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Preface

The number of scientific papers published per year has exploded in recent years, strengthening its value
as one of the main drivers for scientific progress. In astronomy alone, more than 41,000 new articles
are published every year and the vast majority are available either via an open-access model or via pre-
print services. Indexing the article’s full-text in search engines helps discover and retrieve vital scientific
information to continue building on the shoulders of giants, informing policy, and making evidence-
based decisions. Nevertheless, it is difficult to navigate in this ocean of data; finding articles rely heavily
on string matching searches and following citations/references. Still, new approaches are necessary
to differentiate the signal from the noise more easily (e.g., finding the key articles about the medical
condition we are interested in).

Simple string matching has substantial limitations, human language is ambiguous in nature, context
matters, and we frequently use the same word and acronyms to represent a multitude of different
meanings. Extracting structured and semantically relevant information from scientific publications (e.g.,
named-entity recognition, summarization, citation intention, linkage to knowledge graphs) allows better
selection and filter articles.

The Workshop on Information Extraction from Scientific Publications (WIESP) is a forum to foster
discussion and research using Natural Language Processing and Machine Learning. In this space, leading
professionals, organizations, early career researchers and students can cooperate towards building the
algorithms, models, and tools that will pave the way for machine comprehension of science in the future.

WIESP received 25 submissions, of which 16 were accepted (8 long papers, 4 short papers, and 4 shared
task system papers).

WIESP was held on November 20th 2022.
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Abstract

In this article, we describe the overview of our
shared task: Detecting Entities in the Astro-
physics Literature (DEAL). The DEAL shared
task was part of the Workshop on Informa-
tion Extraction from Scientific Publications
(WIESP) in AACL-IJCNLP 20221. Informa-
tion extraction from scientific publications is
critical in several downstream tasks such as
identification of critical entities, article sum-
marization, citation classification, etc. The
motivation of this shared task was to develop
a community-wide effort for entity extraction
from astrophysics literature. Automated entity
extraction would help to build knowledge bases,
high-quality meta-data for indexing and search,
and several other use-cases of interests. Thirty-
three teams registered for DEAL, twelve of
them participated in the system runs, and finally
four teams submitted their system descriptions.
We analyze their system and performance and
finally discuss the findings of DEAL.

1 Introduction

A good amount of astrophysics research makes
use of data coming from missions and facilities
such as ground observatories in remote locations
or space telescopes, as well as digital archives
that hold large amounts of observed and simulated
data. These missions and facilities are frequently
named after historical figures or use some inge-
nious acronym which, unfortunately, can be easily
confused when searching for them in the literature
via simple string matching. For instance, "Planck"
can refer to the person, the mission, the constant,
or several institutions. Automatically recognizing
entities such as missions or facilities would help
tackle this word sense disambiguation problem. In
our DEAL shared task, we instigate a community
initiative to extract "entities of interest" from astro-
physics publications.

1https://ui.adsabs.harvard.edu/WIESP/

2 Task

2.1 Definition
The shared task Detecting Entities in the Astro-
physics Literature (DEAL) (Grezes et al., 2022)
consists of Named Entity recognition (NER) on
samples of text extracted from astrophysics publi-
cations indexed by NASA ADS (Kurtz et al., 2000).
The labels were created by domain experts and
designed to identify entities of interest to the as-
trophysics community. They range from simple
to detect (ex: URLs) to highly unstructured (ex:
Formula), and from useful to researchers (ex: Tele-
scope) to more useful to archivists and administra-
tors (ex: Grant).

2.2 Evaluation
Submissions were scored using both the CoNLL-
2000 shared task seqeval F1-Score at the entity
level and scikit-learn’s Matthews correlation co-
efficient method at the token level. We also en-
couraged authors to propose their own evaluation
metrics. The task baseline was computed using the
astroBERT model (Grezes et al., 2021).

3 Dataset Description

3.1 Data Collection and Creation
The dataset 2 consists of text fragments obtained
from the astrophysical literature. The journals that
the text fragments were obtained from are the As-
trophysical Journal, Astronomy & Astrophysics,
and the Monthly Notices of the Royal Astronom-
ical Society. All text fragments are from recent
publications, between the years of 2015 and 2021.
Each text fragment originates from one of two parts
of an article. The first are fragments from the full-
text, consisting of all sections of the body of the
article, excluding the abstract and acknowledgment

2The data is openly available under the CC-BY-4.0 licence
huggingface.co/datasets/adsabs
/WIESP2022-NER
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sections. The second are fragments from the ac-
knowledgment section of the article.

Thirty-three different entities, comprised of gen-
eral and astrophysical entities, were manually la-
beled in each text fragment by a domain expert.
The entities that were labeled cover a number of
broad categories. One category contains common
NER entities, such as Person, Organization, and Lo-
cation. A second category contains entities related
to astrophysical facilities, such as Observatory and
Telescope. A third category contains entities re-
lated to research funding and proposals, such as
Grant or Proposal. A fourth category contains en-
tities relating to astronomical objects and regions.
Finally there is a category that contains various en-
tities that are found in the literature, such as URL’s
and citations.

3.2 Data Segmentation for Shared Task

The overall dataset was separated into four compo-
nents: the development dataset, the training dataset,
the testing dataset, and the validation dataset. The
development dataset is a small dataset of only
twenty text fragments used to aid in the develop-
ment of modeling systems. The training dataset
consists of 1741 text fragments, 887 of which are
from the full-text and 854 of which are from the ac-
knowledgments. Table 3 shows the the number of
labeled entities and origin of the text fragment for
these entities. The testing dataset consists of 2495
text fragments, 1201 of which are from the full-text
and 1294 of which are from the acknowledgments.
Table 3 shows the the number of labeled entities
and origin of the text fragment for these entities.
Finally, the validation dataset consists of 2505 text
fragments for the purpose of scoring the submitted
models.

4 Participant Systems

Ghosh et al. (2022) proposed an Astro-mT5
model for entity recognition from Astrophysics
publications. Primarily, they fine-tune a mul-
tilingual Text-To-Text Transfer Transformer
(T5) model on the downstream task followed by
sequence-labelling using Conditional Random
Field (CRF) to get the probability sequence over
the possible sequence labels.

Huang (2022) propose a system that uses
data augmentation as a low-cost method of
teacher-student training to transfer domain-specific

knowledge to a larger adapter-based model. The
author introduce a framework that uses data
augmentation from domain-specific pre-trained
models to transfer domain-specific knowledge to
larger general pre-trained models for the underly-
ing DEAL task. Specifically, they use the adapter
architecture of the DeBERTaV3-large model as
the backbone model, and CosmicRoBERTa (a
further pretrained version of SpaceRoBERTa,
a domain-specific model), as the augmentation
teacher model.

Dai and Karimi (2022) investigate two dif-
ferent NER methods, word-based tagging and
span-based classification for the DEAL task.
They show that their span-based method using
RoBERTa-large pre-trained models outperform the
widely used word-based sequence tagging method
(which uses BIO annotation schema).

Kaan Alkan et al. (2022) proposed a major-
ity voting strategy of a SciBERT-based ensemble
models for the DEAL task. Specifically, they
used outputs from 32 different SciBERT-based
classifiers for the majority voting strategy.

5 astroBERT Baseline

The shared task submissions were evaluated using
F-1 score and the Matthews correlation coefficient
(MCC) metrics. The F-1 score is a standard mea-
sure of model quality and was computed using seqe-
val (Nakayama, 2018), which uses micro-averaging
and ignores the ’O’ label. The MCC takes into
account every value in the confusion matrix and
is generally regarded as a balanced measure; it
was computed using scikit-learn (Pedregosa et al.,
2011). The F-1 score was computed at the entity
level and the MCC score was computed at the to-
ken level. Using two metrics help prevent with a
submission overfitting by optimizing for a single
score.

As a baseline, we finetuned three BERT variants
on the shared task. The original BERT from Google
(Devlin et al., 2018), SciBERT from AllenAI (Belt-
agy et al., 2019), and astroBERT from NASA/ADS
(Grezes et al., 2021). Each variant was finetuned
on the training dataset for 1000 epochs (~5 hours
each on dual V100 NVIDIA GPUs).

Table 2 provides the scores of the baselines on
the WIESP datasets. Additionally, a model making
random predictions based on label frequency was

2



model astroBERT Augmentation Word vs Span Ensemble Astro-mT5
(Huang, 2022) (Dai and Karimi, 2022) (Kaan Alkan et al., 2022) (Ghosh et al., 2022)

Metric
Split

val test val test val test val test val test

MCC 0.8104 0.7939 0.9063 0.8928 0.9138 0.8946 0.9139 0.8978 0.9129 0.8954
F-1 0.5779 0.5561 0.7988 0.7799 0.8307 0.7990 0.8262 0.7993 0.8364 0.8057

Precision 0.5508 0.5387 0.7854 0.7854 0.8249 0.8076 0.8145 0.8013 0.8296 0.8137
Recall 0.6077 0.5746 0.8126 0.7744 0.8366 0.7906 0.8382 0.7972 0.8434 0.7979

Accuracy 0.9389 0.9308 0.9692 0.9633 0.9718 0.9640 0.9718 0.9651 0.9714 0.9642

Table 1: Main DEAL@WIESP 2022 Shared Task Results. F-1, Precision and Recall are computed using micro-
averaging.

included for comparison. Additional standard met-
ric scores (overall precision, recall and accuracy)
are included as well. These additional metrics were
also computed for the shared task submissions and
provided to the participants but were not used to
rank them. For each metric, astroBERT outscored
BERT and SciBERT. A finer comparison between
astroBERT and SciBERT is provided in the ap-
pendix figure 1, as well as the confusion matrix be-
tween labels for astroBERT on the testing dataset
in appendix figure 2.

6 Results and Analysis

We report the results of the four teams that sub-
mitted their system papers in table 1 which were
also the best performers of the twelve shared task
participants on both F-1 score and MCC metrics.
All three systems significantly outperform the as-
troBERT baseline, and are built on top of pre-
existing publicly available language models.

7 Findings of DEAL

Each participants system significantly outper-
formed the baseline using different techniques. Be-
low are the findings each system that we believe
to be of importance to the community. From the
top participant system astro-mT5 by Ghosh et al.
(2022), we highlight the use of Conditional Ran-
dom Fields (CRF), which validate other studies
showing that CRFs help on NER tasks. Kaan Alkan
et al. (2022) found that using ensemble methods
to combine multiple models made for more robust
predictions. Dai and Karimi (2022) concluded that
span-based methods outperform word-based. They
also showed that non-astrophysics tokenizer may
suffer from over-segmentation when applied to as-
tronomy papers. Finally, Huang (2022) highlighted
the usefulness of data augmentation when applied
to a dataset the size of WIESP.

8 Conclusion and Future Directions

All the participant systems were built on top of
existing language models (i.e. general English,
not tailored to a domain), and significantly beat the
baseline scores. This begs the question: how would
these systems performs when built on top of a lan-
guage model and tokenizer tailored to astronomy?
Based on the competition results, the use of CRFs
seems especially promising. Furthermore, the wide
variety in the methods used by the successful par-
ticipant systems indicate that the task is far from
solved, and that many improvements can be made
to the astroBERT baseline.
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model Random BERT SciBERT astroBERT

Metric
Split

train val test train val test train val test train val test

MCC 0.1037 0.1083 0.1057 0.7542 0.7405 0.7229 0.8159 0.8019 0.7844 0.8296 0.8104 0.7939
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Accuracy 0.7146 0.7059 0.6876 0.9256 0.9188 0.9094 0.9430 0.9366 0.9280 0.9468 0.9389 0.9308

Table 2: Evaluation of the three BERT baselines. F-1, Precision and Recall are computed using micro-averaging.
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Training Testing Total

Label
Section

Ack Full Text Ack Full Text

Archive 628 30 1119 50 1827
CelestialObject 110 4521 113 5615 10359

CelestialObjectRegion 0 488 7 1344 1839
CelestialRegion 8 390 27 581 1006

Citation 1097 23665 1650 31923 58335
Collaboration 855 49 1214 45 2163

ComputingFacility 1188 20 1644 9 2861
Database 461 54 649 152 1316
Dataset 102 594 182 1005 1883

EntityOfFutureInterest 0 77 52 724 853
Event 213 8 340 7 568

Fellowship 1426 0 2096 0 3522
Formula 0 10521 4 17856 28381

Grant 7532 26 14610 24 22192
Identifier 68 75 156 145 444

Instrument 224 630 367 1064 2285
Location 1843 28 2932 55 4858
Mission 56 81 143 161 441
Model 64 2980 174 6110 9328

O 59549 412758 86353 553386 1112046
ObservationalTechniques 4 194 1 141 340

Observatory 1713 195 2469 378 4755
Organization 21562 97 31954 87 53700

Person 6081 41 9539 97 15758
Proposal 176 24 312 40 552
Software 679 810 1050 883 3422
Survey 707 751 969 1003 3430

Tag 0 120 0 148 268
Telescope 1044 1136 1699 1627 5506

TextGarbage 14 92 3 483 592
URL 262 44 342 110 758

Wavelength 61 4906 106 7210 12283
Total 107727 465405 162276 632463 1367871

Table 3: Counts of labels in training and test datasets according source origination. Note, that "O" refers to unlabeled
words. (note: ’Ack’ stands for Acknowledgment)
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Figure 1: Absolute improvement from astroBERT over SciBERT in precision and recall for each class over the
WIESP-TESTING data set, colored by predominance of that class body or acknowledgment sections.
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Figure 2: Confusion Matrix between actual labels and predicted labels from astroBERT on the WIESP-TEST tokens.
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Abstract

Utilizing citations for research artifacts (e.g.,
dataset, software) in scholarly papers con-
tributes to efficient expansion of research arti-
fact repositories and various applications e.g.,
the search, recommendation, and evaluation of
such artifacts. This study focuses on citations
using URLs (URL citations) and aims to iden-
tify and analyze research artifact citations auto-
matically. This paper addresses the classifica-
tion task for each URL citation to identify (1)
the role that the referenced resources play in
research activities, (2) the type of referenced
resources, and (3) the reason why the author
cited the resources. This paper proposes the
classification method using section titles and
footnote texts as new input features. We ex-
tracted URL citations from international con-
ference papers as experimental data. We per-
formed 5-fold cross-validation using the data
and computed the classification performance
of our method. The results demonstrate that
our method is effective in all tasks. An ad-
ditional experiment demonstrates that using
cited URLs as input features is also effective.

1 Introduction

Open science is an activity for promoting shar-
ing and utilizing research artifacts1. One strategy
to promote these activities is to provide reposito-
ries for research artifacts, and such repositories
have been developed recently, e.g., Zenodo2 and
Mendeley Data3. In addition, national infrastruc-
tures for sharing research artifacts have been de-

∗This work was conducted while the first author was a
master’s student at the Nagoya University in Japan.

