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Abstract

Research on Machine Translation (MT) has
achieved important breakthroughs in several
areas. While there is much more to be done
in order to build on this success, we believe
that the language industry needs better ways to
take full advantage of current achievements.
Due to a combination of factors, including
time, resources, and skills, businesses tend
to apply pragmatism into their AI workflows.
Hence, they concentrate more on outcomes,
e.g. delivery, shipping, releases, and features,
and adopt high-level working production
solutions, where possible. Among the features
thought to be helpful for translators are
sentence-level and word-level translation auto-
suggestion and auto-completion. Suggesting
alternatives can inspire translators and limit
their need to refer to external resources, which
hopefully boosts their productivity. This
work describes our submissions to WMT’s
shared task on word-level auto-completion,
for the Chinese-to-English, English-to-Chinese,
German-to-English, and English-to-German
language directions. We investigate the
possibility of using pre-trained models and
out-of-the-box features from available libraries.
We employ random sampling to generate
diverse alternatives, which reveals good
results. Furthermore, we introduce our
open-source API, based on CTranslate2, to
serve translations, auto-suggestions, and auto-
completions.

1 Introduction

Translation auto-suggestion and auto-completion
are among the important features that can help
translators better utilize Machine Translation (MT)
systems. In a Computer-Aided Translation (CAT)
environment, a translator can make use of the MT
word auto-suggestion feature as follows:

• typing a few words, or clicking a word in a

proposed MT translation, a list of suggestions
is displayed, as illustrated by Figure 1.

• selecting one of the word suggestions from
the list, the rest of the translation is modified
accordingly.

The WMT’s Word-Level AutoCompletion
(WLAC) shared task addresses a more specific sce-
nario, where the user types a few characters, and
the system predicts and auto-completes the cor-
rect word, given the current context. The WLAC
task even suggests that the context might be partial,
and it can consist of preceding and/or following
words. Given a source sequence x, typed character
sequence s and a context c, WLAC aims to predict
a target word w which is to be placed in the middle
between the left context cl and right context cr to
constitute a partial translation. Note that the last
word of cl, the auto-completed word w, and the
first word of cr are not necessary consecutive.

Previous work proposed diverse approaches,
mostly to translation sentence-level auto-
suggestion and auto-completion. In their work,
Li et al. (2021) proposed an approach to tackle
the word-level auto-completion task. Given a
tuple (x, c, s), the system decomposes the word
autocompletion process into two parts: 1) model
the distribution of the target word w based on the
source sequence x and the translation context c;
and 2) find the most possible word w based on the
distribution and human typed sequence s. Hence,
they first use a single placeholder [MASK] to
represent the unknown target word w, and use
the representation of [MASK] learned from the
word prediction model, based on BERT (Devlin
et al., 2019), to predict it. Then, the predicted
distribution of the masked token is used over the
vocabulary to filter out invalid words, namely those
that do not start with the human typed sequence s.
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Figure 1: Auto-Suggest: Word Suggestions List1

Finally, they return the token with the highest
probability over the new distribution.

Researchers in other natural language process-
ing areas such as language modelling offered ap-
proaches to improve predictions of decoder-only
autoregressive models, trained to predict the next
word given the previous context. Among these ap-
proaches are top-K sampling and top-p (nucleus)
sampling (Fan et al., 2018; Holtzman et al., 2018;
Radford et al., 2019; Holtzman et al., 2020). Since
neural machine translation inference depends on
a decoder model, such approaches from language
modelling can be employed. In particular, we inves-
tigate the use of top-K sampling during decoding
to generate better word-level auto-completions.

2 User Survey

Previous work reported that a user can save over
60% of the keystrokes needed to produce a transla-
tion in a word completion scenario (Langlais et al.,
2000). Other researchers noted that post-editing
is faster than MT auto-completion (Koehn, 2009)
while MT auto-completion can yield higher quality
translation when the baseline MT quality is high
(Green et al., 2014).

In a user survey we designed and distributed
via social media networks, we asked participants
whether they thought an MT word-level auto-
suggestions feature could be helpful, and provided
a simple definition and an illustrative image. If
their answer was “yes”, the respondent was asked
to specify a reason. By the time of writing this pa-
per, we received 41 responses to our survey. While
we do not believe this survey is enough to justify
introducing an auto-suggestions feature into every

1The image is from our demo at: https://www.
machinetranslation.io/

MT system, it can be an indicator as to why some
users think such a feature could be helpful. To an-
swer the question, “Which of the following best
describes you?” 46.3% (19) of the respondents
chose “Translator/Linguist”, 31.7% (13) selected
“NLP Engineer/Researcher”, and the rest 22% (9)
were other “MT Users”, not included in the two
aforementioned categories.

