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Abstract

This paper describes the submission of the joint
Samsung Research Philippines - Datasaur AI
team for the WMT22 Large Scale Multilingual
African Translation shared task. We approach
the contest as a way to explore task compo-
sition as a solution for low-resource multilin-
gual translation, using adapter fusion to com-
bine multiple task adapters that learn subsets
of the total translation pairs. Our final model
shows performance improvements in 32 out of
the 44 translation directions that we participate
in when compared to a single model system
trained on multiple directions at once.

1 Introduction

In this paper, we describe two systems that we
submit to the WMT22 Large Scale Multilin-
gual African Translation shared task: a base-
line finetuned MT5 (Xue et al., 2020) model
trained on multiple directions at once (referred
to as SRPH-DAI-Baseline), and an MT5 model
successively finetuned with task composition us-
ing multiple pair-specific adapters (referred to as
SRPH-DAI-Fusion).

We first outline the preprocessing steps and fil-
tering heuristics used to clean the contest dataset,
then we show the training setup and experimental
design used for constructing our submitted systems.
We then report our results on the hidden test set via
BLEU, spBLEU, and CHRF2++ automatic evalua-
tion metrics.

2 Preprocessing

In this section, we detail the preprocessing steps
used to filter the contest dataset to ensure that data
quality is as high as possible.

Given that the contest dataset contains sentence
pairs that were artificially aligned from crawled
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data, we use a number of filters to reduce the pos-
sibility of mismatched pairs in the final training
dataset:

• We filter out pairs where one or both sentences
have too few (<= 3) or too many (>= 150)
tokens post-sentencepiece tokenization.

• We remove pairs if one or both sentences have
too many repeated (>= 5) punctuations or
symbols of the same type (e.g. “/////”), or con-
tiguous punctuations/symbols of considerable
(>= 3) length (e.g. “word $&**$”).

• We also remove sentence pairs where one sen-
tence has punctuation that is missing from the
other (e.g. “word!!” → “word?”).

• If a pair has a sentence where a large percent-
age of the total characters (total >= 70%) are
numbers or punctuations (e.g. “word ??! +22
8456 8967”), the pair is dropped.

• An average word length filter is also used to re-
move pairs where one sentence has words that
are disproportionately longer than the words
in the corresponding sentence. We get a ratio
r by taking the sum of the lengths of each to-
ken in a sentence, then dividing it by the num-
ber of tokens. We only keep sentence pairs
where both sentences have a ratio r within
3 <= r <= 15.

• HTML and URL-containing sentence pairs
are also removed as this contributes to unnec-
essary noise during training.

• Lastly, we also check for known word matches
within each sentence pair. For instance, if we
detect a number (e.g. “1” or “one”), we also
check the corresponding sentence for the same
number. Sentence pairs that have mismatched
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Pair Samples
afr ↔ eng 2,526,513
amh ↔ eng 315,870
fuv ↔ eng 953,002
hau ↔ eng 1,841,974
ibo ↔ eng 136,534
kam ↔ eng 1,143,082
kin ↔ eng 7,143,167
lug ↔ eng 2,058,590
luo ↔ eng 1,713,159
nso ↔ eng 1,600,977
nya ↔ eng 1,289,859
orm ↔ eng 1,786,712
sna ↔ eng 5,917,741
som ↔ eng 413,647
ssw ↔ eng 77,807
swh ↔ eng 18,243,580
tsn ↔ eng 3,034,232
tso ↔ eng 383,586
umb ↔ eng 190,170
xho ↔ eng 5,481,855
yor ↔ eng 923,055
zul ↔ eng 2,645,396

Table 1: Final dataset statistics after running the sen-
tence pair filters.

(e.g. source sentence has “1” but target sen-
tence has “11”) words are dropped as these
are likely from misaligned data.

After applying the filters for the entire dataset,
we perform one deduplication step to ensure that no
duplicate entries have been added. No further pre-
processing is done on the data itself to preserve as
much information within the sentences as possible.

When formatting the data for translation training,
we insert a target language token at the beginning
of the sentence. For example, a sentence to be
translated from English to Afrikaans would look
like:

<afr> This is an example sentence.

We only participate in a subset of the shared
task’s translation pairs (44 total directions), opting
to train only on English → African and African →
English pairs due to resource constraints.

3 Experiment Design

In this section, we describe the construction of our
two submitted systems: SRPH-DAI-Baseline and

SRPH-DAI-Fusion.

3.1 Common Settings
Both systems use MT5-Small, a Transformer-based
(Vaswani et al., 2017) model, as an initialization
point. We opted to use the small variant (∼300
million parameters) as opposed to the bigger base
(∼580 million) and large (∼1.2 billion) variants
due to resource constraints in our setup. We expect
the performance of our models to further improve
as we scale to larger variants of pretrained models.

As a remedy to constrained resources as well as
a way to improve stability during training for low-
resource data, we decided to use adapters (Houlsby
et al., 2019; Pfeiffer et al., 2020b) instead of fully
finetuning all the model parameters.