1This paper denotes research artifacts as digital objects
collected, created, generated, or used in the course of re-
search activities such as tools (e.g., software, program) and
data (e.g., measurement data, test data). This definition is
similar to that provided by the Association for Computing
Machinery (Association for Computing Machinery, 2020).

2https://zenodo.org/
3https://data.mendeley.com/

veloped4.
To develop a research artifact repository, it is

required to register research artifacts and create
their metadata5. Automating these processes can
improve the efficiency of developing repositories
and increase the number of research artifacts reg-
istered in the repositories. To this end, research ar-
tifact citations in scholarly papers can be utilized
because scholarly papers citing research artifacts
generally describe the name or usage of the arti-
facts. In addition, information about research arti-
facts not in existing metadata may be described in
the scholarly papers (Kozawa et al., 2010; Singhal
et al., 2014). Unlike citations for literature (paper
citations), there are various ways to cite research
artifacts. Therefore, automating the identification
of the research artifact citations is not trivial task.

This study focuses on citations using URLs in
scholarly papers (URL citations) and aims to iden-
tify and analyze research artifact citations. Figure
1 shows examples of URL citations. URL cita-
tions can refer to not only scholarly papers but also
various resources, e.g., datasets, software, home-
pages, and articles. Therefore, an analysis of URL
citations leads to the identification of research arti-
fact citations. In addition, it can clarify the reality
of URL citations performed informally.

This paper proposes a method to classify URL
citations in scholarly papers according to the fol-
lowing viewpoints:

• The role of resources referenced by the URL
in research activities

• The type of resources referenced by the URL

4e.g., Australian Research Data Commons (https://
ardc.edu.au/), European Open Science Cloud (https:
//ec.europa.eu/), National Data Service (Towns et al.,
2016) (http://www.nationaldataservice.org),
NII Research Data Cloud (https://rcos.nii.ac.jp/
en/service/)

5Information about research artifacts (e.g., name, creator,
type, and usage)
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Figure 1: Examples of URL citations

• The reason why the authors cited the re-
sources

Zhao et al. (2019) proposed a classification
method using multi-task learning for a similar task.
That method inputs a word sequence surrounding
the citation (citation context) into BERT (Devlin
et al., 2019), and the representations obtained from
the BERT are fed to a classification layer for each
task. This paper proposes utilizing the section title
and the footnote text used by the URL citation as
new input features. Unlike the study by Zhao et al.
(2019), this study newly addresses URL citations
using reference sections.

2 Related Work

2.1 Citation Classification

Citations in scholarly papers have long been an-
alyzed (Garfield, 1964; Moravcsik and Muruge-
san, 1975; Spiegel-Rösing, 1977; Cullars, 1990).
Garfield (1964) discussed the reasons for cita-
tions and listed 15 motivations such as “Paying
homage to pioneers” and “Providing background
reading”. Moravcsik and Murugesan (1975) in-
vestigated paper citations in the physics field to
consider the appropriateness of using citations as
measures of scientific accomplishments. The dis-
cussions in these studies were based on manual
classification or the authors’ insights. With the
development of the computer science, some auto-
matic classification methods have been proposed
(Teufel et al., 2006; Abu-Jbara et al., 2013; Jur-
gens et al., 2018; Cohan et al., 2019). Teufel et al.
(2006) proposed a method to classify paper cita-
tions based on the authors’ reason for the citing
(citation function) such as statement of weakness
and comparison with other work. Jurgens et al.
(2018) proposed a method to classify paper cita-
tions into six categories, e.g., “BACKGROUND,”
which means a cited paper provides relevant infor-
mation, “USES,” which means a citing paper uses
data or methods in the cited paper.

Ding et al. (2014) summarized such approaches
for analyzing citations based on their content as
Content-based Citation Analysis (CCA). The CCA
has been applied to various tasks, e.g., summariz-
ing papers, recommending citations, and improv-
ing metrics for papers (Ding et al., 2014). In addi-
tion, some studies have demonstrated that consid-
ering the citation functions contributes to the anal-
ysis of academic trends (Abu-Jbara et al., 2013;
Jurgens et al., 2018), automatic generation of ci-
tation sentence (Ge et al., 2021), and prediction of
the number of citations (Jurgens et al., 2018).

2.2 Research Artifact Citations

Recently, research artifacts, e.g., datasets and soft-
ware, have been cited increasingly in scholarly
papers. Then, there is a growing movement to
establish formal rules for data and software cita-
tions, as FORCE11 has declared “Data Citation
Principles” (Data Citation Synthesis Group, 2014)
and “Software Citation Principles” (Smith et al.,
2016). However, widespread adoption of this prac-
tice among researcher is a long way off. Howison
and Bullard (2016) have demonstrated that there
were many informal citations in biology papers.
One strategy for automatic identification of the
informal citations is to identify research artifact
mentions in the body text (Krüger and Schindler,
2020). Some studies address the identification
of dataset names (Singhal and Srivastava, 2013;
Prasad et al., 2019; Ikeda et al., 2020) or soft-
ware names (Li and Yan, 2018; Schindler et al.,
2020; Du et al., 2021). Another approach finds
research artifact citations from explicit citations.
Ikoma and Matsubara (2020) attempted to identify
bibliographic information referring to linguistic re-
sources (e.g., corpus, lexicon) from reference sec-
tions. Since some research artifact citations uses
URL, identification of URLs referring to research
artifacts in scholarly papers has also been studied
(Tsunokake and Matsubara, 2021).
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Table 1: List of resource roles and resource types

Resource role Resource type description

Material Dataset corpus, image sets, etc.
Knowledge lexicon, knowledge graph, etc.
DataSource source data for the Dataset/Knowledge

Method Tool toolkit, software, system, etc.
Code codebase, library, API, etc.

Supplement Document documents on the Web (e.g., specifications, guidelines)
Paper scholarly papers
Media games, music, videos, etc.
Website other resources on the Web (e.g., services, homepages )

Mixed Mixed citations referring to multiple resources

2.3 Classification of URL Citations

With the increase in URL citations in scholarly
papers, some studies have attempted to utilize re-
sources referenced by URLs. For example, Ya-
mamoto and Takagi (2007) extracted URLs from
papers in the life science domain to develop a
system for searching online resources. Parmar
et al. (2020) extracted URLs from papers and con-
structed a portal of academic information (e.g.,
metadata about papers and authors) in the natural
language processing field. Nanba (2018) proposed
a method to extract a URL in scholarly papers and
the tag representing the URL based on their dis-
tributed representations obtained from scholarly
papers. There is a study addressing the classifica-
tion of URL citations. Zhao et al. (2019) applied
the CCA (Section 2.1) to URL citations in order
to construct search/recommendation systems and
knowledge graphs for scientific resources. They
proposed a classification method to determine the
roles of resources referenced by URLs in scholarly
papers and the authors’ purposes of URL citations
based on the citation contexts.

In this study, our goal is to generate metadata for
research data automatically. The resource roles de-
fined by Zhao et al. (2019) contain the “Material”
and “Method” roles, and we consider that cita-
tions corresponding to these labels are equivalent
to research artifact citations. Thus, research arti-
fact citations can be identified by solving this clas-
sification task. In addition, information on how
referenced resources can be used in research ac-
tivities can be obtained. URL citations are less
identifiable and more ambiguous than paper ci-
tations whose bibliographic information are reg-
ularly listed in the reference sections. Thus, it
would be meaningful for the academic community

to realize automatic analysis for URL citations.

3 Task Definition

This study addresses three classification tasks de-
termining the followings for each URL citation.

1. The role that resources play in the context of
research activities (resource role)

2. The type of resources (resource type)

3. The reason why resources were cited
(citation function)

Zhao et al. (2019) defined two levels of resource
roles consisting of general resource roles and fine-
grained resource roles. The fine-grained resource
roles can be regarded as the type of referenced
resources; thus, this study redefines them as re-
source types. Even if the same URL is cited in dis-
tinct papers, the resources that one author refers to
may differ from those referenced by other authors.
Therefore, in any of the classification tasks, it is
necessary to infer from the citation contexts. Our
target URL citations are as follows:

1. The URL is described in the body text

2. The URL is described in a footnote

3. The URL is described in the bibliographic
references, and the corresponding citation an-
chor is described in the body text

Figure 1 shows an example of each case. If the
URL is described in the footnote (case 2) or the
reference (case 3), the corresponding surrounding
sentences in the body text are the citation con-
texts. Note that Zhao et al. (2019) only targeted
the case 1 and 2. However, when citing online
resources, the resources can be cited as a refer-
ence, and the corresponding URL is described in

10



Table 2: List of citation functions

Citation
function Description

Use Used in the citing paper’s research.

Produce
First produced or released by the
citing paper’s research.

Compare Compared with other resources.

Extend

Used in the citing paper’s research
but are improved, upgraded, or ch-
anged to work for other problems
in the course of the research.

Introduce
The resources or the related infor-
mation (e.g., background, applic-
ations) are introduced.

Other
The URL citation does not belong
to the above 5 categories.

the bibliographic information. It is sometimes rec-
ommended that online resources are cited as ref-
erences; thus, classifying URL citations via refer-
ence sections is required.

Table 1 presents the labels for the resource
role/type. Since each resource type determines the
role it can play, there is a correspondence between
the resource roles and resource types. While the la-
bels are based on the setting of Zhao et al. (2019),
this study applies some alterations with a view
to generating metadata for research artifacts. If
the extracted information is used for metadata, the
resource types are required to be somewhat fine-
grained. However, the only resource type corre-
sponding to “Material” (one of the resource roles)
is “Data” in the study by Zhao et al. (2019). There-
fore, this paper defines “Dataset,” “Knowledge,”
and “DataSource” as more detailed types. In ad-
dition, since this paper considers resource types
as types of cited digital objects, labels referring to
something conceptual rather than actual digital ob-
jects (e.g., “algorithm”) were dropped from the re-
source types. In some URL citations, multiple re-
sources may be referenced simultaneously. Since
the URL citation cannot be classified into a spe-
cific label in this case, “Mixed” is defined as one
of the resource roles/types. The “Mixed” label was
defined in some studies addressing citation classi-
fications to consider cases where multiple labels
are mixed (Cullars, 1990; Ge et al., 2021). Table
2 presents the labels for citation functions. This is
the same setting as in Zhao et al. (2019).

Figure 2: Architecture of our method

4 Method

Zhao et al. (2019) proposed a framework called
SciResCLF for a similar classification task. Since
there is a certain correlation between labels for
each task, they employed multi-task learning in
SciResCLF. The SciResCLF employs BERT (De-
vlin et al., 2019) as the encoder for citation con-
texts. In the SciResCLF, the citation contexts
are taken into the BERT, and the obtained em-
beddings for the “[CLS]” token are taken into a
classification layer for each task. In fine-tuning,
the model parameters are optimized based on the
weighted sum of the cross-entropy of each task.
The SciResCLF only uses citation contexts as the
input features. Based on SciResCLF, this paper
proposes a classification method using section ti-
tles as global context information, and footnote
texts used for URL citations.

Jurgens et al. (2018) demonstrated that there
was a certain relationship between where paper
citations appear in the narrative structure of a cit-
ing paper and their citation functions. In our task
as well, information about the narrative structure
may be useful. For example, scholarly papers may
tend to cite used software, code, or datasets by pro-
viding the corresponding URL in the sections de-
scribing experiments. On the other hand, URLs
described in introductory sections may tend to re-
fer to supplements related to the background (e.g.,
news, web-service). Thus, our method uses the
section titles where URL citations appear as input
features. In addition, some URL citations do not
explain the referenced resources in the body text
but explain the resources in the footnotes which
the corresponding URL are described in. There-
fore, the footnote texts used for URL citations are
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Figure 3: Ratio of each label in the created dataset

Figure 4: Examples of the created datset

expected to be an effective feature in this classifi-
cation task.

Figure 2 shows the architecture of our method.
In our method, the input for each URL citation is
created by concatenating the section title where
the citation appears, the citation context, and the
footnote sentence containing the cited URL with
“[SEP]” 6. This model is trained in a multi-task
learning framework. Thus, the model is optimized
based on cross-entropy losses about predicting the
resource roles, resource types, and citation func-
tions.

5 Experiment

5.1 Dataset

There was no dataset for the classification of URL
citations with the corresponding section titles,
footnotes, and this paper’s classification labels.
Therefore, we created an experimental dataset. We
collected the scholarly papers as the source of

6If a URL citation does not use a footnote, or a footnote
used by the URL citation only contains the URL, the second
“[SEP]” and the footnote sentence are not concatenated.

URL citations from the ACL Anthology7. The
papers were collected from the proceedings of
ACL/EMNLP/NAACL 2000–2021. We collected
a total of 15,761 papers. The PDF of each paper
was converted to text by PDFNLT-1.08(Abekawa
and Aizawa, 2016). The URLs9, footnote numbers
in the body text that refer to the footnotes, and the
citation anchors referring to bibliographic infor-
mation in the reference section were detected for
each paper. The citation anchors were detected by
regular expressions10 based on those described by
Gosangi et al. (2021). They are compatible with
both the Harvard and Vancouver referencing style.
Using the detected results, paragraphs where the
URL citations appeared were extracted as the ci-
tation contexts of the citations. We evaluated the
performance of identifying the location of URL ci-
tations using 65 randomly selected papers. As a
result, precision was 0.995 (199/200), and recall
was 0.948 (199/210).

The extracted URL citations were annotated by
an expert in the natural language processing field.
Before the annotation, a part of URL removed me-
chanically, such as URL citations whose citation
context had only a few words and the URLs at-
tached as an auxiliary to the bibliographic infor-
mation in the paper citation. The annotator was in-
structed to refer to the label definitions and exam-
ples of annotated URL citations before the work
and could refer to them anytime during the work.

The created dataset contained 2,037 URL cita-
tions from 652 papers. Figure 3 shows the distribu-
tion of labels. Although the distribution of labels
is skewed, there is a certain balance in the ratio

7https://aclanthology.org/
8https://github.com/KMCS-NII/PDFNLT-1.

0
9Strings beginning with either “http://,” “https://,” or

“ftp://” were identified as URLs.
10Details are described in the appendix.
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Table 3: Evaluation results for each task

Method Resource role Resource type Citation function
ACC. P. R. F1 ACC. P. R. F1 ACC. P. R. F1

Baseline 0.653 0.682 0.598 0.621 0.430 0.450 0.348 0.357 0.663 0.563 0.429 0.437
Our method †0.694 0.711 0.653 †0.670 0.459 0.452 †0.385 0.391 †0.703 0.571 0.438 0.448

Table 4: Cases where baseline failed to predict but our method correctly predicts

Inputs of our method True Prediction
Baseline Our method

Introduction [SEP] Recently, a new benchmark MRC dataset called Natural Que-
stions [CITE] (NQ) has presented a substantially greater challenge for the existing
MRC models. [SEP] NQ provides some visual examples of the data [CITE] .

