often in the form of papers
like this one. However, the volume of scientific
literature in any given field is too large to be com-
pletely understood by any one individual. So how
can expert researchers, let alone newcomers or out-
siders, come to terms with the breadth of scientific
knowledge in their field?

Recently, NLP tools have become stunningly
effective at making information that is relevant
to everyday concerns more accessible. Tools for
search, question answering, and summarization
have improved significantly on various general
benchmarks. To make research more effective and
accessible, similar tools are needed for specialized
domains. Some research communities might num-
ber only in the thousands of researchers, and have
specialized vocabulary and language usage, includ-
ing heavy use of symbols, diagrams and/or markup

1Certain commercial entities, equipment, or materials may
be identified in this document in order to describe an experi-
mental procedure or concept adequately. Such identification
is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it
intended to imply that the entities, materials, or equipment are
necessarily the best available for the purpose.

We define the notion of a torsor

for an inverse semigroup , which

is based on semigroup actions ,
and prove that this is precisely the
structure classified by the topos as-

sociated with an inverse semigroup .

Unlike in the group case, not

all set-theoretic torsors are

isomorphic : we shall give
a complete description of the

category of torsors ...

Figure 1: An example of extracting terms from a single
paragraph of text.

language, as in mathematics. These smaller com-
munities require a general methodology for con-
structing specialized tools themselves.

Knowledge graphs—networks of concepts
and their relations in a particular domain of
knowledge—have become the preferred technol-
ogy for representing, sharing, and adding knowl-
edge to modern AI applications (Ilievski et al.,
2020). The construction of such a graph begins
with the identification of central concepts in the
domain in question. Given a corpus of text, such
as a collection of papers, the task of identifying
these central concepts is sometimes known as term
extraction, and there are many generic toolkits
for performing this task. In this paper we study
four examples: TextRank (Mihalcea and Tarau,
2004), DyGIE++ (Wadden et al., 2019), OpenTapi-
oca (Delpeuch, 2020), and Parmenides (Bhat et al.,
2018).

A potential methodology to construct special-
ized, domain-specific knowledge management
tools would begin by running a generic term extrac-
tor over a suitable corpus of domain-specific text
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and assuming that it extracts a reliable set of terms.
However, each research community may wish to
evaluate these terms to test whether they meet the
community’s specific needs. This evaluation must
determine how well the underlying terms reflect
important concepts in the domain. Ideally, such
an evaluation would be made against a corpus an-
notated by human experts, which would provide a
gold standard reference for a representative sam-
ple of the domain. Such a corpus would ideally
capture all and only the relevant concepts present
in the corpus, allowing evaluation based on both
precision and recall.

However, obtaining a hand-annotated reference
corpus is not always practical, especially with noisy
data. First, hand annotation is time-consuming, and
may be infeasible for certain research communities.
Second, the specialized nature of the text means
that the annotators will need to be experts in the
domain. This makes hand annotation potentially
very expensive for highly specialized domains. In
particular, we are also seeking a methodology that
can be undertaken with little to no additional direct
effort from domain experts, and hand annotation
does not meet this criterion.

What, then, does a methodology for constructing
and evaluating extracted terms look like for special-
ized research domains? In this paper we propose
an evaluation methodology that combines informa-
tion from different ‘silver standard’ sources. In
our case, we study author-selected keywords from
paper abstracts, titles from a community-managed
wiki, and linguistically identified noun phrases. We
argue that, in the case that traditional F1 scores are
not informative enough when drawn from any in-
dividual source, the evaluation of several sources
nonetheless gives us valuable information about
the properties of terms extracted.

We apply this methodology to evaluate lists of
terms extracted from text in the mathematical field
of category theory. By analyzing the results, we
see that generic tools do not have their full efficacy
on the specialized domain of category theory, and
we have the grounds to infer some reasons why.
Nonetheless, this amalgamated evaluation method
provides a path forward for constructing and main-
taining a high quality list of domain-specific con-
cepts in category theory. A key result of this paper
is also the groundwork we lay, including two small
corpora and some basic experiments, for under-
standing how NLP tools can be used to build a

knowledge graph for mathematics.