Before proceeding to training for translation, we
first train a language adapter (Pfeiffer et al., 2020b)
on English + African languages in order to better
condition the MT5 model for the languages it will
encounter later. We mimic MT5’s pretraining and
use span corruption on the provided monolingual
training data for the shared task (which is likewise
filtered like our parallel data).

We freeze the pretrained weights and train the
adapter for a total of 150K steps using the Adafac-
tor (Shazeer and Stern, 2018) optimizer, utilizing
a learning rate schedule that warms up for the first
10K steps to a maximum of 1e−4, then linearly de-
caying after. We use a maximum sequence length
of 512 for language adapter training, using gradient
accumulation to train with a total batch size of 128
sequences per training step. The output language
adapter is used in both of our submission systems,
and is stacked below the translation task adapter(s).

3.2 Baseline Model
We construct our baseline model
SRPH-DAI-Baseline by stacking a blank
task adapter on top of our language adapter and
training it on all 44 translation directions at once.
In this setup, the language adapter is frozen. This
model is trained for a total of 300K steps on the
combined filtered dataset using the Adafactor
optimizer. We use a learning rate of 5e− 5 and a
weight decay of 1e − 8, warming up for the first
10K steps, then linearly decaying after.

Unlike other systems, we do not perform any
other techniques such as backtranslation (Edunov
et al., 2018), noisy channel reranking (Yee et al.,
2019), or clever pair sampling (Fan et al., 2021) in
order to further boost performance. This mimics an
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“ablation” setup where only the direct finetuning
method is used in order to accurately observe the
effect of using task composition later on. Since
no further modifications are made on the model
beyond the training method, any improvements
on performance made by task composition can be
attributed to task composition and not anything
else.

3.3 Exploring Task Composition

In the conventional multidirectional setup like in
our baseline, the model learns generic cross-lingual
information at the same time that it learns task-
specific information. Learning cross-lingual in-
formation is useful in cases where a number of
the languages in the model are similar or come
from the same family (Saleh et al., 2021; Siddhant
et al., 2022). However, in cases where a number
of the languages are dissimilar or come from dif-
ferent families, we hypothesize that it may be use-
ful to learn cross-lingual information separately
from task-specific mappings. This ensures that the
model learns each translation direction in a non-
destructive manner with respect to other language
pairs.

In cases where certain language pairs are un-
derrepresented in the training set, learning each
direction separately also removes the need for spe-
cialized data sampling methods to ensure that the
model sees each pair enough times. In addition,
using adapters for low-resource pairs also helps
prevent overfitting the small dataset (Mao et al.,
2021).

Motivated by this, instead of finetuning a task
adapter for multiple translation directions, we in-
stead opt to train multiple translation task adapters
to learn task-specific information, then composing
the multidirectional setup afterwards via Adapter
Fusion (Pfeiffer et al., 2020a) to mix cross-lingual
and cross-task information. This is how we con-
struct our SRPH-DAI-Fusion model.

For this setup, we follow the same training rou-
tine as in the baseline, except we only train on one
language pair at a time. We train an adapter to
produce translations for two directions: English
→ X and X → English. Training in more than
one direction ensures that the task adapters learn
to properly embed the target language token at the
beginning of every sentence. This results in a total
of 22 task adapters for each of the 22 English → X
pairs.

Finally, we add an Adapter Fusion setup
for all 22 single-pair task adapters, freeze the
adapters,then further finetune the model to learn
cross-task and cross-lingual information. We fine-
tune for 100K steps with a learning rate of 2e− 5
using the Adafactor optimizer. Like in previous
setups, we also use a warmup of 10K steps with a
linear decay afterwards.

4 Results

We outline the performance of our two models on
the hidden test set on Table 2.

Overall, SRPH-DAI-Fusion outperforms
SRPH-DAI-Base on average across all three
metrics, with an improvement of 0.09, 0.19, and
1.33 on average BLEU, spBLEU, and CHRF2++,
respectively. Both models perform relatively better
on the African to English translation directions
compared to the English to African ones. We
hypothesize that this is likely due to English
being a pivot language, and thus cross-lingual
and cross-task information learned while training
each pair contributed to better performance when
translating into English.

When comparing the two models, we note an
“improvement” in the performance if at least two
of the three metrics had an increase in score. We
observe that 32 out of the 44 translation directions
had an improvement once task composition was
used for finetuning, most of which are very low-
resource pairs. Best gains are observed in the En-
glish to African translation directions, with some
pairs such as Eng → Orm improving from an initial
0 score from the baseline model.

We observe that SRPH-DAI-Base outperforms
the task composition model in cases where there is
a relative abundance of training data. For pairs that
have sub-million examples, SRPH-DAI-Fusion per-
forms much better, likely due to the model being
able to learn more specialized information about
these translation directions separate from the other
directions.