Supple-
ment

Material
Supple-

ment

Data [SEP] WikiSum consist of Wikipedia articles each of which are associated
with a set of reference documents. [CITE] [SEP] We take the processed Wikip-
edia articles from [CITE] released on April 25th 2018.

Data-
Source

Know-
ledge

Data-
Source

Conclusion [SEP] We have described a dependency-based system [CITE] for se-
mantic role labeling of English in the PropBank framework. [SEP] Our system is
freely available for download at [CITE] .

Produce Use Produce

of corresponding resource types for each resource
role. For example, “Dataset,” “Knowledge,” and
“DataSource” defined by this paper correspond to
“Material,” and there is not much difference in
their ratios. In the dataset, the rate of URL cita-
tions using footnotes is 0.725, the rate of URL ci-
tations using the reference sections is 0.170, and
the rate of URL citations in the body texts is 0.105.
Figure 4 shows the examples of dataset11. Another
researcher in the natural language processing field
annotated 100 citations in the dataset as with the
original annotator. As a result, the Cohen’s kappa
of the resource roles, resource types and citation
functions were 0.644, 0.456, and 0.615, respec-
tively.

5.2 Experimental Setup
A 5-fold cross-validation was performed using the
created dataset. Randomly 20% of the dataset was
used as the development set, and the rest was used
as the training or test set by dividing it into 5 parts.
Thus, the training set contained 1,304 samples, the
development set contained 407 samples, and the
test set contained 326 samples for each split.

The SciResCLF proposed by Zhao et al. (2019)
was employed as the baseline, and both the base-
line and our method were evaluated by the 5-fold
cross-validation. Both methods used SciBERT
(Beltagy et al., 2019) as the encoder for the input
features. In our method, the section title used as
the input was the top-level heading, and the foot-

11In the same way as Zhao et al. (2019), we replaced the
citation locations and cited URLs with “[CITE].”

note text was the 1 sentence containing the URL
in the footnote used by the URL citation. The
loss function was the sum of the cross-entropy
losses for each task. The optimization function
was Adam (Kingma and Ba, 2014)12.

To assess the classification performance, both
methods were evaluated by accuracy and the
macro-averaged F1. Accuracy tends to be more
dominated by the results of frequent classes than
the F1 averaging the result of each class.

5.3 Experimental Results
Table 3 presents the average of evaluation result
for each split13. Our method outperformed the
baseline in all metrics on all tasks. Table 4
presents cases where the baseline failed to predict
but our method predicted correctly. Note that the
section titles before the first [SEP]s and the foot-
notes after the second [SEP]s were not taken into
the baseline. In the first row, the footnote indicates
that the referenced resource is not a dataset but an
example visualization as a supplemental resource.
In the second row, the footnote indicates that the
referenced resource is not a created dataset but the
source used for creation of the dataset. These foot-
notes contributed to the prediction of our method.
In the third row, using section titles and footnotes,
our model may catch a tendency that authors are

12Details are described in the appendix.
13Daggers (†) mean that there was a significant difference

between the baseline and our method by the paired t-test. The
significance level was 0.05. ACC., P., and R. are accuracy,
macro-averaged precision, and macro-averaged recall, respec-
tively.
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Table 5: Results of ablation study and additional experiment

Method Resource role Resource type Citation function
ACC. F1 ACC. F1 ACC. F1

Baseline 0.653 0.621 0.430 0.357 0.663 0.437
Our method 0.694 0.670 0.459 0.391 0.703 0.448
- w/o section title (−) 0.674 (−) 0.653 (+) 0.481 (+) 0.409 (−) 0.701 (+) 0.451
- w/o footnote † (−) 0.663 (−) 0.626 (−) 0.423 † (−) 0.348 (−) 0.688 (+) 0.457
- w/ URL (−) 0.679 (−) 0.631 (+) 0.501 † (+) 0.437 (+) 0.715 (+) 0.454

Table 6: F1-score for each label

Resource
role

F1-score Resource
type

F1-score Citation
function

F1-score
Baseline Our method Baseline Our method Baseline Our method

Material 0.659 0.680 Dataset 0.466 0.448 Use 0.715 0.751
Method 0.688 0.728 Knowledge 0.217 0.243 Produce 0.615 0.729
Supplement 0.605 0.686 DataSource 0.513 0.514 Compare 0.230 0.172
Mixed 0.532 0.585 Tool 0.494 0.533 Extend 0.029 0.000

Code 0.410 0.476 Introduce 0.671 0.667
Document 0.179 0.204 Other 0.000 0.000
Paper 0.493 0.606
Media 0.000 0.000
Website 0.343 0.348
Mixed 0.459 0.536

likely to add a URL referring to their own created
resources at the end of the paper.

5.4 Disscussion

Table 5 presents the result of an ablation study
when one of the proposed input features was ex-
cluded14. As to resource roles, excluding section
titles or footnotes from our method degraded the
classification performance, which indicates that
both features are effective. Similarly, excluding
footnotes from our method degraded the perfor-
mance in resource types, and thus using footnotes
is effective. In contrast, excluding section titles
from our method improved the performance in the
classification of resource types. In addition, “w/o
footnote”, which added only the section title to the
input features of baseline, was inferior to the base-
line. These results demonstrate that using the sec-
tion titles has a negative effect on the classification
of resource types. As to citation functions, exclud-
ing one feature from our method improved the per-
formance of the F1. However, the both F1s of “w/o

14The results of the ablation study that were lower and
higher than that of our method are marked with “(−)” and
“(+),” respectively. Daggers (†) mean that there was a signif-
icant difference compared to our method by the paired t-test.
The significance level was 0.05.

section title” and “ w/o footnote” were higher than
the baseline. Independently, each of these features
was effective in the classification of citation func-
tions; however, combining them or the ways by
which they were combined resulted in a negative
effect.

Table 6 presents the F1 for each label15 for the
baseline and our method. In the classification of re-
source roles and types, our method outperformed
the baseline for all labels except for “Dataset.”
There were some cases where our method misclas-
sified citations whose resource type was “Dataset”
as “DataSource” because the footnote included
the text “from [CITE]” (e.g., “The corpus can
be downloaded from [CITE]”). While the ratio of
“DataSource” in all predicted labels by our method
was 0.089, that for cases where the input text in-
cluded “from [CITE]” is 0.276. However, it was
effective in the second row of Table 4. In this
case, the resource type is “DataSource” because
the URL refers to not the WikiSum dataset but its
source articles. Ideally, the ability to identify the
target of the citation and infer the relationship be-
tween it and the surrounding words indicating re-
search artifacts is required.

15It is the average for splits in the cross-validation.
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Figure 5: Evaluation results for each URL citation’s
type based on how the URL are described

As described in Section 3, the URL citations are
divided into three types based on how the URLs
are described. Figure 5 shows the evaluation re-
sults for each type of URL citation. The block of
each bin shows the results of baseline, our method,
our method without section titles, and our method
without footnotes, from left to right. An overview
of Figure 5 shows that the valid features depend on
the combination of task and how to cite (i.e., the
type of the URL citation). Our method basically
outperformed the baseline when classifying URL
citations in the footnotes and the bibliographic ref-
erences; however, it tended to exhibit inferior per-
formance compared to the baseline when classify-
ing URL citations in the body. As to the classi-
fication of citation functions for URL citations in
the body texts, our method was inferior to “w/o
section title.” In addition, “w/o footnote,” which
adds section titles to the baseline, was also infe-
rior to the baseline. These results indicate that sec-
tion titles have a negative effect on the classifica-
tion of citation functions for URL citations in the
body texts. However, there is a different trend for
URL citations in footnotes and bibliographic refer-
ences, which indicates that section titles are effec-

Figure 6: Architecture of classification model using the
cited URL strings

tive in the classification of citation functions for
both types of URL citations. Different approaches
depending on tasks or types of URL citations are
required.

URL citations whose URLs are described in the
references do not use footnotes. However, in the
classification of such URL citations, “w/o section
title” feeding cited footnotes into inputs tends to
outperform the baseline using only citation con-
texts. Interestingly, training footnote texts is also
useful for some citations that do not use footnotes.

5.5 Improving Classification Performance for
Resource Types

While our method was effective for the classifica-
tion of resource types, the F1-score was lower than
that of other tasks. Thus, we extended our method
by utilizing the substrings of URLs as input fea-
ture for classification. For some cases, the type of
resources can be inferred from the domain or di-
rectory name constituting the URL. For example,
it can be inferred from “data” and “tweets,” that
the URL “http://trec.nist.gov/data/
tweets/” points to data related to tweets. Each
substring constituting the URLs can contain infor-
mation about resources on the website. In this ap-
proach, for each URL citation, the string of the
cited URL is tokenized and encoded by SciBERT.
The hidden layer corresponding to the “[CLS]” to-
ken is employed as the embedding for the entire
substring sequence. Figure 6 shows the classifica-
tion model used in this approach. The model con-
catenates the embedding of the cited URL string
and the embedding of context information in the
citing paper, and the obtained vector is used as the
input feature for the linear layer of each task.
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Table 5 presents the experimental results16 The
method utilizing the cited URLs (the row of “w/
URL”) improved the classification performance of
resource types. In addition, the classification of
citation functions was also improved.

6 Limitation

In this paper, experimental data was constructed
from one domain. Since paper styles, including
structure of sections, how to use footnotes, and
which type of URL citation the authors prefer may
differ according to the domain, constructing exper-
imental data from other domains and verifying our
method on the data remain as the future works.

This paper defined the “Mixed” label for multi-
ple resource citations. If citations are classified to
the “Mixed” label, the resource roles and types can
not be identified. Therefore, in practice, additional
classification is required. Otherwise, it can be con-
sidered to employ the multi-label classification as
with Zhang et al. (2022)’s study which applied the
multi-label formulation to the classification of ci-
tation function. In that case, it is necessary to dis-
cuss how citations using ambiguous terms as ref-
erenced resources should be regarded (e.g., “All
code and resources are available at [CITE].”).

This paper addressed the automatic classifica-
tion of URL citation to generate metadata of re-
search artifacts. It contributes to the efficient ex-
pansion of research artifact repository, enrichment
of the existing repositories, and automatic analysis
of research artifact citations. However, resources
cited by URLs tend to become unreachable within
some years (Zeng et al., 2019). To promote uti-
lization of research artifacts cited by URLs, es-
tablishing systems and platforms to preserve the
artifacts and maintaining them are also required.
As for the maintaining, the automatic predicting
the longevity of research artifacts cited by URLs
(Acuna et al., 2022) might be useful.

7 Conclusion

This paper addressed the classification task of
identifying the resource role, resource type, and
citation function, for each URL citation in schol-
arly papers. This paper proposed the classifica-
tion method using not only citation contexts but
also section titles and footnote texts as input fea-

16If there was a significant difference compared to our
method by the paired t-test, daggers (†) are assigned. The
significance level was 0.05.

tures. Our method was evaluated experimentally
and the results demonstrated the effectiveness of
our method on all tasks. However, the effective
features differ depending on the task and how the
URL is cited. When classifying resource types, an
approach that obtains and uses an embedding for
the URL string used for the citation was effective.
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A Supplement for Creating Dataset

Citation anchors in scholarly papers were detected
by regular expressions based on those used by
Gosangi et al. (2021). The following code shows
the regular expressions for the Harvard referenc-
ing style, which was implemented by Python.

AUTHOR_NAME = r"([A-Z][\w\-’]*?)"
ETAL = "(et ?als?\.?)"
AUTHOR_SECTION = AUTHOR_NAME +

r"(?: (?:(?:and|&) (?:de )?" +
AUTHOR_NAME + ’|’ + ETAL + ’))?’

YEAR = r"((?:18|19|20)[0-9]{2}[a-z]?)"
PAGE = r"(?:, (?:pages|pp?\.?) \d+(?:-\d+)?)"
YP = f"{YEAR}{PAGE}?"

LEFT_BRACKET = r"[\(\[]"
RIGHT_BRACKET = r"[\)\]]"

CITET = f"{AUTHOR_SECTION} {LEFT_BRACKET}{YP}
{RIGHT_BRACKET}"

CITEP_SINGLE = f"{LEFT_BRACKET}{AUTHOR_SECTION}
, {YP}{RIGHT_BRACKET}"

CITEP_MULTI_BEGIN = f"{LEFT_BRACKET}{AUTHOR_SECTION}
, {YP};"

CITEP_MULTI_INSIDE = f"(?<=; ){AUTHOR_SECTION}
, {YP};"

CITEP_MULTI_END = f"(?<=; ){AUTHOR_SECTION}
, {YP}{RIGHT_BRACKET}"

CITATION_ANCHOR = f"(?:{CITET}|{CITEP_SINGLE}|
{CITEP_MULTI_BEGIN}|
{CITEP_MULTI_INSIDE}|
{CITEP_MULTI_END})"

In addition, the following code is for the Van-
couver referencing style.
NUMBER = r"(?:([1-9]\d*)(?:(-[1-9]\d*))?)"
CITATION = f"\\[{NUMBER}(?:, ?{NUMBER})*?\\]"

The annotation environment was implemented
by Doccano (Nakayama et al., 2018).

B Experimental Setup

In the experiment, the following procedure was
performed in each split of the 5-fold cross-
validation. For each candidate of hyperparameters,
the classification model was trained for up to 50
epochs. Note that training was terminated if the
minimum loss for the development set could not
be updated within 10 epochs. Then, for each clas-
sification task, the trained model with the best clas-
sification performance17 for the development set
was applied to the test set to evaluate the method.
In this evaluation, accuracy (i.e, micro-averaged
F1) and macro-averaged F1 were computed from
the classification results obtained on the test set in
each split.

The following hyperparameters were verified in
the experiment.

• Batch size: 16, 32, 64

• Learning rate: 1.0e-4, 5.0e-5, 1.0e-5, 5.0e-6
17macro-averaged F1-score

• Scope of citation contexts18: 1 sentence, 3
sentences (citing sentence and 1 sentence be-
fore and after the citing sentence), 5 sen-
tences (citing sentence and 2 sentences be-
fore and after the citing sentence)

• Dropout rates: 0.0, 0.3, 0.6

• Maximum sequence length of inputs: 256

The weight of each task in the loss was set equally
at 1.0.

In addition, scikit-learn19 (Pedregosa et al.,
2011), PyTorch20 (Paszke et al., 2019), and Hug-
ging Face’s transformers library21 (Wolf et al.,
2020) were used to implement the experiment.
Sentence segmentation was performed by Scis-
paCy22 (Neumann et al., 2019).

18A paragraph is one of the semantic units. Therefore, in
this study, the scope of the citation context was limited to
the paragraph containing the URL citation even when the em-
ployed scope included sentences before and after the citing
sentence.