1.1 Related work

Automatic terminology extraction (ATE) is a well-
studied task in natural language process that in-
volves the extraction of domain-specific phrases
from a corpus. ATE is somewhat distinct from key
phrase extraction, which operates at the document
level, though the two tasks have some similarities
(Zhang et al., 2018). ATE algorithms often rely on
two distinct levels: the identification of linguistic
units and the ranking of those units to identify the
most relevant and distinctive terms. Some algo-
rithms instead identify terms directly, though this
usually requires training on an annotated dataset
where relevant terms are explicitly identified (Wad-
den et al., 2019). Work on ATE has been done
using large corpora, such as the CiteSeerX library
containing millions of scientific documents from
many disciplines (Patel et al., 2020). However,
we are not aware of any specific work on ATE for
mathematics.

We are aware of two ACL-style competitions
related to mathematical text processing. Firstly,
the Math Tasks in NTCIR-10, 11, and 12 studied
the recognition of mathematical formulas (Aizawa
and Kohlhase, 2021)2. The second competition is
the 2017 SemEval Task 10 3, described in Augen-
stein et al. (2017). This task was about extract-
ing keyphrases and relations between them from
scientific documents: the domains chosen were
computer science, material science and physics4.
Though mathematics itself was not included, all of
these disciplines rely on mathematics.

There has also been a great deal of work on
technical language processing that is not related to
mathematics and does not explicitly involve ATE.
For example, Olivetti et al. (2020) reviews the use
of NLP for materials science, while Perera et al.
(2020) covers biomedical information extraction.
The latter is of particular interest due to their use of
named entity recognition (NER), which bears some
similarity to ATE, and the problems they discuss
with recognizing specialized terms. Generalized
approaches face challenges in these domains; as a
result, these pipelines make use of domain-specific
knowledge bases or expert annotations.

2https://ntcir-math.nii.ac.jp/
3https://alt.qcri.org/semeval2017/

task10/
4https://scienceie.github.io/resources.

html

https://ntcir-math.nii.ac.jp/
https://alt.qcri.org/semeval2017/task10/
https://alt.qcri.org/semeval2017/task10/
https://scienceie.github.io/resources.html
https://scienceie.github.io/resources.html


17

2 Category theory as a case study

Although we seek to develop a generic methodol-
ogy, we have chosen to ground these investigations
in the specific field of category theory. Category
theory is a branch of mathematics focused on re-
lationships and composition. It is often seen as a
way to organize mathematics as a whole (Marquis,
2021). While this choice is largely dictated by the
interests of the authors, category theory presents
a number of features which reflect the challenges
and potential of automatically constructing domain-
specific knowledge management tools.

Category theory as a field dates back to the
1940s (Eilenberg and MacLane, 1945). While the
field is well established, the volume of text avail-
able remains small compared to the corpora used
in other NLP applications. A leading journal in
the field, Theory and Applications of Categories
(TAC), published 55 papers in 2021, and a total
of 845 papers since its first issue in 1995. This is
small compared to, for example, the 3.27 million
materials science abstracts used to train the NLP
backend for the materials science search engine
MatScholar (Kim et al., 2017).

Most of category theory research is described
in natural language, especially English. However,
the language is specialized in ways that may pose
challenges to automatic systems:

• Many technical terms in CT redefine com-
mon English words. For example, ‘category’,
‘limit’, ‘group’, ‘object’, and ‘natural trans-
formation’ all have more specific, formalized
meanings in CT that they do not have in ev-
eryday English.

• Many technical terms involve vocabulary that
is not present in everyday English at all, such
as ‘groupoid’, ‘monoidal’, and ‘colimit’.

• Special symbols and even diagrams are often
interspersed with text, such as ‘Let C be a
category. . . ’. Often, LATEX markup is used,
and sometimes inconsistent.

• Abbreviations and shortcuts are used which
would not be common in everyday text, such
as the use of ‘(co)homology’ to refer simulta-
neously to both homology and cohomology.

Though the category theory community is rela-
tively small, it has a large online presence, which
has supported the creation of community-oriented

websites and blogs, including the nLab, a wiki for
notes, expositions, and collaborative work, with a
focus on category theory. The nLab was started in
2008, and as of May 2022, has over 16000 articles.

The authors’ own interest and expertise in cate-
gory theory also allows us to quickly analyze the
results of any experiments from the perspective of
a potential user.