Figure 2: MT user categories

Among the respondents to the survey, 90.2%
(37) answered “Yes” to the question “In general, do
you believe that a word-level auto-suggestions fea-
ture is helpful?” Figure 3 shows the breakdown of
answers to the question, “Why do you believe that
a word-level auto-suggestions feature can be help-
ful?” taking into consideration those who answered
“No” to the previous question.

Out of the 37 persons who believed a word-level
auto-suggestions feature can be helpful, 40.5% (15)
of the respondents specified that it can give them
some inspiration. This answer is specifically inter-
esting as it is not constrained by time-saving bene-
fits; hence, it focusses more on effectiveness rather
than efficiency. The respondent that answered with
“Other” mentioned that it allows them to look for al-
ternative senses or phrasings, especially when they
suspect the initial translation is bad, and referred to
this as “human in the loop”.

Respondents were allowed to give extra com-
ments; among the notable comments were:
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Figure 3: How translators and other MT users perceive
word-level auto-suggestions

• I think word-level suggestions can be a useful feature,
particularly when the target language can have several
translations of a single source word.

• Word-level suggestions can be helpful, but sometimes
you end up spending a lot of time figuring out if the MT
suggestion is a valid translation in that context. So, I’m
not really sure yet how I feel about it.

• It’s useful, as long as it’s seen as a suggestion, and not

inserted in the target where the translator is typing.

Among the respondents who chose “For me, it is
easier or faster than typing”, comments included:

• Though most of the time; the suggestions are lousy.

• I don’t think it gives me inspiration as I mostly need it
for structures, not single words.

• Auto-suggestion does not have to come from machine

translation. History is much more useful.

The last comment above might be referring to
the fact that in some CAT tools, auto-suggestions
can also include glossary terms, and translation
memory sub-segments, which encourages further
research efforts to investigate methods to enhance
leveraging and interaction between various transla-
tion resources in human-in-the-loop environments.

We hope this survey will inspire future user
studies to look deeper into how diverse users of
MT and CAT tools prefer to utilize certain features,
such as auto-suggestions, and the value they seek.
More aspects should be taken into consideration
such as language pairs, translation workflows, and
user interfaces. This can help improve these fea-
tures to better support linguists and other MT users
and boost their productivity as well as translation
quality.

3 Experimental Setup

Models We use OPUS pre-trained models2

based on the Transformer architecture (Vaswani
et al., 2017) for the Chinese-to-English, English-
to-Chinese, German-to-English, and English-to-
German language directions.

Tokenizers OPUS models depend on Sentence-
Piece3 (Kudo and Richardson, 2018) for tokeniza-
tion. Hence, we use their provided subword mod-
els during our pre-processing and post-processing
processes. As OPUS’s English-to-Chinese model
requires defining the target dialect using a pre-
specified token, we prepend [">>cmn_Hans<<"]
to the list of tokens generated by SentencePiece.
For word-level tokenization, we use NLTK for En-
glish and German, and Jieba4 for Chinese. This
list of words can be used later to find the word that
starts with the typed sequence.

Inference Engine We employ CTranslate2
(Klein et al., 2020) for sentence-level MT, as
well as for translation auto-suggestions. To this
end, we first convert OPUS models into the
CTranslate2 format. After that, we utilize a num-
ber of CTranslate2 decoding features, including
“alternatives at a position” and “auto-completion”.5

The translation options return_alternatives and
num_hypotheses are essential for all our ex-
periments; the former should be set to True

while the latter determines the number of re-
turned alternatives. These decoding options can be
used with regular beam search, prefix-constrained
decoding, and/or random sampling. If the decoding
option return_alternatives is used along with
target_prefix, the provided target left context
is fed into the decoder in the teacher forcing
mode,6 then the engine expands the next N most
likely words, and continues (auto-completes) the
decoding for these N hypotheses independently.
The shared task investigates four context cases:

2https://github.com/Helsinki-NLP/
Tatoeba-Challenge

3https://github.com/google/
sentencepiece

4https://github.com/fxsjy/jieba
5https://github.com/OpenNMT/

CTranslate2/blob/master/docs/decoding.md
6In teacher forcing (Williams and Zipser, 1989), ground

truth previous tokens are fed into the decoder, instead of the
predicted tokens yi-1 as suggested by Bahdanau et al. (2015)
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(a) empty context, (b) right context only, (c) left
context only, and (d) both the right and left con-
texts are provided. Hence, for all cases we returned
multiple alternative translations, while for (c) and
(d) we also returned another set of alternative auto-
completions using the left context as a target prefix.
In this sense, it is worth noting that we make use
only of the left context, when available, and we do
not use the right context at all, which we might in-
vestigate further in the future. To enhance diversity
of translations, especially for (a) and (b), we ap-
plied random sampling with the CTranslate2’s de-
coding option sampling_topk, with various sam-
pling temperatures. Our experiments are further
elaborated in Section 4 and Section 5.

Pinyin The official Romanization system for
Standard Mandarin Chinese is called Pinyin. Since
the task organizers used the pypinyin library7 to
prepare the test files, we did too. OPUS English-to-
Chinese models accept Chinese input, so we had to
use the library to convert between the two writing
systems. Since the conversion from Chinese char-
acters to Pinyin is a lossy process and cannot be
perfectly converted back, we keep a list of Chinese
words resulted from tokenization with Jieba to be
able to map Pinyin tokens to Chinese tokens later.

4 Method

We experimented with both beam search alterna-
tives and random sampling, and found that the latter
achieves better results. This could be due to the
fact that alternatives generated from each beam are
usually very similar, and lower beam values tend to
generate translations of lower quality. This section
elaborates on the actual methods we used for our
submissions, while more details about initial exper-
iments that led us to these decisions are explained
in Section 5.

Random sampling is a decoding mode that ran-
domly samples tokens from the model output distri-
bution. In our experiments, we restrict the sampling
to the top-10 candidates at each time-step. To ob-
tain diverse generations from the MT model, we
rely on randomness in the decoding method, in par-
ticular through top-K sampling that samples the
next word from the top-K most probable choices

7https://github.com/mozillazg/
python-pinyin

(Fan et al., 2018; Holtzman et al., 2018; Radford
et al., 2019), instead of aiming to decode text that
maximizes likelihood.

For each translation, we use the CTranslate2
option return_alternatives to return 10 sequences,
with 10 top-K sampling. If the entry has a left
context starting with a capital letter, we use the
prefix to constrain the decoding. In CTranslate2,
combining target_prefix with the return_alterna-
tives flag returns alternative sequences just after
the prefix. We compose a list of alternatives with
and without the prefix, and try to find the word
starting with the typed sequence.8 If the word is
not found, we repeat the same process for up to
five runs. In each new run, random sampling can
generate a new set of alternatives. Our experiments
show that returning 20 sequences with 20 top-K
sampling could lead to more correctly predicted
words (cf. Table 2); however, we had to consider
the trade-off between quality and efficiency.9

Furthermore, we investigate increasing the ran-
domness of the generation by using a value for
sampling temperature between 1.0 and 1.3. For
each run, a random value is generated in this range.
The default sampling temperature in CTranslate2
is 1, which achieved relatively better results, as
demonstrated in Table 1.

Language Settings Accuracy Human

de-en ST=1.0 0.614441141 0.885
ST=1.3 0.609237735 0.8875

en-de ST=1.0 0.589418807 0.6725
ST=1.3 0.584939177 0.655

zh-en

ST=1.0 + detok 0.504113456 0.8675
ST=1.3 + detok 0.502598878 0.8675
ST=1.0 0.493476989 0.86
ST=1.3 0.490619944 0.87

en-zh ST=1.0 0.319424091 0.5775
ST=1.3 0.319350821 0.5725

Table 1: Evaluation results on the test datasets. Auto-
matic evaluation uses the “Accuracy” metric. “Human”
refers to human evaluation. Results obtained from sam-
pling temperature (ST) 1.0 are slightly better than those
with the value 1.3. When the source is Chinese, detok-
enization (detok) resulted in slightly better scores.

8In a prefix-free target sequence, if multiple words start
with the typed sequence, we return the first word. In practice,
users could be prompted to choose from potential options.

9Our scripts are available at: https://github.com/
ymoslem/WLAC
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5 Other Experiments

This section elaborates on some initial experiments
we conducted to decide what approach to use. The
final approach we actually used in our submissions
is explained in Section 4.