19https://scikit-learn.org/stable/
20https://pytorch.org/docs/1.8.1/
21https://github.com/huggingface/

transformer
22https://github.com/allenai/scispacy
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Abstract

Tracking state-of-the-art (SOTA) results in ma-
chine learning studies is challenging due to
high publication volume. Existing methods for
creating leaderboards in scientific documents
require significant human supervision or rely
on scarcely available LATEX source files. We
propose Table Entity LINker (TELIN), a frame-
work which extracts (task, model, dataset, met-
ric) quadruples from collections of scientific
publications in PDF format. TELIN identifies
scientific named entities, constructs a knowl-
edge base, and leverages human feedback to
iteratively refine automatic extractions. TELIN
identifies and prioritizes uncertain and impact-
ful entities for human review to create a cas-
cade effect for leaderboard completion. We
show that TELIN is competitive with the SOTA
but requires much less human annotation.

1 Introduction

Advances in the field of Machine Learning (ML)
are typically evidenced by producing better em-
pirical results on benchmark datasets. With over
334k AI papers published in 2021 (Zhang et al.,
2022), automated approaches to extract and cate-
gorize empirical results would help practitioners
track progress in the field.

Leaderboard extraction is challenging because
there is no universal lexicon, taxonomy, or structure
for reporting empirical results in ML publications.
New benchmark datasets and tasks are frequently
introduced, and established datasets are updated
or repurposed for new tasks or metrics. For exam-
ple, a publication with a table containing numerical
results on “ImageNet” could refer to any particu-
lar LSVRC challenge year (2010-2017), task (e.g.,
classification, object detection, localization), num-
ber of classes, dataset version, evaluation metric,
etc. These necessary details could be specified

∗The work was done while the author interned at Adobe
Research.

in table header cells, table captions, paragraphs
referencing the table, or elsewhere in the paper.
Additionally, ML publications are often only avail-
able in PDF format which infrequently explicitly
encodes the underlying document paragraph and
table structures.

Prior work on scientific leaderboard construction
suffer from the following weaknesses:
(1) Unimodal E.g., tables (Singh et al., 2019), ci-
tations (Viswanathan et al., 2021), and knowledge
bases (Chen et al., 2020). Leaderboard construc-
tion can benefit from processing publications holis-
tically rather than as a single data mode.
(2) Requires LATEX source files (Singh et al., 2019;
Kardas et al., 2020). While extracting document
structure is easier from LATEX files than PDF, many
publications are only publicly available in PDF.
(3) Closed Taxonomy (Kardas et al., 2020; Hou
et al., 2019). Assuming that the names of all
datasets, tasks and metrics are known apriori is
unrealistic given the rapid pace of the field.
(4) High Manual Effort. State-of-the-art meth-
ods (Kardas et al., 2020; Hou et al., 2019) use
supervised models that require large and manually-
curated training datasets.
(5) Crowd Sourced. E.g., paperswithcode.
com generally has precise leaderboard entries, but
lack systematic examination of the literature to
ensure leaderboard recall.

This work proposes Table Entity LINker
(TELIN) as a multi-modal framework that extracts
leaderboards from PDF collections of ML pub-
lications. TELIN produces (Task, Dataset, Met-
ric, Score) quadruples associated with each paper,
which can be grouped and sorted to produce a
leaderboard for each (Task, Dataset, Metric) triplet.
First, TELIN extracts textual content and tables
from all input PDFs and utilizes an off-the-shelf
scientific Named Entity Recognition (NER) model,
SpERT (Eberts and Ulges, 2020), to identify sci-
entific Named Entities (NE) in the text. Then,
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TELIN matches NEs to table heading cell text to
infer the meaning of table cell values and extract
quadruples.As additional publications are parsed
and more NEs are recognized, TELIN iteratively
propagates these labels to previously seen tables
and text. TELIN also allows human feedback to
label new NEs in table header text. To facilitate
this, TELIN intelligently selects tables for human
labeling based on their potential for label propaga-
tion.

Our evaluation on the PWCLeaderboards
dataset (Kardas et al., 2020) shows that TELIN
uses significantly less human supervision on PDF
inputs to achieve comparable accuracy with the
state-of-the-art leaderboard extraction system, Ax-
cell (Kardas et al., 2020), which requires LATEX
source file inputs. While their accuracy is similar,
we conclude that TELIN is likely a more practi-
cal tool for leaderboard extraction since it requires
less human annotation and can be applied to any
publication avaiable in PDF.

2 Methodology

Figure 1 illustrates the pipeline of TELIN, whose
objective is to extract empirical result quadruples
(Task, Dataset, Metric, Score) from a PDF col-
lection of ML publications. We designed TELIN
based on the following observations: (1) Many
scores are presented in tables, but not all tables
display scores. (2) In most tables, column header
text (and separately row text) contain NEs of only a
single NE type - e.g., row headers only have model
names while col headers contain only metrics. (3)
NER on individual table cell texts is difficult since
the cell text is often only a few words and the NER
model is trained on full sentences. However, table
cell NEs are lexically the same as or similar to NEs
in the main document text, so NEs recognized by a
pretrained model in the main text can help identify
NEs within cell text. We now explain each step of
the pipeline in detail.

(a) Document Decomposition TELIN first con-
verts an unstructured PDF into a structured doc-
ument using a YOLO-based object detection
model (Redmon and Farhadi, 2018) to identify
paragraphs, section headings, captions, and table
regions. The rows, columns, heading blocks, and
cells are then extracted from each table region us-
ing the SPLERGE model (?) The PDF text can then
be associated with the identified regions to form a
structured document. While there are errors in this

extraction process, we found that the majority of
leaderboard errors are not a result of the extraction
process.

(b) Scientific NER on Text NER models typi-
cally require heavy supervision, so TELIN applies
a pre-trained SpERT (Span-based Entity and Rela-
tion Transformer) model (Eberts and Ulges, 2020)
to the entire main text of each PDF to identify NEs.
SpERT is a BERT-based model for NER that is
pre-trained on the SCiERC dataset (Luan et al.,
2018) of 500 abstracts from 12 AI conference and
workshop proceedings. SpERT classifies scientific
entities into 5 categories: Task, Method, Evalua-
tion Metric, Material (dataset), and General, which
align well with our quadruple schema of (Task,
Metric, Dataset, Score).

Since SpERT is trained on full sentences, it per-
forms poorly on short non-sentence text such as
table header cell text. Therefore, TELIN takes the
NEs from the main text and compares them with
table cell text and propagates NE labels for closely
matching text.

(c) Strings Matching After identifying NEs
from the main text, we perform string matching be-
tween these NEs and the text of each non-numeric
table cell. One challenge is that acronyms are often
used to shorten method, dataset, and metric names.
Another challenge is that exact string matches are
not guaranteed. To overcome these challenges,
TELIN uses a combination of fuzzy search and
short text representations to measure string similar-
ity:

char_s(a, b) = max(t_dist(a, b), dist(a, b))
(1)

score =
char_s+ sim(A,B)

2
(2)

where a, b are the two compared strings, A,B
are their respective Sentence-Bert (Reimers and
Gurevych, 2019) feature vectors, sim() is cosine
similarity, dist() is the length-normalized Lev-
enshtein string distance, and t_dist() computes
the difference between the tokenized strings. 1

The implementation of computing character level
similarity ratio is able to draw comparison be-
tween acronyms. The cosine similarity between

1We use the WuzzyFuzzy https://github.
com/seatgeek/thefuzz library. Specifi-
cally, we use fuzz.ratio() for dist() and
fuzz.token_set_ratio for t_dist(). Higher number
means more similar between strings.
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Figure 1: The TELIN framework consumes a collection of Machine Learning publications in PDF and extracts
reported results as (Task, Dataset, Metric, Value) quadruples.

the sentence representations indicates how close
the strings are semantically.

(d) Table Cells NER SpERT predictions can be
inaccurate, and the same or similar strings can be
predicted as different entity types. To disambiguate
the entity type of a string, we soft-label the string
based on majority vote of all predictions for that
string across the entire collection text. These labels
are then assigned to matching table cell strings.
Next, we assign labels to rows and columns of
table header cells based on our observation that
the type of all cells within a header row/column is
often the same. We do this based on cell majority
vote and propagate this label to all unlabeled cells.
For example, a header row/col with five cells would
be labeled when three cells have the same entity
type. Then, the 2 remaining unlabled cells would
be labeled with this majority type. Finally, the
leaderboards are identified when at least three out
of the four entities (Task, Dataset, Metric, Model)
appear in a table and caption.

(e) Constructing Collection Knowledge We
construct a knowledge base from the identified
leaderboards and use this as shared knowledge to
discover more entities in the documents. The whole
collection goes through a few iterations of updates
before the human review.

(f) Human Review TELIN integrates a guided
human review mechanism to significantly improve
the overall entity prediction and quadruple extrac-
tion. We compute an influence score Ev for each
entity and populate the table with the highest in-
fluence score for human annotations. The design

philosophy is to prioritize uncertain entities and
impactful entities: (1) Uncertain entities have high
entropy distributions for predicted entity type dis-
tributions from SpERT. (2) Impactful entities are
those that can cause a cascade effect for leader-
board completion. A cascade occurs if labeling
a string with an entity type and propagating that
label to all occurrences of that string throughout
the collection would cause a majority labeling of a
table header row/col and therefore trigger the prop-
agation of the label to other strings in that table
header row/col. Such label propagation may then
continue to trigger further cascading of the label.

Note that common entities, such as accuracy (as
metric) and COCO (as dataset), do not automati-
cally belong to this category. The proposed design
of this task is inspired by identifying influential
nodes in a network (Guo et al., 2020; Zhang et al.,
2013; Molaei et al., 2020).

First, we compute the uncertainty of a cell by
calculate the entropy of the predicted entity type
distribution:

Hv =
∑

l

−pl log pl (3)

where pl is the probability of entity type l for string
v. Higher values of Hv indicates higher uncertainty
of the entity type.

Then, we compute the uncertainty of the headers.

Hh =
∑

cl∈Γh

−pcl log pcl (4)

where pcl is the probability of the label l for header
h. This step aims to find headers that almost meet
the threshold for header labeling.

22



Next, we construct a heterogeneous network for
the purpose of computing the potential of a cell to
cause a cascade. Each confirmed entity is a node
and edges are formed when two entities appear
in the same table header row/col. The “spreading
ability” (Guo et al., 2020) of a cell is computed as:

Huv = −puv log puv (5)

where puv = du∑
l∈Γvdl

, Γv are the immediate neigh-

bors of node v, and du is the degree of node u. Huv

indicates the spreading ability from node u to node
v.

Finally, the influence score of an entity Ev can
be acquired by:

Ev = Hv + nuv

∑

u∈Γv

Huv +
∑

u∈Γh

Hh (6)

TELIN selects tables including the entities with
the highest influence scores for human review. The
users are able to confirm or correct the types of the
entities on a row/column basis. The user can also
label any useful entities in the caption of the table.

(g) Iterative Update The entity type labels from
human feedback are treated as ground truth and are
used to finetune the SpERT model. The finetuned
SpERT model is then used to provide updated NE
predictions. This process continues for several iter-
ations until convergence.

3 Experiments and Results

We evaluate TELIN’s end-to-end performance on
Task, Dataset, Metric, Score (TDMS) quadruple
extraction on the PWCLeaderboards (Kardas et al.,
2020) task and compare it to the state-of-the-art Ax-
Cell model (Kardas et al., 2020). We select AxCell
as our main competitor due to its superiority against
other existing work (Hou et al., 2019). PWCLeader-
boards include 731 papers and 3,445 leaderboards,
which include the unique TDMS quadruples in ev-
ery paper. We follow Kardas et al. for evaluation
metrics. We also investigate the performance im-
provement from the human feedback phase.

End-to-end Performance Table 1 reports the
extraction results on PWCLeaderboards dataset.
TELIN’s performance is comparable to the state-
of-the-art results from AxCell with fewer annota-
tions. AxCell includes significant supervision in
their pipeline: a table type classification model

Table 1: Extraction results on PWCLeaderboards
dataset for entire quadruple (TDMS), triple with no
score (TDM), and individual entities. The performance
of our model is comparable to the state-of-the-art from
AxCell with less annotations.

Entity
Micro Macro

P R F1 P R F1

Axcell (1400 tables)

TDMS 37.3 23.2 28.7 24.0 21.8 21.1
TDM 67.8 47.8 56.1 47.9 46.4 43.5
Task 70.6 57.3 63.3 60.7 62.6 59.7

Dataset 70.2 48.4 57.3 53.5 52.7 49.9
Metric 68.8 58.5 63.3 58.4 60.4 56.5

Ours (75 tables)

TDMS 38.3 20.8 26.3 26.6 19.2 21.3
TDM 68.2 45.3 56.5 49.7 43.1 42.5
Task 70.3 53.7 59.2 60.5 57.3 57.1

Dataset 70.9 52.8 59.3 54.7 55.2 53.9
Metric 63.2 57.9 60.2 56.3 55.1 55.4

and a table segmentation model. Both models are
trained with 1400 carefully labeled tables. The
labeling of these tables require expertise and is
time-consuming. The guided human mechanism in
TELIN substantially reduces the requirements of
human supervision to achieve similar performance
as the state-of-the-art.

Analysis of Human Review We further investi-
gate the effect of the feedback by the number of
the annotations. Figure 2 shows the impact of the
guided human review system. We see improve-
ment in accuracy over the first 50 annotations with
convergence after 50 annotations. We observe that
the system struggles to identify the 60+ datasets in
Atari Games and all the presentation variations of
the Accuracy metric without human feedback. The
tables with these entities are always among the first
for human review.

Figure 2: Effect of active learning on the performance.
Solid lines are the performance of TELIN on quadruple
(Red) and triple (Blue) extraction. Dashed lines are the
performance of AxCell as a reference. Human feedback
provides performance boost in the first 50 annotations.
The performance converges after 50 annotations.

23



4 Discussion

While TELIN presents promising performance, it
still does not exceed the state-of-the-art accuracy
in extracting leaderboards from machine learn-
ing research papers. Our method relies on the
propagation of discoveries from one paper to an-
other. The relatively small data size (731 papers)
of PWCLeaderboard dataset limits the capability
of TELIN. We will investigate whether introducing
more data helps the performance of TELIN. More-
over, unlike existing studies relying on taxonomy
of leaderboards known in advance, TELIN oper-
ates without any assumptions of taxonomy. We are
interested in analyzing the capacity of TELIN for
novel taxonomy discovery.