3 Automatic Term Extraction Algorithms

We run a number of experiments to test four dif-
ferent automatic terminology extraction methods:
OpenTapioca (a simple entity linking system de-
signed specifically for category theory), DyGIE++
(a neural NER system that has been trained to ex-
tract scientific terms), TextRank (a graph-based
algorithm originally designed for key phrase ex-
traction, but adapted to ATE), and Parmenides (a
linguistically-motivated phrase extraction system
that combines symbolic processing and neural pars-
ing).

OpenTapioca: OpenTapioca (Delpeuch, 2020)
is a simple named entity linking system that links
phrases of natural language text to entities in Wiki-
Data (Vrandečić and Krötzsch, 2014). It cannot
identify new concepts—only those already repre-
sented in WikiData. OpenTapioca is a simple base-
line system that uses basic string matching to iden-
tify relevant phrases, built on the recognition that
powerful knowledge bases like WikiData has led
to recent success in other systems.

OpenTapioca is of particular interest, because it
is designed to link entities that are not just locations,
dates, or the names of people and organizations, but
a variety of technical concepts. OpenTapioca also
provides a filter that allows it to limit results to
entities that appear in nLab, effectively filtering out
concepts that are not related to category theory.

DyGIE++: DyGIE++ (Wadden et al., 2019) is a
span-based neural scientific entity extractor. The
system builds upon the older DyGIE (Luan et al.,
2019). Both systems were developed in collabo-
ration with the Allen Institute for Artificial Intel-
ligence, and use supervised methods to identify
relevant spans of text. DyGIE++ has been trained
on a variety of different corpora and subtasks, in-
cluding the identification of chemical compounds,
drug names, and mechanisms. Though DyGIE++
has not been trained or tested directly on category
theory, the similarities between the domains it has
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been trained on and CT, as well as its overall strong
performance, make it a good candidate to test for
extracting CT concepts.

TextRank: TextRank (Mihalcea and Tarau,
2004) is a graph-based ranking algorithm based
on PageRank, which has been applied to keyword
extraction and text summarization as well as auto-
matic terminology extraction. Though TextRank
is a somewhat older algorithm, it is still a com-
mon algorithm that has been implemented many
times. We use a modern Python implementation,
PyTextRank5.

Parmenides: Parmenides (Bhat et al., 2018)
takes a linguistic approach to terminology extrac-
tion. It uses spaCy6 to identify syntactic struc-
tures, then normalizes the syntactic structure and
identifies phrases for extraction. Parmenides is
highly customizable, but is designed primarily for
linguistic analysis and not for terminology extrac-
tion. Nevertheless, it can be used to identify key
linguistic phrases as an initial step for ATE.

4 Test Corpus

Automatic terminology extraction takes a corpus of
natural language text and produces a list of relevant
terms. To produce a list of terms for category the-
ory, we need to supply a corpus of category theory
text.

To create such a corpus, we take abstracts from
Theory and Applications of Categories (TAC). This
is the primary corpus that we use for our exper-
iments. We also provide a second corpus, using
a subset of the nLab wiki7. These corpora will
be made publicly available. We remove markup,
section headings, and LATEX expressions from the
text to create a cleaned version of the corpus. Both
corpora are written in English.

After cleaning the corpora, we run spaCy to pro-
duce automatic annotations in the style of CoNLL-
U. SpaCy is a free open-source library for natural
language processing in Python distributed since
2015. It features named entity recognition (NER),
part-of-speech (POS) tagging, dependency parsing,
and word vectors.

Note that these are the first publicly available cat-
egory theory corpora, and we are not aware of any

5https://pypi.org/project/pytextrank/
6https://spacy.io
7https://ncatlab.org/nlab/show/HomePage

other cleaned, open-source corpora of mathematics
research text.

5 Evaluation Methodology

The ATE systems described in Section 3, combined
with the TAC corpus described in 4, allow us to con-
struct candidate lists of category theory concepts,
which could be used as the basis for a knowledge
graph. We now arrive at the central question of this
paper: how do we assess the quality of such lists?

Again, our goal is not to assess the quality of the
extraction algorithms as generic tools, but rather
to assess the quality of the lists of category theory
concepts they produce. This is a key distinction:
our goal is not generality, but the evaluation of data
in a particular context.

More precisely, the usual methodology (Chuang
et al., 2012) would be to construct an expertly an-
notated corpus, labeling all the category theory con-
cepts contained within it. We could then compare
the list of terms produced by the term extractors
against the gold standard, to produce standard met-
rics such as precision, recall, and F1 score. As de-
scribed above, this methodology can be expensive
and impractical for small, highly technical research
communities.