Interestingly, we observe that for language pairs
with a relative abundance of data, the drop in perfor-
mance when using task composition is substantial.
For example, Afr → Eng suffers a 2.2, 2, and 4.2
points drop in BLEU, spBLEU, and CHRF2++, re-
spectively. We hypothesize that this is because
SRPH-DAI-Fusion has more intact task-specific
knowledge related to low-resource pairs that may
not be useful to the higher-resourced pairs. Since
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task adapters are frozen during fusion layer train-
ing, the model has an added burden in learning how
to adapt knowledge that may not be useful when
translating higher-resourced translation directions.

5 Conclusion

In this paper, we described our submissions for the
WMT22 Large Scale Multilingual African Trans-
lation shared task. We approached the contest as
a way to explore task composition as a solution
for multilingual translation, especially among low-
resource languages. In our experiments, we show
that using task composition – training task adapters
to learn pair-specific knowledge, then using a fu-
sion layer to learn cross-task information – im-
proves performance for less-represented language
pairs in a multilingual translation dataset. While
the model’s results for a number of translation di-
rections are far from state-of-the-art, the results
show the methodology’s promise for further explo-
ration.

For future work, we would like to conduct exper-
iments for larger models than is constrained by our
resources. We expect that using Base and Large
variants of MT5 would further improve perfor-
mance for all language pairs. In addition, it would
be beneficial to test the methodology while adding
in common “best practices” in translation such as
using backtranslated data and better data sampling.
Lastly, we would like to explore setups where
the pair-specific task adapters are transformable
to some extent instead of being fully frozen as a
remedy to the problem of higher-resourced pairs
performing worse in the task composition setup.
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SRPH-DAI-Base SRPH-DAI-Fusion
Pair BLEU spBLEU CHRF2++ BLEU spBLEU CHRF2++ Improved?

afr → eng 8.3 9.1 26.2 6.1 7.1 22 -
amh → eng 0.7 0.8 11.2 0.9 1 11.3
fuv → eng 1.3 1.8 10.6 1.4 2 11.1
hau → eng 2.7 3.7 14.8 2.5 3.6 14.6 -
ibo → eng 1.9 2.6 12.3 2.1 3 12.7
kam → eng 2.1 2.8 12.1 2.1 2.9 12.6
kin → eng 2.3 3.1 14.2 2.7 3.4 15
lug → eng 1.8 2.4 11.9 2 2.6 13
luo → eng 1.8 2.2 11 1.8 2.4 11.7
nso → eng 2.8 3.6 14.3 3.1 4.2 15.9
nya → eng 3 3.9 15.4 3.1 4.2 15.9
orm → eng 0.5 0.7 8.4 0.6 0.9 9.2
sna → eng 3 3.7 15.1 3 3.7 15.5 -
som → eng 2 2.5 12.4 2.3 3 14
ssw → eng 2.6 3.3 13.8 2.6 3.3 14
swh → eng 4.1 4.4 18.1 3.9 4.6 17.8 -
tsn → eng 2.3 2.9 13.3 2.6 3.3 14.1
tso → eng 2.1 2.8 12.3 2.4 3 13.1

umb → eng 1 1.5 10.7 0.9 1.5 11 -
xho → eng 3.3 4.1 16.4 3.2 4 16.3 -
yor → eng 1.5 2.1 10.9 1.8 2.5 12.2
zul → eng 2.9 3.5 15.4 2.9 3.5 15.4 -
eng → afr 4.1 4.3 20.6 2.6 3 17.9 -

eng → amh 0.1 0 2.6 0.3 0.2 0.5
eng → fuv 0.1 0.1 4 0.9 1.2 10
eng → hau 0.3 0.5 8.3 0.5 1 19.4
eng → ibo 0.2 0.1 4.4 0.6 0.8 8.7
eng → kam 0.1 0.1 2.5 0.6 0.8 7.9
eng → kin 0.3 0.4 5.4 0.4 0.4 8.1
eng → lug 0.2 0.3 3.8 1.1 0.9 8.7
eng → luo 0.5 0.6 5.7 1 1.4 10.1
eng → nso 0.3 0.4 5.5 0.4 0.9 8.3
eng → nya 1.1 0.8 10.6 1.4 1.4 11.5
eng → orm 0 0 2.2 0.1 0.1 4.7
eng → sna 1.1 0.8 11.8 1 0.8 9.3 -
eng → som 0.3 0.1 6.8 0.4 0.5 7.4
eng → ssw 0.7 0.8 9 1.1 0.8 9.2
eng → swh 1.3 1.4 14.9 1.1 1.6 13.2 -
eng → tsn 0.3 0.3 5.6 0.3 0.7 7.7
eng → tso 0.3 0.4 3.8 0.7 1.1 8.9

eng → umb 0.3 0.2 3.1 0.6 0.7 8.3
eng → xho 0.6 0.9 11.1 0.6 0.6 11 -
eng → yor 0.1 0 4.1 0.3 0.3 6.3
eng → zul 0.5 0.8 10.6 0.6 0.5 10.1 -
Average 1.52 1.84 10.39 1.61 2.03 11.72

Table 2: Results of both SRPH-DAI-Base and SRPH-DAI-Fusion on the hidden test set. We consider task composi-
tion as an improvement if it resulted in an increase in performance in at least two of the three automatic metrics.
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