Extracting leaderboards from the scientific pa-
pers on the web is an example of integrating artifi-
cial intelligence in conceptual modeling (Embley
et al., 1998; Olivé, 2007). Conceptual modeling is
a vessel for humans to transform the noise in the na-
ture to structured or semi-structured presentations.
While automatic machine extraction has been uti-
lized to collect and organize data from a wide va-
riety of sources in conceptual modeling (Embley
et al., 1998; Bork, 2022; Nalchigar and Yu, 2018),
the role of deep learning and artificial intelligence
remains understudied in this field. The design of
TELIN is a demonstration of involving artificial
intelligence to facilitate conceptual modeling. We
hope this effort will invite future studies in this
domain.
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Abstract
We present a publicly available corpus with de-
tailed annotations describing the core elements
of clinical trials: Participants, Intervention,
Control, and Outcomes. The corpus consists
of 1011 abstracts of breast cancer randomized
controlled trials extracted from the PubMed
database. The corpus improves previous cor-
pora by providing detailed annotations for out-
comes to identify numeric texts that report the
number of participants that experience specific
outcomes. The corpus will be helpful for the
development of systems for automatic extrac-
tion of data from randomized controlled trial
literature to support evidence-based medicine.
Additionally, we demonstrate the feasibility of
the corpus by using two strong baselines for
named entity recognition task. Most of the enti-
ties achieve F1 scores greater than 0.80 demon-
strating the quality of the dataset.

1 Introduction

Evidence-based medicine (EBM) is an approach
where doctors and health care professionals use
the best available research evidence to guide them
in making clinical decision about the care of pa-
tients (Sackett, 1997). Meta-analyses are one of
the essential tools in EBM because they provide
the highest form of medical evidence (Cook et al.,
1997). A meta-analysis is a statistical technique
that combines results of different research stud-
ies to determine the effectiveness of a treatment.
Despite their importance, meta-analyses are labor-
intensive and time-consuming as they involve man-
ually reading hundreds of unstructured research ar-
ticles and extracting data from them (Jonnalagadda
et al., 2015). The number of research articles is
increasing rapidly making it difficult/impossible
for researchers to keep up. For instance, a recent
study showed that more than 50,000 research arti-
cles related to COVID-19 have been published and
more articles are being published every day (Wang
and Lo, 2021).

Machine learning and natural language process-
ing (NLP) techniques to automate data extraction
from biomedical literature and speed up dissemi-
nation of biomedical evidence have been widely
studied. Although automatic (or semi-automatic)
approaches for extracting data from research arti-
cles have been proposed, they are still not ready for
practical use (Marshall and Wallace, 2019). This
is because data extraction requires high accuracy,
which may be difficult for automated systems to
achieve. The scarcity of publicly available corpora,
which are usually expensive to create, is one barrier
to the development of high-performance systems.

This paper presents a publicly available1 corpus
annotated with the core components of clinical tri-
als, i.e., Participants, Intervention, Control, and
Outcomes (PICO). We annotate in detail numeric
texts especially those that identify the number of
participants having certain outcomes. The anno-
tation of the numeric texts is important for sta-
tistical analysis to determine the overall effect of
an intervention. Currently, the corpus consists of
1011 research abstracts extracted from the PubMed
database. The abstracts are of randomized con-
trolled trials (RCTs) related to breast cancer, which
is one of the leading causes of deaths in the world2.
We focus on RCTs as they are considered the gold
standard for clinical research methods.

2 Related work

Although there are some corpora with PICO ele-
ments annotated in abstracts and full-text articles,
most of the corpora are not publicly available. Kir-
itchenko et al. (2010) developed a dataset contain-
ing 182 full-text articles. They annotated 21 entities
including treatment dosage, frequency, funding or-
ganization, grant number, and so on. Summerscales
et al. (2011) created a corpus consisting of 263
abstracts and annotated the treatment groups, out-

1https://github.com/sociocom/PICO-Corpus
2https://www.who.int/news-room/factsheets/detail/cancer
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comes, group sizes, and outcome numbers. Their
work is close to our study as they attempted to
identify outcome numbers and group sizes for the
purpose of calculating summary statistics. The an-
notations are however less extensive and the corpus
is not publicly available.

Since constructing large corpora is expensive,
Wallace et al. (2016) employed a distant supervi-
sion approach to create a large corpora consisting
of full-text articles. They also manually annotated
133 articles for evaluation. Although distant super-
vision is a cheap way to construct large datasets,
the dataset’s quality might be low.

Most of these previous datasets are not publicly
available. Nye et al. (2018) developed the EBM-
NLP corpus, which is one of the largest publicly
available corpora. Their annotation was done by
crowd-sourcing through Amazon Mechanical Turk
and a small part (200 abstracts) was done by med-
ical professionals. The corpus consists of about
5000 abstracts of RCTs mostly related to cardiovas-
cular diseases, cancer, and autism. They however
do not annotate numeric texts that identify the num-
ber of participants who had certain outcomes.

3 Corpus annotation

3.1 Dataset collection
The corpus in this study consists of abstracts ex-
tracted from PubMed3. PubMed is a free search
engine that provides access to the MEDLINE
database4 that indexes abstracts for biomedical and
life sciences articles. We extracted research ab-
stracts related to breast cancer whose study type
is RCT, and are not meta-analysis or systematic-
reviews. This was achieved by using keywords
such as “breast cancer,” “randomized controlled,”
“randomised controlled,” “meta-analysis,” and “sys-
tematic review.”

3.2 Annotation process
The research abstracts were manually annotated.
The annotator was asked to read and label text
spans that identify the PICO elements, i.e., Par-
ticipants (P), Interventions (I), Control (C), and
Outcomes (O). For each PICO category, we devel-
oped sub-categories to capture detailed information
within each category. The PICO label hierarchy is
shown in Figure 2. In total we annotated 26 sub-
categories (entities) which are described below.

3https://pubmed.ncbi.nlm.nih.gov/
4https://www.nlm.nih.gov/medline/medline_overview.html

• Participants: we annotate text snippets that
describe the characteristics of the participants
in a study. We annotate eight entities that in-
clude the total number of participants in the
study, the number of participants in the inter-
vention group, the number of participants in
the control group, condition, eligibility, age,
ethnicity, and location. Although breast can-
cer is the main condition, some studies focus
on treating conditions associated with breast
cancer such as hair loss, bone loss, depression,
and pain.

• Intervention and Control: we annotate text
snippets that mention the specific intervention

Tag Number of
Sub-category count abstracts
Participants (P)
total-participants 1094 847
intervention-participants 887 674
control-participants 784 647
age 231 210
eligibility 925 864
ethinicity 101 83
condition 327 321
location 186 168
Intervention &
Control (IC)
intervention 1067 1011
control 979 949
Outcomes (O)
outcome 5053 978
outcome-measure 1081 413
iv-bin-abs 556 288
cv-bin-abs 465 258
iv-bin-percent 1376 561
cv-bin-percent 1148 520
iv-cont-mean 366 154
cv-cont-mean 327 154
iv-cont-median 270 140
cv-cont-median 247 133
iv-cont-sd 129 69
cv-cont-sd 124 67
iv-cont-q1 4 3
cv-cont-q1 4 3
iv-cont-q3 4 3
cv-cont-q3 4 3

Table 1: Corpus statistics: The frequency of each entity
(sub-category) and the number of abstracts in which
each entity is found.
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Figure 1: An abstract with PICO elements annotated

and control used in the study. There are only
two entities in this category.

• Outcomes: we annotate the outcome mea-
sures (primary and secondary end-points) and
outcomes that were measured. We also aim to
capture detailed information for the outcomes
especially the numeric texts that identify the
number of participants who experienced a par-
ticular outcome. In meta-analysis statistical
analysis, these numeric texts are important for
calculating summary statistics to ascertain the
effectiveness of the intervention.

In the annotation, we mainly consider two types
of outcomes, i.e, binary outcomes and continuous
outcomes. Binary outcomes take two values such
as the treatment was successful or failed, or sur-
vival (alive or dead). Continuous outcomes are not
as straightforward as binary outcomes. Continuous
outcomes such as pain are measured on a numerical
scale (for instance, pain scores on a scale of 0 and
10). Continuous outcomes are usually measured at
different time points (such as at baseline and at fol-
lowup) and the results reported as mean, standard
deviation, median, or quartiles.

We created labels to capture the various types
of numeric texts in the intervention and control
groups. We use “iv,” “cv,” “bin,” and “cont” to
represent intervention group, control group, binary
outcome, and continuous outcome, respectively. In
addition, binary outcomes numeric texts tend to
be absolute values or percentage values. We use
“abs” and “percent” to label absolute and percent-
age values respectively. Further, for the continuous
outcomes, we also designed labels to capture the

different types of numeric texts. We use “mean,”
“sd,” “median,” “q1,” and “q3” to represent mean,
standard deviation, median, first quartile, and third
quartile respectively. In total, we have 16 entities
for the outcomes. Figure 1 shows an example of an
annotated abstract.

Binary outcome example:

• <iv-bin-abs>Four</iv-bin-abs> patients
in the intervention group and <cv-bin-
abs>two</cv-bin-abs> in the control
group were <outcome>lost to follow-
up</outcome>.

Continuous outcome example:

• <outcome>Depression scores</outcome> at
follow-up were significantly lower in the exer-
cise group (M = <iv-cont-mean>4.78</iv-
cont-mean>, SD = <iv-cont-sd>3.56</iv-
cont-sd> ) compared to the control group
(M= <cv-cont-mean>6.91</cv-cont-mean>,
SD =<cv-cont-sd>5.86</cv-cont-sd> ).

3.3 Corpus statistics
The corpus contains 1011 manually annotated ab-
stracts. The annotation was performed using BRAT,
an open-source web annotation tool (Stenetorp
et al., 2012). The abstracts were annotated by two
annotators. One of the annotators was hired from
an annotation company and has extensive experi-
ence annotating medical documents and the second
annotator is one of the authors. The first anno-
tator annotated all the abstracts while the second
annotator annotated 45% of the abstracts. The inter-
annotator agreement was calculated based on Co-
hen Kappa and achieved a score of 0.72. Annotator
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disagreements were mainly found in the outcome
and eligibility entities where the annotators had
challenges in determining the start and end spans.
How to minimize these disagreements during the
annotation process is an important future work. An-
notator disagreements for the other entities were
minimal since they could be identified by one or
two words and these disagreements are easy to re-
solve.

Currently the corpus has 17,739 entities and the
frequencies of the annotated entities are shown in
Table 1. The most frequent entity type is outcome,
which comprises about 28% of all the annotations.
Continuous outcomes quartile values (q1 and q3)
are the least frequent entity types. Table 1 also
shows the number of abstracts containing each of
the entities. The entities found in most abstracts
are intervention, outcome, and control which are in
100%, 97%, and 94% of the abstracts, respectively.
Most abstracts do not contain continuous outcomes
values (mean, median, sd, q1, q3) and ethnicity.

4 Baseline experiments

We evaluate the corpus using named entity recog-
nition (NER) task. This task is important for auto-
matic information extraction from RCT research
articles. Since deep learning language models have
gained a lot of attention in NLP tasks, we adopt
Bidirectional Encoder Representations from Trans-
formers (BERT)-based models. BERT-based mod-
els have achieved state-of-the-art results in NLP
tasks including NER (Devlin et al., 2018). These
models are usually pre-trained on huge amounts
of unlabeled data and can be fine-tuned to specific
tasks. They use the encoder structure of the trans-
former which is an attention mechanism that learns
contextual relations between words (or subwords).

We chose two pre-trained transformer-based
baseline models, BioBERT (Lee et al., 2020) and
LongFormer (Beltagy et al., 2020). BioBERT is
initialized with general domain corpora and further
trained on biomedical domain texts (PubMed ab-
stracts and PubMed Central articles). LongFormer
is pre-trained on general domain corpora including
books, wikipedia, news, stories.

The 1011 abstracts were randomly split into 80%
training data and 20% test data. As baseline ex-
periments, we followed the standard BERT prac-
tice of formulating NER task as a sequential tag-
ging task. Since neural networks provide different
results when initialized with different seeds, we

Bio- Long-
Sub-category BERT Former
total-participants 0.94 0.95
intervention-participants 0.85 0.85
control-participants 0.88 0.88
age 0.80 0.87
eligibility 0.74 0.88
ethinicity 0.88 0.79
condition 0.80 0.79
location 0.76 0.87
intervention 0.84 0.84
control 0.76 0.81
outcome 0.81 0.85
outcome-measure 0.84 0.90
iv-bin-abs 0.80 0.82
cv-bin-abs 0.82 0.82
iv-bin-percent 0.87 0.86
cv-bin-percent 0.88 0.85
iv-cont-mean 0.81 0.84
cv-cont-mean 0.86 0.86
iv-cont-median 0.75 0.69
cv-cont-median 0.79 0.73
iv-cont-sd 0.83 0.89
cv-cont-sd 0.82 0.89
iv-cont-q1 0 0
cv-cont-q1 0 0
iv-cont-q3 0 0
cv-cont-q3 0 0

Table 2: NER models results in terms of F1 score

trained the models with five different seeds and
averaged the results.

The performance of the models was evaluated
using F1 score. Table 2 shows the results of the
NER models. The models achieved satisfactory
performance and several sub-categories achieved
high F1 scores. Total-participants achieved the
highest F1 score of 0.95. Most of the sub-categories
achieved F1 scores greater than 0.80. The models
could not predict for sub-categories with the lowest
frequency (F1 score=0).

We performed an error analysis and identified
misclassified entities and boundary detection as
the common types of errors. In the case of mis-
classified entities errors, the models identified the
correct boundaries but assigned the wrong entities.
For example, iv-bin-abs was misclassified as cv-
bin-abs and vice-versa. Boundary detection errors
were common in the outcome and eligibility enti-
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ties, where the models identified longer or shorter
entities than those marked in the gold set.

5 Conclusion

We presented a publicly available corpus with de-
tailed annotation of the PICO elements. The cor-
pus contains 1011 abstracts related to breast can-
cer RCTs. The corpus provides detailed annota-
tion for outcomes especially numeric texts to iden-
tify the number of participants having certain out-
comes. This is important for statistical analysis
to determine the effectiveness of a treatment. The
corpus will facilitate NLP research on automatic
information extraction from biomedical literature
and contribute towards evidence-based medicine.
Since the corpus consists of breast cancer related
abstracts, one of the future works is to extend it to
include other diseases. The corpus is publicly avail-
able at https://github.com/sociocom/
PICO-Corpus.
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Abstract

We investigate the problem of identifying the
major hypothesis that is addressed in a scien-
tific paper. To this end, we present a dataset
from the domain of invasion biology that or-
ganizes a set of 954 papers into a network of
fine-grained domain-specific categories of hy-
potheses. We carry out experiments on classify-
ing abstracts according to these categories and
present a pilot study on annotating hypothesis
statements within the text. We find that hypoth-
esis statements in our dataset are complex, var-
ied and more or less explicit, and, importantly,
spread over the whole abstract. Experiments
with BERT-based classifiers show that these
models are able to classify complex hypothe-
sis statements to some extent, without being
trained on sentence-level text span annotations.