Instead, we seek to evaluate against multiple,
imperfect sources of truth to discern different prop-
erties of the data. To compensate for the imperfect
nature of our reference lists, we must pair each one
with a qualitative description of the properties it
can reveal. This allows us to use the list to shed
light on the nature of the concepts under evalua-
tion, even if a single, representative score cannot
be constructed.

The reference lists we consider for this paper
are described in Table 1. The properties of each
reference list are determined based on how the ref-
erence list was constructed. Author-selected key-
words are constructed by human experts to capture
the most important concepts in a given abstract. As
a result, they have high precision: all of these ele-
ments will be concepts from the field of category
theory. However, they have relatively low recall,
because the authors have no incentive to include
all possible concepts, only the concepts which are
new, advanced, or distinctive. Thus, many simpler
or more common concepts will be excluded from
this list. The page titles from the community wiki,
in this case nLab, are similar: they are generally
chosen by experts, but will not cover every possi-

https://pypi.org/project/pytextrank/
https://spacy.io
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Reference List Properties
Author-selected keywords High precision on advanced, new concepts; poor recall
Page titles from community wiki High precision on basic concepts; poor recall
Automatically extracted noun phrases High recall on noun phrases; low precision

Table 1: The different reference lists under consideration and their properties

ble concept. In this case, basic, common concepts
will be covered, but more advanced concepts will
not. Finally, we extract a list of noun phrases uses
a pre-trained spaCy model. This operates under
the assumption that many technical terms are noun
phrases (Chuang et al., 2012). This will capture
many of these technical terms, but will also capture
phrases that are not necessarily technical terms or
are only meaningful in context, such as ‘key results’
or ‘the aforementioned category’.

While each of these reference lists can give in-
sight on its own, the intersection or union of two
or more reference lists can also reveal properties
of the extracted terms. For example, concepts that
appear in both author keywords and wiki page ti-
tles can be understood to be central concepts in the
field, so for knowledge graphs, we should focus
on having high recall in this area. Choosing these
reference lists well (i.e., such that their evaluation
properties are balanced across desirable properties
of our knowledge graph), means we can discover
strengths and weaknesses of our extracted term
lists.

A key feature of the reference lists that we
have chosen is that they incorporate community-
maintained, evolving sources. This means that
our methodology will be able to improve with
increased community effort. This empowers re-
searchers in the domain to take simple actions that
will improve the quality of our term extraction sys-
tem and its evaluations.

Because the terminology extraction algorithms
that we use are all extractive, our reference lists
have to be extractive as well. To ensure this, we
filter the phrases in each reference list by compar-
ing them to the TAC corpus. First, we normalize
the phrases using spaCy to remove variations such
as morphological inflections and the presence of
stop words. This allows us to compare terms in the
reference list to strings in the corpus to determine
if each is present, and remove the terms that are not
found in the corpus.

Given an extractive reference list R, our eval-
uation process is fairly standard. For each term

extractor E describe above, we:

1. Run term extractor E on corpus C.

2. Normalize results using spaCy to get predica-
tion list P

3. Produce lists of true positives (appears in both
P and R), false positive (appears in P but not
R), and false negatives (appears in R but not
P ).

4. Calculate recall, precision, and F1 scores.

Note that this produces scores for each reference
list, and there is no generic score that covers the
extractor in the general case.

6 Reference Lists

We now discuss in more detail the properties of the
reference lists we have chosen for category theory.
Figure 2 shows the overlap of terms found between
the three reference lists.

6.1 Author Keywords
Our first reference list contains keywords selected
by the authors of articles in the journal TAC.

Authors are experts on their own papers. Author-
selected keywords are thus an important, reliable
source of truth describing concepts in papers. How-
ever, this reference list has a few complications.
For example, many of the author-selected keywords
never show up in the text as described—they are not
always extractive, and may be more abstract than
the terms actually used in the text. For example,
the phrase ‘topological quantum field theory’ could
describe the topic of an abstract, but due to its gen-
erality, does not necessarily appear in the abstract.
In addition, keywords may contain shortcuts and
abbreviations that are easily understood by humans,
but not by machines. For example, ‘(co)homology’
may be used to describe an abstract that is about
both ‘homology’ and ‘cohomology’. Though the
normalization described above accounts for author-
selected keywords that never show up in texts, it
may filter out relevant terms in some cases, such as
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Figure 2: Unique and shared keywords identified by our three reference standards. Each column represents a set of
terms; the filled portions of each row represent that the given set of terms was identified by a particular method.
For example, the leftmost column shows that 2348 terms were identified only by simple noun phrases. The fourth
column shows terms that were identified by both nLab titles and author keywords.