We used 10,000 entries of a Chinese-to-English
golden sample provided by the organizers to evalu-
ate various experiments. For sentence translation,
when there is no left context, we experimented with
the following values:

• beam size 1, 5, and 10, without sampling

• beam size 1, with random sampling top-K 10,
20, and 50

Table 2 shows the results for these experiments,
and demonstrates that random sampling achieves
the best overall accuracy. Random sampling with
beam size 1 reveals better results than mere beam
size 1 and even beam sizes 5 and 10 without ran-
dom sampling. Multiple runs of random sampling
can result in more correctly predicted words.

Beam Size Sampling Top-K Hypotheses Accuracy Runs

1 N/A 10 0.6519 1
5 N/A 10 0.6588 1
10 N/A 10 0.6573 1

1 10 10 0.6918 1
1 20 10 0.6907 1
1 20 20 0.7108 1
1 50 10 0.6853 1

5 N/A 10 0.6588 5
1 10 10 0.7165 5
1 20 20 0.7310 5

Table 2: Results for the Chinese-to-English golden sam-
ple dataset (10,000 entries). Random sampling outper-
forms even higher beam sizes.

6 API

Our API project10 offers an easy way to integrate
translation, auto-suggestion, and auto-completion
features into translation environments. We chose
FastAPI11 for its high performance that beats many
other Python web frameworks12 in addition to its
easy integration with OpenAPI (Swagger) docu-
mentation.

10https://github.com/ymoslem/SnowballMT
11https://github.com/tiangolo/fastapi
12https://www.techempower.com/

benchmarks/#section=data-r20&hw=ph&test=
query&l=zijzen-sf

6.1 API Endpoints

The API consists of a number of endpoints, receiv-
ing requests and sending the relevant responses in
the JSON format. Each of the MT features has its
endpoint.

6.1.1 Translation Endpoint
The API handles a POST request (e.g. received
from a CAT environment), including:

• sentences: list of the source sentences to be
translated.

• source_language: in a format like “fr” for
French, and the default is “auto” to run lan-
guage auto-detection.

• target_language: in a format like “en” for
English.

The API response is a list of strings for the MT
translations in a JSON format.

6.1.2 Auto-Suggestions Endpoint
When the user clicks on one word of the MT trans-
lation, the CAT environment sends a request to the
API including:

• sentence: sentence to be translated.

• prefix: words to start the translation with.

• source_language: in a format like “fr” for
French, and the default is “auto” to run lan-
guage auto-detection.

• target_language: in a format like “en” for
English.

The API response is a list of the MT word sug-
gestions/alternatives for the current word, and the
translation auto-completions if the user selects a
specific suggestion.

6.2 JSON Response Examples

This is an example of a response to the translation
request referred to in Section 6.1.1.
{ ‘ i d ’ : 1 0550004

‘ s o u r c e _ l a n g ’ : " f r " ,
‘ t a r g e t _ l a n g ’ : " en " ,
‘ t r a n s l a t i o n s ’ : [

‘ The COVID−19 c r i s i s has deepened a l r e a d y
e x i s t i n g i n e q u a l i t i e s . ’

]
}

This is an example of a response to the auto-
suggestions request referred to in Section 6.1.2.
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{
‘ i d ’ : 1 0550005 ,
‘ s o u r c e _ l a n g ’ : " f r " ,
‘ t a r g e t _ l a n g ’ : " en " ,
‘ r e s u l t ’ : {

‘ t r a n s l a t i o n s ’ : [
{

‘ s u g g e s t i o n ’ : ‘ c r i s i s ’ ,
‘ c o m p e l e c t i o n ’ : ‘ o f COVID−19 has deepened

a l r e a d y e x i s t i n g i n e q u a l i t i e s . ’
} ,
{

‘ s u g g e s t i o n ’ : ‘COVID−19 ’ ,
‘ c o m p e l e c t i o n ’ : ‘ c r i s i s has deepened a l r e a d y

e x i s t i n g i n e q u a l i t i e s . ’
} ,
{

‘ s u g g e s t i o n ’ : ‘ impact ’ ,
‘ c o m p e l e c t i o n ’ : ‘ o f COVID−19 c r i s i s has

deepened a l r e a d y e x i s t i n g i n e q u a l i t i e s
. ’

}
]

}
}
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