1 Introduction

In many disciplines of science, researchers need to
develop specific hypotheses that make it possible
to confront general scientific claims with empirical
evidence (Lloyd, 1987). For instance, studies in
invasion biology, a sub-discipline of biodiversity
research, investigate why certain species can es-
tablish in new ecosystems and typically formulate
hypotheses specific to the species or the forms of
invasion success they address (see Figure 2). It is
essential for a researcher to be aware of the exist-
ing hypotheses in these fields, but, to date, struc-
tured information on claims and hypotheses inves-
tigated in a field is often hardly available. In some
cases, though, valuable resources and overviews
are compiled manually by domain experts as, for
instance, Jeschke and Heger (2018)’s hierarchical
network of hypotheses synthesizing research in the
field of invasion biology. In this paper, we pro-
pose to leverage this resource as a new dataset for

domain-specific information extraction from scien-
tific publications and explore the potential of state-
of-the-art off-the-shelf NLP models for automatic
hypothesis identification.

Extracting domain-specific information on hy-
potheses from scientific publications is still a con-
siderable challenge for state-of-the-art approaches
in NLP and IE. Research on IE for the biodiver-
sity domain provides many annotated datasets and
models with domain-specific labeling schemes for
named entities and relations – e.g., species, loca-
tions and habitats (Nguyen et al., 2019) – but does
not account for more complex entities like claims,
research questions or hypotheses. Work on argu-
mentation mining for scientific texts (Fisas et al.,
2016; Lauscher et al., 2018) annotate argumenta-
tive spans of texts, including claims, but do not
link them to domain-specific knowledge. However,
the lack of domain-specific categories is a major
gap in existing search repositories for biodiversity
researchers, as shown by (Löffler et al., 2021).

In this work, we perform initial studies on the
automatic extraction of information on hypotheses
investigated in scientific publications. We compile
a corpus of scientific abstracts, based on metadata
in Jeschke and Heger (2018)’s hypothesis network
for invasion biology. We release the resulting INAS
dataset that links 954 scientific papers (with ab-
stracts and titles) to nodes in a hypothesis network.
Similar to datasets in relation extraction (Mintz
et al., 2009), the INAS dataset is weakly labeled,
as the hypotheses are linked to the abstract as a
whole, and not annotated in terms of text spans. We
present a pilot analysis on hypothesis statements
within the texts and find that they are complex, var-
ied and spread over the whole abstract, challenging
existing labeling schemes in IE. We carry out ex-
periments on labeling abstracts with BERT-based
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classifiers and show that these models are able to
detect fine-grained hypothesis categories to some
extent, without being trained on text span annota-
tions. This shows that domain-specific resources on
hypotheses provide a valuable starting point for this
complex IE task, and points to some challenges for
future research on automatic hypothesis extraction.

2 Related Work

Our work combines ideas from named entity recog-
nition (NER) and relation extraction (RE), which
typically targets domain-specific tagging schemes,
with ideas of domain-general mining of claims,
which aims at discovering complex statements of
claims in text. We will briefly discuss related work
from these areas in the following.

2.1 Entity and Relation Extraction in
Scientific Texts

Extracting information on scientific studies from
publications is a well-known problem in IE (Augen-
stein et al., 2017; Gábor et al., 2018). Within this
area, biomedical text is one of the most widely and
deeply explored domains, cf. (Demner-Fushman
et al., 2022), with many datasets and tools that
tag, e.g., diseases (Doğan et al., 2014), drugs and
chemicals (Li et al., 2016), or drug-protein rela-
tions (Miranda et al., 2021) (among many others).
In the domain of biodiversity, NER datasets fo-
cus on tagging species (Gerner et al., 2010; Pafilis
et al., 2013), specific concepts like bacteria and
their locations (Deléger et al., 2016), or combina-
tions of species, habitats, locations (Nguyen et al.,
2019). Löffler et al. (2020) present the QEMP
benchmark, which further extends the types of en-
tities and links them to existing ontologies in biov-
diversity research. The INAS dataset follows a
similar direction, as our hypothesis tags are taken
from an existing network of hypotheses.

2.2 Mining Claims in Scientific Texts

In argument mining, different annotation schemes
for aspects of scientific arguments have been pro-
posed, such as argumentative zones (Teufel et al.,
1999, 2009), argumentation schemes (Green, 2015),
or argumentative components (Lauscher et al.,
2018). Due to the importance of claims in argumen-
tative structures, several studies focus specifically
on the detection of claims in a variety of domains
(Aharoni et al., 2014; Lippi and Torroni, 2015;
Daxenberger et al., 2017; Habernal and Gurevych,

2017), using binary schemes that mark individual
sentences or spans of texts as being claims or not.
Blake (2010) present a more detailed annotation
study for claims in scientific texts, distinguishing
between different types of claim formulations (e.g.,
explicit claim vs. implicit claim) and roles that
different parts of the claim fulfill. Accuosto et al.
(2021) annotate scientific abstracts from computa-
tional linguistics and biomedicine with a variety of
tags and relations related to argumentative struc-
ture, and Fergadis et al. (2021) annotate claims and
topics in scientific abstracts on sustainable develop-
ment, with both studies performing experiments on
automatic prediction of these annotations. None of
theses datasets, though, links annotations of claims
to domain-specific concepts.

3 The INAS Dataset

We now introduce the INAS dataset1, which is
based on an existing resource that organizes papers
from the field of invasion biology into a network of
hypotheses. In the following, we will describe this
network (Section 3.1), provide an overview of the
dataset we created from this resource (Section 3.2,
3.3), present a qualitative and preliminary quantita-
tive analysis of hypothesis statements (Section 3.4)
and discuss its intended use (Section 3.5).

3.1 Hi-Knowledge Network of Hypotheses

Invasion biology is concerned with researching the
human-induced spread of species outside of their
native ranges, caused by factors like global trans-
port and trade. For example, plants are imported as
exotic garden plants, and small insects, plant seeds,
and even reptiles and mammals are regularly trans-
ported as hitchhikers with traded goods around the
globe, sometimes leading to an establishment of
viable populations in the wild and spread to new
locations within the new range (Elton, 1958; Davis,
2009). One aim of invasion biology is to explain
why it is possible for these species to establish and
often even flourish in areas in which they did not
evolve. Over time, many major hypotheses have
been developed as potential explanations for this
phenomenon. For example, the "enemy release
hypothesis" states that the absence of a species’
natural enemies in the exotic range can be a cause
of invasion success. Other major hypotheses are
more concerned with the conditions under which

1https://github.com/
inas-argumentation/inas-abstracts
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an introduced, non-native species will be able to
establish amongst the native species as, e.g., the
"biotic resistance hypothesis" stating that an ecosys-
tem with high biodiversity is more resistant against
non-native species than an ecosystem with lower
biodiversity.

Many empirical studies in invasion biology aim
to test such major hypotheses. In order to do this,
researchers have to decide on a specific study sys-
tem (i.e., focal organisms and habitat) and a re-
search method (e.g., observational survey, lab ex-
periment), and they often also have to choose which
specific aspect of the hypothesis they address. In
the case of the enemy release hypothesis, one group
of empirical studies tests whether invasive species
actually are released from their enemies and a sec-
ond group studies whether invaders show enhanced
performance if they are released from enemies.
Each of these groups can be further subdivided
into studies focusing on specialist enemies (i.e.,
species only preying on specific other species) or
generalist enemies (i.e., enemies without specific
preferences, e.g., slugs). All these decisions pro-
gressively instantiate more general concepts from
the main hypothesis until a concrete, testable sub-
hypothesis is reached.

Jeschke and Heger (2018) identified these spe-
cific instantiations of the main hypotheses as well
as the underlying decision process and organized
them in a hierarchical hypothesis network based
on the Hierarchy-of-Hypotheses (HoH) approach
(Jeschke et al., 2012; Heger et al., 2013, 2021).
Therefore, each node in the hierarchy represents a
hypothesis at a certain level of abstraction while
links to nodes on higher/lower levels connect each
hypothesis to its more abstract or more specific
versions, respectively. The underlying decision
process of replacing abstract components of hy-
potheses by more specific instantiations thereby
induces a tree structure, meaning that each node
can have several child nodes but at most one parent
node.

In (Jeschke and Heger, 2018), ten out of the
12 main hypotheses were depicted as such hierar-
chies of hypotheses, and a large literature survey
was conducted to quantify the level of empirical
support for each of them. In this process, a list
of papers for each main hypothesis was collected,
with each paper being annotated with the necessary
information to correctly place it in the hierarchy,
so that a group of empirical studies that address the

Figure 1: The sub-hypothesis structure for the enemy
release hypothesis, one of the ten main hypotheses.

specific hypothesis can be linked to each node in
the hierarchy. A visualization of the hierarchical
hypothesis network, as well as the underlying data,
are available2 (see Figure 1).

3.2 Dataset for Hypothesis Detection

The basis for the INAS dataset is a collection of
Excel files (one for each main hypothesis) contain-
ing paper titles from the field of invasion biology
in combination with further information about each
paper. Since this data is not easily accessible for
automatic processing, we extracted the paper titles
as well as the information needed to determine the
placement of the papers in the hierarchical hypoth-
esis network from the Excel files and subsequently
used a web scraper to obtain the corresponding ab-
stracts. This was possible for 954 samples, leading
to the final dataset of 954 paper titles, abstracts,
and hierarchical hypothesis labels. The dataset also
includes written statements of all hypotheses from
the hypothesis network to provide the option of in-
troducing general information about the hypotheses
in different prediction settings.

Since the basis for this dataset are scientific pa-
per titles and abstracts it is not possible to publish
all texts from this dataset due to copyright. Instead,
we release the paper titles with corresponding DOIs
and links to the websites the papers are published
on to allow for easy automated scraping of the nec-
essary data.

Figure 2 shows two example abstracts, one of
which is linked to the enemy release hypothesis
(Figure 2a) while the second abstract is linked to
two hypotheses in the network (Figure 2b).

2https://hi-knowledge.org/
invasion-biology/
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Title: Influence of insects and fungal pathogens on individual and population parameters of Cirsium arvense in its native and
introduced ranges

Abstract: Introduced weeds are hypothesized to be invasive in their exotic ranges due to release from natural enemies . Cir-
sium arvense (Californian, Canada, or creeping thistle) is a weed of Eurasian origin that was inadvertently introduced to
New Zealand (NZ), where it is presently one of the worst invasive weeds. We tested the ’ enemy release hypothesis ’ ( ERH )
by establishing natural enemy exclusion plots in both the native (Europe) and introduced (NZ) ranges of C. arvense. We
followed the development and fate of individually labelled shoots and recorded recruitment of new shoots into the population
over two years. Natural enemy exclusion had minimal impact on shoot height and relative growth rate in either range. How-
ever, natural enemies did have a significant effect on shoot population growth and development in the native range , supporting
the ERH . In year one, exclusion of insect herbivores increased mean population growth by 2.1-3.6 shoots m(-2), and in
year two exclusion of pathogens increased mean population growth by 2.7-4.1 shoots m(-2). Exclusion of insect herbivores
in the native range also increased the probability of shoots developing from the budding to the reproductive growth stage by
4.0x in the first year, and 13.4x in the second year; but exclusion of pathogens had no effect on shoot development in ei-
ther year. In accordance with the ERH , exclusion of insect herbivores and pathogens did not benefit shoot development or
population growth in the introduced range . In either range, we found no evidence for an additive benefit of dual exclusion
of insects and pathogens , and in no case was there an interaction between insect and pathogen exclusion. This study further
demonstrates the value of conducting manipulative experiments in the native and introduced ranges of an invasive plant to
elucidate invasion mechanisms.

(a) Paper title and abstract from (Cripps et al., 2011), linked to the enemy release hypothesis.

Title: Herbivory by an introduced Asian weevil negatively affects population growth of an invasive Brazilian shrub in Florida

Abstract: The enemy release hypothesis ( ERH ) is often cited to explain why some plants successfully invade natural
communities while others do not. This hypothesis maintains that plant populations are regulated by coevolved enemies in their
native range but are relieved of this pressure where their enemies have not been co-introduced . Some studies have shown that
invasive plants sustain lower levels of herbivore damage when compared to native species , but how damage affects fitness and
population dynamics remains unclear. We used a system of co-occurring native and invasive Eugenia congeners in south Florida
(USA) to experimentally test the ERH , addressing deficiencies in our understanding of the role of natural enemies in plant
invasion at the population level. Insecticide was used to experimentally exclude insect herbivores from invasive Eugenia uniflora
and its native co-occurring congeners in the field for two years. Herbivore damage, plant growth, survival, and population
growth rates for the three species were then compared for control and insecticide-treated plants. Our results contradict the
ERH , indicating that E. uniflora sustains more herbivore damage than its native congeners and that this damage negatively
impacts stem height, survival, and population growth. In addition, most damage to E. uniflora, a native of Brazil, is carried out
by Myllocerus undatus, a recently introduced weevil from Sri Lanka, and M. undatus attacks a significantly greater proportion
of E. uniflora leaves than those of its native congeners . This interaction is particularly interesting because M. undatus and E.
uniflora share no coevolutionary history, having arisen on two separate continents and come into contact on a third. Our study is
the first to document negative population-level effects for an invasive plant as a result of the introduction of a novel herbivore .
Such inhibitory interactions are likely to become more prevalent as suites of previously noninteracting species continue to
accumulate and new communities assemble worldwide.

(b) Paper title and abstract from (Bohl Stricker and Stiling, 2012), linked to the invasional meltdown hypothesis (underlined
annotations) and the enemy release hypothesis (non-underlined annotations).

Figure 2: Two abstracts from the INAS dataset, annotated with explicit (green) and implicit (blue) hypothesis
statements, and hypothesis names (red). The first example is classified correctly by all trained classifiers (Section
4). In the second example, the enemy release hypothesis is always classified correctly again, while the invasional
meltdown hypothesis is only recognized by one out of ten trained classifiers (BioBERT base).

3.3 Dataset Analysis

Scientific abstracts are usually short and concise,
which is also the case in the INAS dataset: On
average, an abstract from the dataset consists of
10.26 sentences, with only 3.1% of samples sur-
passing the usual limit of 510 tokens for BERT
models if the concatenation of paper title and ab-
stract are tokenized using a standard BERT tok-
enizer. The class distribution among the ten main
hypotheses is uneven, mirroring the true distribu-
tion of papers addressing the different hypotheses

in the literature: The most dominant class contains
about 21.8% of the samples (Invasional meltdown
hypothesis) while about 1.8% of samples are as-
signed the most infrequent class (Island suscepti-
bility hypothesis). This uneven distribution is even
more pronounced among the sub-hypotheses, with
some being assigned only a single sample while
the most frequent hypothesis on the lowest level
is addressed by 6.8% of papers. Importantly, ev-
ery paper can address multiple (sub-)hypotheses
(5.5% of samples address two main hypotheses)
and can also be only assigned to hypotheses that
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are not on the lowest level in the hierarchy if non
of the hypotheses on the next lower level matches
the research conducted in it.