the ‘(co)homology’ example above, which won’t
be recognized due to the unusual formatting. How-
ever, this reference list’s property of high precision
should be maintained due to the authors’ expertise.

One final note is that the author keywords are
abstract-specific, while ATE is concerned about
the corpus as a whole. Author-selected keywords
are still concepts in category theory, but this fact
contributes to the lower precision of this reference
list: the authors will only select concepts that distin-
guish their articles from others, and not all concepts
that they make reference to.

6.2 nLab page titles

Our second reference list is made using page titles
from the nLab, a community wiki for mathematics.

In the ideal case, an encyclopedic community
wiki would have an article describing every concept
in the field. In practice, this is not the case. First,
the wiki may be initially incomplete, and as the
field advances, will lag behind changes in the field.
Second, there may be pages in the wiki that do
not necessarily describe concepts per se: titles of
books, meta-pages, historical notes, and lists do not
necessarily belong in a knowledge graph. Since we
make each reference list extractive, this should not
be a significant problem.

This reference list is also very precise, but fo-
cuses on concepts that are more likely to be fun-

damental in category theory, as opposed to more
advanced or less common concepts. This comple-
ments the author keywords well, and shows how
well a list of extracted keywords reflects basic con-
cepts in category theory.

6.3 Noun phrases

Our third reference list consists of a noun-noun
compounds and adjective-noun phrases extracted
from the text by spaCy. These are all two-word
phrases as identified by spaCy’s part-of-speech tag-
ger, with LATEX markup automatically removed.

There is a considerable difference between this
reference list and the other two. Author keywords
and wiki articles are both constructed by experts,
and thus clearly belong to the field of category
theory. By contrast, automatically-identified noun
phrases, even those taken directly from category
theory articles, may not necessarily be mathemati-
cal concepts.

Chuang et al. (2012) suggests that around 9.04%
of all keywords chosen by humans are compounds,
so this reference list may identify new concepts that
are not picked up by other reference lists, though
it certainly contains invalid terms, such as ‘future
work’ and ‘next section’, as well.
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Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 391 236 979 600
False Positives 1105 522 13710 3231
False Negatives 684 839 96 475
Precision 0.26 0.31 0.07 0.16
Recall 0.36 0.22 0.91 0.56
F1 0.30 0.26 0.12 0.24

Table 2: Extracted terminology compared to author-selected keywords

Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 399 507 1160 684
False Positives 1097 251 13529 3147
False Negatives 873 765 112 588
Precision 0.27 0.67 0.08 0.18
Recall 0.31 0.40 0.91 0.54
F1 0.29 0.50 0.15 0.27

Table 3: Extracted terminology compared to nLab page titles

7 Results

Analyses of each corpus, with respect to all three
reference lists, can be found in our GitHub repo.
Summaries of the results of our experiments are
given in Tables 2, 3, and 4. We also evaluate the
results against the union of all three reference lists,
as shown in Table 5.

Further results are described in our repository8.
Overall, however, the general ranking of the term
lists remains the same, with few exceptions.

8 Discussion

Overall, the F1 scores presented here are very low
when compared to the results of SEMEVAL 2017
(Augenstein et al., 2017). DyGIE++ also reports
higher numbers on the datasets it has been trained
on (Wadden et al., 2019). Our results are, however,
similar to the results of Patel et al. (2020), which
considers the problems of terminology extraction
using papers indexed in CiteSeerX, which reports
F1 scores of 0.33.

Parmenides always outperforms the other mod-
els we consider on recall, but generally performs
poorly on precision. Conversely, OpenTapioca has
relatively high precision scores, resulting in the
highest F1 score for both author keywords and
nLab page titles. Parmenides was designed as a lin-
guistic analysis tool; it extracts all possible phrases,
with only limited power to rank those phrases by

8https://github.com/ToposInstitute/
tac-corpus

relevance. As a result, it extracts almost all of the
linguistic units that are available, including large
amounts of irrelevant text. OpenTapioca, on the
other hand, is designed to pull out only category
theory concepts, but is limited in its ability to ex-
tract novel terms and those not described in nLab.

