@inproceedings{tars-etal-2022-teaching,
title = "Teaching Unseen Low-resource Languages to Large Translation Models",
author = {Tars, Maali and
Purason, Taido and
T{\"a}ttar, Andre},
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.wmt-1.33/",
pages = "375--380",
abstract = "In recent years, large multilingual pre-trained neural machine translation model research has grown and it is common for these models to be publicly available for usage and fine-tuning. Low-resource languages benefit from the pre-trained models, because of knowledge transfer from high- to medium-resource languages. The recently available M2M-100 model is our starting point for cross-lingual transfer learning to Finno-Ugric languages, like Livonian. We participate in the WMT22 General Machine Translation task, where we focus on the English-Livonian language pair. We leverage data from other Finno-Ugric languages and through that, we achieve high scores for English-Livonian translation directions. Overall, instead of training a model from scratch, we use transfer learning and back-translation as the main methods and fine-tune a publicly available pre-trained model. This in turn reduces the cost and duration of training high-quality multilingual neural machine translation models."
}