3.4 Hypothesis Statements
Since the hypothesis labels for the INAS dataset
were created based on the full-text papers, it is
unclear whether the titles and abstracts contain
enough information to correctly identify every hy-
pothesis that the corresponding papers address. Ad-
ditionally, different ways of conveying hypothe-
sis information can be more challenging to recog-
nize, with domain knowledge being required reg-
ularly. Both these factors potentially affect the
performance of automatic hypothesis identification
models (compare Section 4), so that gaining in-
sight into the typical ways that hypothesis infor-
mation is stated in these abstracts is a mandatory
basis for many analyses. To this end, together
with a domain expert from invasion biology, we
carried out a qualitative analysis of hypothesis
statements and formulations within abstracts in the
INAS dataset. We observe that hypothesis state-
ments are extremely varied, ranging from explicit
statements of hypothesis names in the case of some
of the most well-known hypotheses to implicit hy-
pothesis statements through, e.g., descriptions of
experiments. In this initial analysis, we identified
the following types of hypothesis statements:

Hypothesis name Explicit mentions of the hy-
potheses by their name (see text spans marked
in red in Figure 2a). Some hypotheses are
named after the main concepts they represent
(e.g., biotic resistance hypothesis), a mention
of these concepts provides almost the same
information as an explicit hypothesis name
and is therefore also annotated.

Explicit hypothesis statement Sentences stating
the general hypothesis addressed in the paper,
but without naming it (see green text span in
Figure 2b).

Hypothesis fragment Spans of text that contain
important parts of the hypothesis that is ad-
dressed in the paper but that do not belong to
a complete hypothesis statement.

Implicit hypothesis statement Spans of text that
reveal the hypothesis that is addressed in the
paper without actually formulating it (e.g., de-
scriptions of experiments, see blue text spans
in Figure 2a and 2b).

Tag Type Title Abstract Both
Name .10/0.10 .30/0.64 .34/0.74
Statement 0/0 .42/0.58 .42/0.58
Fragment .24/0.30 .56/1.08 .60/1.38
Implicit .28/0.28 .80/1.86 .80/2.14
All .62/0.68 .96/4.16 .96/4.84

Table 1: Distribution of the different tags in our subset
of 50 annotated samples, broken down into presence
of the tags in the titles, abstracts, or both (titles and
abstracts combined). The statistics provided are the
fraction of texts containing the specific tag at least once
as well as the average number of annotated spans of the
tag per text.

These different types of hypothesis statements
we observed correspond to different types of tasks
addressed in existing work on IE. While hypothe-
sis names would be covered by NER schemes and
systems (though existing NER schemes in biodi-
versity do not include them), explicit hypothesis
statements are more similar to claims annotated in
argument mining (Fergadis et al., 2021). Implicit
claims are not well covered by both approaches, ex-
cept in Blake (2010)’s study on claim formulations.
Interestingly, the qualitative examples in Figure
2 suggest that implicit hypothesis statements are
the most frequent, an observation that will be sup-
ported by data analyses that follow.

We conduct a pilot study to evaluate the presence
of different types of hypothesis statements in scien-
tific titles and abstracts from the field of invasion
biology. To do this, we asked an expert annotator
who was familiar with (Jeschke and Heger, 2018)’s
hypothesis network to annotate a set of 50 titles
and abstracts from the test set of the INAS dataset
on span-level with the statement types introduced
in Section 3.4. The set of annotated samples al-
lows us insight into several interesting properties
of the distribution of information about hypotheses
in the dataset: Even though every paper addresses
at least one hypothesis from the network, only 42%
of titles and abstracts contain an actual hypothesis
statement, while 34% state the name of the hypoth-
esis. Accounting for the overlap in these groups,
only 56% of samples provide concrete information
about the hypothesis that the paper addresses in
the title or abstract. Instead, authors often rely on
hypothesis fragments (60% of samples) or implicit
hypothesis statements (80% of samples) to make
clear which hypothesis is addressed in their work.
A detailed breakdown of the distribution of hypoth-
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Figure 3: Empirical probability density function of the
positionings of hypothesis statements (blue), hypoth-
esis names (red), hypothesis fragments (orange), and
implicit hypothesis statements (green) in the abstracts,
created using a kernel density estimator using a Gaus-
sian kernel (bandwidth=0.1).

esis information in the titles and abstracts is given
by Table 1, also including the average number of
annotated spans of a certain tag in the dataset. The
averages of 1.38 hypothesis fragments and 2.14 im-
plicit hypothesis statements per text as well as the
average of 4.84 annotated spans of all classes per
text here clearly indicate that the information about
the hypothesis addressed in a paper can be seldom
found in a single sentence: Instead, information
from different parts of the text needs to be used for
correct identification of the hypothesis.

Additional interesting patterns arise if we ana-
lyze the likelihood of specific tags being located at
different positions in the abstract. To do this, we
define the position of an annotated span as the av-
erage token index of all tokens in the span divided
by the total number of tokens in the text, result-
ing in positions in the range [0, 1]. We can then
plot the empirical probability density function (cre-
ated using a kernel density estimator) for each tag,
as is done in Figure 3. While hypothesis names
and hypothesis fragments have a rather uniform
probability of appearing at any position in the text,
hypothesis statements are made mainly at the be-
ginning, while implicit hypothesis statements are
more likely to be made later in the abstract. The
reasons for this are that abstracts regularly begin
with an explicit description of the hypothesis while
ending with details about experiments and observa-
tions, which often fall in the category of implicit
hypothesis statements.

3.5 Discussion
Current datasets labelling claims in scientific texts
mostly focus on a precise span-level annotation
instead of providing detailed semantic labels (see

Model F1(S) F1(M)
Naive Bayes .702 -
BERT base .665 (±.047) .659 (±.051)
BERT large .670 (±.045) .674 (±.032)
BioBERT base .758 (±.025) .751 (±.033)
BioBERT large .734 (±.020) .731 (±.065)
PubMedBERT base .758 (±.027) .757 (±.026)

Table 2: Classification F1 scores for all models tested
in our study. F1(S) denotes the F1 scores in the single
label classification setting while F1(M) refers to the
multi-label classification setting.

Section 2). While studies addressing also the se-
mantic content of claims exist, the claims often
address a variety of very distinct topics that can of-
ten be easily differentiated by non-experts as, e.g.,
claims addressing residency vs. claims addressing
foreign policy in DebateNet-mig15 (Lapesa et al.,
2020). This stands in stark contrast to the INAS
dataset, where all of the hypotheses in the hier-
archy address the same phenomenon of invasive
species being successful in a new domain, which al-
ready is a rather narrow subfield of general biology.
Therefore, even with respect to the highest level
of the hierarchy, the correct identification of the
hypothesis addressed in an abstract is a very chal-
lenging problem that requires expert knowledge,
with many lower levels in the hierarchy represent-
ing even more subtle differences that are harder to
distinguish. We argue that researchers in the sci-
entific domain will benefit most from tools differ-
entiating on such a precise level because subtle se-
mantic information about the hypothesis addressed
in a paper can be of high importance in judging
the relation between scientific studies or the rele-
vance with respect to a search query. Therefore,
the INAS dataset adds a new and important facet
to the general landscape of datasets on IE for scien-
tific text. At the same time, the fine-graininess of
the hypothesis network combined with the varied
nature of hypothesis formulations in abstracts (Sec-
tion 3.4) creates challenges for fully supervised
labeling of the dataset. A complete annotation of
hypothesis statements linked to the network would
require experts familiar with the domain as well as
linguistic aspects of annotation (which is very un-
realistic). For this reason, we now explore whether
“weak” abstract-level hypothesis labels in the cur-
rent dataset provide useful information for state-of-
the-art NLP models.
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4 Hypothesis Identification as Abstract
Classification

In this Section, we report baseline experiments on
modeling the automatic identification of hypothe-
ses in the INAS dataset.

4.1 Experimental Set-up

We frame hypothesis detection as a classification
problem where the input is the concatenation of
title and abstract of a paper and the output is a
label of the major hypotheses that are addressed
in the corresponding paper, with major hypotheses
meaning the ten hypotheses on the highest level of
the hierarchical hypothesis network.

We test different models that allow us to gain in-
sight into different properties of the dataset: On the
one hand, we test the performance of a naive Bayes
classifier working on unigrams after removing stop
words and highly frequent/infrequent words, allow-
ing us to explore how much simple word frequency
statistics already reveal about the hypothesis that
is addressed in a paper. On the other hand, we test
more complex neural classifiers in the form of stan-
dard BERT classifiers (Devlin et al., 2019) (base
and large) as well as BERT classifiers trained on
texts from a domain that presumably more closely
resembles the domain of invasion biology abstracts:
BioBERT models (Lee et al., 2019) (base and large)
and the PubMedBERT model (Gu et al., 2022)
(base), all trained on scientific abstracts and full-
text papers from the biomedical domain. The train-
ing is done on a training set comprising 75% of the
samples from the dataset, evaluation and testing
are done on subsets containing 10% and 15% of
the samples, respectively.

Due to the fact that a single paper can address
multiple hypotheses, the classification is a multi-
label classification problem. The naive Bayes clas-
sifier is only applicable to single-label classifica-
tion, though, so we train it by inserting the samples
with multiple labels repeatedly into the training set,
once with each label. We proceed in the same way
for the test and validation splits, meaning that the
classifier will not be able to achieve perfect accu-
racy. To be able to compare the results, we test
the BERT models in the same single-label setting
(using a softmax classification layer). Addition-
ally, we test the BERT classifiers in the multi-label
setting by predicting an individual probability for
each class. In this case, we still force the classifier
to predict at least one positive label for each sample

since this lead to increased performance. For all
BERT classifiers, we reduce the effect of variance
during training on our results by training ten classi-
fiers for each model type and classification setting
and report the average macro F1 score as well as
the standard deviation.

4.2 Results

Table 2 displays the classification results in terms
of the macro F1 score for both the single-label and
the multi-label classification setting.

Notably, the naive Bayes classifier performs rea-
sonably well and even outperforms the standard
BERT classifiers, indicating that simple word fre-
quency statistics provide significant information
about the correct label. An analysis of the naive
Bayes classifier weights revealed that hypothesis-
specific concepts, as well as parts of the hypothe-
sis names, were strong indicators for the specific
classes, but also some species and country names
that mostly appear in the context of specific hy-
potheses were used as a basis for the classification.
The advantage of the naive Bayes classifier com-
pared to the BERT classifiers might originate in the
fact that many domain-specific terms might be un-
known to the BERT models and the small training
set might not be enough to fully learn these new
concepts.

The classifiers based on variants of BERT that
are adapted to texts from the biomedical domain
consistently outperformed the naive Bayes classi-
fier, which is consistent with earlier results that
show that in-domain fine-tuning generally leads to
improved performance (Gururangan et al., 2020).
Notably, especially the smaller BERTbase models
show better performance as well as reduced vari-
ance, making them the best performing models in
our study. We also observe that the ability to do
multi-label predictions generally does not yield an
improvement, which can be explained by the small
number of cases where multi-label prediction is
necessary.

Even though the BioBERT and PubMedBERT
models show increased performance compared to
the naive Bayes classifier, the difference appears
to be moderate considering the large difference
in complexity. All BERT models should be able
to process the same word frequency information
as the naive Bayes classifier, meaning that their
ability to combine the information from different
words and sentences is only responsible for a 7%
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performance increase. We believe that this indi-
cates that the BERT classifiers are not able to un-
derstand the full semantic content of hypothesis
statements, especially if they are only made implic-
itly. Instead, the increase in performance might
simply be caused by the classifier’s ability to detect
slightly more complex patterns than unigrams (e.g.,
n-grams) and by its ability to nonlinearly combine
the information about the presence of these still
simple patterns.

4.3 Ablation Study

We use the domain expert annotations from 3.3
to evaluate which kinds of information are most
important for the neural network classifiers. To
test this, we perform an ablation study in which we
train a classifier (BioBERT base) on: (i) only the
title, (ii) the first two sentences from the abstract,
or (iii) the last two sentences from the abstract.

The evaluation of the ablated classifiers on the
test set yielded an F1 score of 0.61 for the titles
and an equal score of 0.53 for the first two and
for the last two sentences. Therefore, the title con-
tains on average more information that is useful for
the classification, which is to be expected since a
good title should clearly indicate the key aspects
of the underlying study while it is not necessary
that every sentence in the abstract has the same
density of information. The equal performance on
the first and the last sentences from the abstract is
more surprising since it implies that the different
types of information that are commonly found at
these positions (hypothesis statement vs. implicit
hypothesis statement) seem to be equally useful for
the classification.

An alternative explanation for this result is that
the human annotations do not generally correspond
to information that is used by the neural network
classifier. To explore this hypothesis, we divide the
50 annotated samples into 10 folds, in a way that,
beginning from fold one, each fold progressively
contains samples that contain more annotated spans
and thus contain more information about the hy-
potheses according to our annotation. We then mea-
sure the performance of BioBERT base on each of
these folds and plot the average number of anno-
tations in each fold against the micro F1 score the
model achieved on that fold (see Figure 4). To
better see the correlation, we also fit a kernel re-
gression model (Nadaraya, 1964; Watson, 1964) to
the data, resulting in a clearly visible positive cor-
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Figure 4: Classification micro F1 score vs. number of
annotated spans for ten folds from the test set. The
data was split into ten folds so that, beginning from
fold one, each fold progressively contains samples with
more annotated spans. The dashed line indicates the F1
score on all 50 samples, the red line is fitted to the data
via a kernel regression model (Gaussian kernel with
bandwidth=2.5).

relation between the number of annotated spans in
a sample and the classification performance of the
neural classifier. This correlation is mainly caused
by two low-scoring batches that both have a low
number of annotated spans, which means that sam-
ples with few annotated spans have an increased
probability of being misclassified while the prob-
ability stays relatively constant for samples that
have at least four annotated spans. This indicates
that our annotations correspond to useful informa-
tion for the classification and therefore indicates
that the general annotation scheme that allows for a
distributed annotation of hypotheses is reasonable.

In combination with the fact that the distributed
annotations also correspond to the intuition of the
domain expert, our study shows that the annotation
of hypotheses and claims as single spans of text is
limited and can be insufficient for certain domains
like scientific texts. For this reason, our study shifts
the focus from the simple, binary classification of
sentences as claims to more fine-grained semantic
categories, and at the same time, shifts the focus
from detailed annotations of text spans to more
general abstract- or paragraph-level annotation of
hypotheses. We also note that the latter type of
annotation may be more intuitive and faster for
domain experts, which may not be trained linguistic
annotators familiar with the complexities in text
annotation.