The terms extracted by DyGIE++ are reasonable
in terms of F1 score. For author-selected keywords,
DyGIE++ performs the best, and it has the second-
highest F1 score for nLab page titles.

However, it is not enough to just consider F1

scores in this case. The reference lists that we con-
sider have limitations, and we cannot rely on them
all to be both complete and precise. As described
above, the author keywords and nLab titles have
limited recall—they do not contain all of the pos-
sible category theory terms in the text, because
they are designed for other purposes. For these
reference lists, we can only rely on the recall of the
extracted terms. Low recall on the author keywords
indicates that a list does not contain many of the
advanced concepts from category theory, while low
recall on the nLab titles indicates that a list does
not contain many of the basic concepts from cate-
gory theory. Low precision on these, however, may
indicate that a list contains terms which may still
be valid, but which do not appear in these reference
lists.

The proper conclusion, then, should not be that
OpenTapioca is the best option because it has the
best overall F1 score. Nor is DyGIE++ necessarily
ideal just because of its high performance on author-

https://github.com/ToposInstitute/tac-corpus
https://github.com/ToposInstitute/tac-corpus


22

Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 378 216 2439 976
False Positives 1118 542 12250 2855
False Negatives 2549 2711 488 1951
Precision 0.25 0.28 0.17 0.25
Recall 0.13 0.07 0.83 0.33
F1 0.17 0.12 0.28 0.29

Table 4: Extracted terminology compared to noun phrases

Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 748 547 3606 1653
False Positives 748 211 11083 2178
False Negatives 3518 3719 660 2613
Precision 0.50 0.72 0.25 0.43
Recall 0.18 0.13 0.85 0.39
F1 0.26 0.22 0.38 0.41

Table 5: Extracted terminology compared to the combined reference lists

selected keywords. OpenTapioca, as shown by
low recall on noun phrases, cannot extend well to
novel terms. DyGIE++ performs reasonably well
overall, but is outperformed by several extractors
in recall of nLab page titles and by Parmenides and
TextRank on recall of author-selected keywords.
Instead, TextRank appears to be the best candidates,
having high recall on author-selected keywords and
nLab page titles as well as high precision on noun
phrases, though a better measure of precision is
desirable.

9 Conclusions

We present the first computational work extracting
mathematical concepts from abstracts. We inves-
tigated four different term extractors, previously
described for other domains, and evaluated the re-
sults against the limited annotated data we had for
category theory. The results are somewhat lim-
ited as well, compared to previous results on more
generic domains. However, other domain-specific
analyses have some of the same problems, which
suggests that our results are still promising.

We also provide insight into the evaluation of
automatically-generated terminologies for limited-
resource domains. The usual F1 scores are not
entirely reliable unless the gold standard can be
assumed to include both all and only the relevant
terms, but partially-correct ‘silver standards’ may
still provide useful insight into the data.

In our case, we can draw some important con-

clusions about the terminology lists that we extract.
Because author keywords and nLab titles are most
reliable for recall, we can determine that tools such
as Parmenides and TextRank are able to extract
large quantities of both advanced and basic cat-
egory theory terms. However, the large number
of other terms extracted by Parmenides suggests
that it may need additional filtering to be useful
for automatic terminology extraction for our use-
case. Our evaluation can also be further improved.
The low relative recall of the noun phrase refer-
ence list itself suggests that additional phrase types
are common in our data. Adding verb phrases and
more complex noun phrases could help us identify
high-precision terminologies, as well as high-recall
ones.

Another possibility in our case is to continue
working toward our use-case. Since we have further
downstream uses of the terminology—namely, the
creation of a knowledge graph—we can use this
to further our evaluation. By extracting relations
between terms, we can identify which terms are the
most connected and which are isolated, under the
assumption that isolated terms are less likely to be
part of domain-specific language.

We have also constructed two publicly-available
corpora that can be developed into more sophisti-
cated datasets. Though there are still many limita-
tions to both evaluation and ATE in mathematics,
we hope that our work provides a basis for future
developments in the area, and that our insights on
evaluation and domain-specific research can be ap-
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plied more generally.
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