5 Conclusion

In this work, we proposed and published the INAS
dataset and conducted initial analyses and exper-
iments on it. Our studies revealed interesting in-

39



sights into the availability and distribution of in-
formation about the hypotheses in scientific paper
titles and abstracts from the field of invasion biol-
ogy. We believe that there is great potential for a
variety of different studies to be performed using
this dataset, some of which we plan on conducting
in future work. These include further classifica-
tion experiments like exploring the full hierarchical
classification problem, trying to improve classifi-
cation performance by conducting pretraining on
full-texts from the field of invasion biology, or test-
ing one-shot classification leveraging the written
hypothesis descriptions. Further, our annotation
experiment could enable studies on span-level hy-
pothesis detection, e.g. in a weakly-supervised
manner or in a one-shot classification setting. Fi-
nally, we also hypothesize that the introduction of
human-engineered knowledge (e.g., in the form of
ontologies) into, for example, the classification pro-
cess can help overcome the problem of a lack of
domain-knowledge of current language models.
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Abstract

The most interesting words in scientific texts
will often be novel or rare. This presents a chal-
lenge for scientific word embedding models to
determine quality embedding vectors for useful
terms that are infrequent or newly emerging.
We demonstrate how latent semantic imputa-
tion (LSI) can address this problem by imputing
embeddings for domain-specific words from
up-to-date knowledge graphs while otherwise
preserving the original word embedding model.
We use the Medical Subject Headings (MeSH)
knowledge graph to impute embedding vectors
for biomedical terminology without retraining
and evaluate the resulting embedding model on
a domain-specific word-pair similarity task. We
show that LSI can produce reliable embedding
vectors for rare and out of vocabulary (OOV)
terms in the biomedical domain.

1 Introduction

Word embeddings are powerful representations of
the semantic and syntactic properties of words that
facilitate high performance in natural language pro-
cessing (NLP) tasks. Because these models com-
pletely rely on a training corpus, they can struggle
to reliably represent words which are infrequent,
or missing entirely, in that corpus. The latter will
happen for any new terminology emerging after
training is complete.

Rapid emergence of new terminology and a long
tail of highly significant but rare words are charac-
teristic of technical domains, but these terms are
often of particular importance to NLP tasks within
these domains. This drives a need for methods
to generate reliable embeddings of rare and novel
words. At the same time, there are efforts in many
scientific fields to construct large, highly specific
and continuously updated knowledge graphs that
capture information about these exact terms. Can

∗Co-first authors
†Co-PIs

we leverage these knowledge graphs to mitigate the
short-comings of word embeddings on rare, novel
and domain-specific words?

We investigate one method for achieving this
information transfer, latent semantic imputation
(LSI) (Yao et al., 2019). In LSI the embedding vec-
tor for a given word, w, is imputed as a weighted
average of existing embedding vectors, where the
weights are inferred from the local neighborhood
structure of a corresponding embedding vector, wd,
in a domain-specific embedding space. We study
how to apply LSI in the context of the biomedi-
cal domain using the Medical Subject Headings
(MeSH) knowledge graph (Lipscomb, 2000), but
expect the methodology to be applicable to other
scientific domains.

2 Related work

Embeddings for rare/out of vocabulary (OOV)
words. Early methods for embedding rare words
relied on explicitly provided morphological infor-
mation (Alexandrescu and Kirchhoff, 2006; Sak
et al., 2010; Lazaridou et al., 2013; Botha and
Blunsom, 2014; Luong and Manning, 2016; Qiu
et al., 2014). More recent approaches avoid de-
pendence on explicit morphological information
by learning representations for fixed-length char-
acter n-grams that do not have a direct linguistic
interpretation (Bojanowski et al., 2017; Zhao et al.,
2018). Alternatively, the subword structure used
for generalization beyond a fixed vocabulary can be
learnt from data using techniques such as byte-pair
encoding (Sennrich et al., 2016; Gage, 1994) or
the WordPiece algorithm (Schuster and Nakajima,
2012). Embeddings for arbitrary strings can also be
generated using character-level recurrent networks
(Ling et al., 2015; Xie et al., 2016; Pinter et al.,
2017). These approaches, as well as transformer-
based methods mentioned below, provide some
OOV generalization capability but are unlikely to
be a general solution since they will struggle with
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novel terms whose meaning is not implicit in the
subword structure such as, e.g., eponyms. Note that
we experimented with fastText and it performed
worse than our approach.

Word embeddings for the biomedical domain.
Much research has focused on how to best gener-
ate biomedical-specific embeddings and provide
models to improve performance on downstream
NLP tasks (Major et al., 2018; Pyysalo et al., 2013;
Chiu et al., 2016; Zhang et al., 2019). Work in
the biomedical domain has investigated optimal hy-
perparameters for embedding training (Chiu et al.,
2016), the influence of the training corpus (Pakho-
mov et al., 2016; Wang et al., 2018; Lai et al., 2016),
and the advantage of subword-based embeddings
(Zhang et al., 2019). Word embeddings for clini-
cal applications have been proposed (Ghosh et al.,
2016; Fan et al., 2019) and an overview was pro-
vided in Kalyan and Sangeetha (2020). More re-
cently, transformer models have been successfully
adapted to the biomedical domain yielding con-
textual, domain-specific embedding models (Peng
et al., 2019; Lee et al., 2019; Beltagy et al., 2019;
Phan et al., 2021). Whilst these works highlight the
benefits of domain-specific training corpora this
class of approaches requires retraining to address
the OOV problem.

Improving word embeddings using domain
information. Our problem task requires improving
a provided embedding model for a given domain,
without detrimental effects on other domains.

Zhang et al. (2019) use random walks over the
MeSH headings knowledge graph to generate ad-
ditional training text to be used during the word
embedding training. Similar ideas have led to us-
ing regularization terms that leverage an existing
embedding during training of a new embedding
to preserve information from an original embed-
ding during training on a new corpus (Yang et al.,
2017). Of course, these methods require the com-
plete training of one or more embedding models.

Faruqui et al. (2014) achieve a similar result
more efficiently by defining a convex objective
function that balances preserving an existing em-
bedding with decreasing the distance between re-
lated vectors, based on external data sources such
as a lexicon. This technique has been applied in
the biomedical domain (Yu et al., 2016, 2017), but
has limited ability to infer new vocabulary because
without the contribution from the original embed-
ding this reduces to an average of related vectors.

Another approach is to extend the embedding di-
mension to create space for encoding new informa-
tion. This can be as simple as vector concatenation
from another embedding (Yang et al., 2017), possi-
bly followed by dimensionality reduction (Shalaby
et al., 2018). Alternatively, new dimensions can
be derived from existing vectors based on exter-
nal information like synonym pairs (Jo and Choi,
2018). Again, this has limited ability to infer new
vocabulary.

All of these methods change the original em-
bedding, which limits applicability in use-cases
where the original embedding quality must be re-
tained or where incremental updates from many
domains are required. The optimal alignment of
two partially overlapping word embedding spaces
has been studied in the literature on multilingual
word embeddings (Nakashole and Flauger, 2017;
Jawanpuria et al., 2019; Alaux et al., 2019) and pro-
vides a mechanism to patch an existing embedding
with information from a domain-specific embed-
ding. Unfortunately, it assumes the embedding
spaces have the same structure, meaning it is not
suitable when the two embeddings encode different
types of information, such as semantic information
from text and relational information from a knowl-
edge base.

3 Latent Semantic Imputation

LSI, the approach pursued in this paper, represents
embedding vectors for new words as weighted
averages over existing word embedding vectors
with the weights derived from a domain-specific
feature matrix (Yao et al., 2019). This process
draws insights from Locally Linear Embedding
(Roweis and Saul, 2000). Specifically, a local
neighborhood in a high-dimensional word embed-
ding space Es (s for semantic) can be approxi-
mated by a lower-dimensional manifold embedded
in that space. Hence, an embedding vector ws for
a word w in that local neighborhood can be approx-
imated as a weighted average over a small number
of neighboring vectors.

This would be useful to construct a vector of a
new word w if we could determine the weights for
the average over neighboring terms. But since, by
assumption, we do not know w’s word embedding
vector ws, we also do not know its neighborhood
in Es. The main insight of LSI is that we can use
the local neighborhood of w’s embedding wd in
a domain-specific space, Ed, as a proxy for that
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neighborhood in the semantic space of our word-
embedding model, Es. The weights used for con-
structing an embedding for w in Es are calculated
from the domain space as shown in Fig. 1: a k-
nearest-neighbors minimum-spanning-tree (kNN-
MST) is built from the domain space features. Then
the L2-distance between wd and a weighted aver-
age over its neighbors in the kNN-MST is mini-
mized using non-negative least squares. The re-
sulting weights are used to impute the missing em-
bedding vectors in Es using the power iteration
method. This procedure crucially relies on the ex-
istence of words with good representations in both
Es and Ed, referred to as anchor terms, which serve
as data from which the positions of the derived em-
bedding vectors are constructed.

Figure 1: Latent Semantic Imputation. Rd is the domain
space and Rs is the semantic space.

4 Methodology

We extend the original LSI procedure described
above in a few key ways. Instead of using a nu-
meric data matrix as the domain data source of
LSI, we use a node embedding model trained on a
domain-specific knowledge graph to obtain Ed. As

knowledge graphs are used as a source of structured
information in many fields, we expect our method
to be applicable to many scientific domains. Knowl-
edge graphs are prevalent in scientific fields as they
serve as a means to organise and store scientific
data, as well as to aid downstream tasks such as
reasoning and exploration. Their structure and abil-
ity to represent different relationship types makes it
relatively easy to integrate new data, meaning they
can evolve to reflect changes in a field and as new
data becomes available.

We use the 2021 RDF dump of the MeSH
knowledge graph (available at https://id.
nlm.nih.gov/mesh/). The complete graph
consists of 2,327,188 nodes and 4,272,681 edges,
which we reduce into a simpler, smaller, and undi-
rected graph to be fed into a node embedding algo-
rithm. We extract a subgraph consisting of solely
the nodes of type "ns0__TopicalDescriptor" and
the nodes of type "ns0__Concept" that are directly
connected to the topical descriptors via any relation-
ship type. The relationship types and directionality
were removed. This results in 58,695 nodes and
113,094 edges.

We use the node2vec graph embedding algo-
rithm (Grover and Leskovec, 2016) on this sub-
graph to produce an embedding matrix of 58,695
vectors with dimension 200 (orange squares in
Fig. 2). The hyperparameters are given in Ap-
pendix 8.1. These node embeddings form the
domain-specific space, Ed, as described in the
previous section. We note that in preliminary ex-
periments, the adjacency matrix of the knowledge
graph was used directly as Ed but this yielded im-
puted embeddings that performed poorly.

To provide the mapping between the MeSH
nodes and the word embedding vocabulary we
normalize the human-readable "rdfs__label" node
property by replacing spaces with hyphens and
lower-casing. The anchor terms are then iden-
tified as the normalized words that match be-
tween the graph labels and the vocabulary of the
word-embedding model; resulting in 12,676 anchor
terms. As an example, "alpha-2-hs-glycoprotein"
appears as both a node in the reduced graph and in
the word-embedding model, along with its neigh-
bors in the kNN-MST, which include "neoglyco-
proteins" and "alpha-2-antiplasmin". These serve
to stabilise the positions of unknown word embed-
ding vectors for domain space nodes which did not
have corresponding representations in the semantic
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Figure 2: Extended latent semantic imputation pipeline.
A knowledge graph is simplified to a smaller, undirected
graph. This is used to derive the node embedding model
used in LSI (see Fig. 1) to impute missing terms in the
semantic space.

space during the LSI procedure.
LSI has one key hyper-parameter: the minimal

degree of the kNN-MST graph, k. The stopping
criterion of the power iteration method is controlled
by another parameter, η, but any sufficiently small
value should allow adequate convergence and have
minimal impact on the resulting vectors. Following
Yao et al. (2019) we set η = 10−4 but we use a
larger k = 50 since initial experiments showed a
better performance for larger values of k.

5 Experiments

We aim to answer two questions to evaluate our
imputation approach: Do the imputed embeddings
encode semantic similarity and relatedness infor-
mation as judged by domain experts? And, can the
imputed embeddings be reliably used alongside the
original, non-imputed word embeddings?

We use the UMNSRS dataset to answer these
questions (Pakhomov et al., 2010). It is a collection
of medical word-pairs annotated with a relatedness
and similarity score by healthcare professionals,
such as medical coders and clinicians; some exam-
ples are shown in Table 1. For each word-pair we

calculate the cosine similarity between the corre-
sponding word embedding vectors and report the
Pearson correlation between these cosine similari-
ties and the human scores.

Term1 Term2 Similarity Relatedness

Acetylcysteine Adenosine 256.25 586.50
Anemia Coumadin 623.75 926.50
Rales Lasix 742.00 1379.50
Tuberculosis Hemoptysis 789.50 1338.50

Table 1: Examples of UMNSRS word pairs. Scores
range from 0 to 1600 (larger = more similar/related).

To obtain additional insight into the performance
of the imputation procedure we split the words in
the UMNSRS dataset into two groups of roughly
the same size: one group of words (trained) which
we train directly as part of the word embedding
training and another group of words (imputed)
which we obtain via imputation. This split re-
sults in three word-pair subsets that contain im-
puted/imputed word pairs, trained/trained word
pairs, and imputed/trained word pairs. Note that
due to an incomplete overlap of the UMNSRS test
vocabulary with both the MeSH node labels and
our word embedding vocabulary we cannot evalu-
ate on every word pair in UMNSRS (see Table 4 for
more details). Applying the UMNSRS evaluation
to these three groups of word pairs we aim to mea-
sure the extent to which the imputation procedure
encodes domain-specific semantic information.

For word embedding training we prepare a
corpus of 74.4M sentences from open access
publications on PubMed (from https://ftp.
ncbi.nlm.nih.gov/pub/pmc/oa_bulk/;
accessed on 2021-08-30). To simulate the problem
of missing words as realistically as possible we
then prepare a filtered version of this corpus
by removing any sentence containing one of
the imputed terms (in either singular or plural
form). This filtering removes 2.36M of the 74.4M
sentences (3.2%).

We then train 200-dimensional skip-gram word
embedding models on both the full and the filtered
version of the training corpus. In addition, we also
train fastText embeddings (Bojanowski et al., 2017)
on both the full and the filtered corpus. For details
on the hyper-parameters see Appendix 8.2. Since
fastText, which represents words as n-grams of
their constituent characters, has been shown to give
reasonable embedding vectors for words which are
rare or missing in the training corpus it represents
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a suitable baseline to which we can compare our
imputation procedure.

We check that the embedding models (both
skip-gram and fastText) trained on the filtered cor-
pus perform roughly on par with those trained
on the full corpus when evaluated using the
trained/trained subset of the UMNSRS test data.
We also check that the skip-gram model trained
on the full corpus performs comparable to the
BioWordVec model (Zhang et al., 2019) across all
subsets of UMNSRS. See Appendix 8.3 for details.

LSI is a means of leveraging the domain space
to create OOV embedding vectors. As a simple
alternative baseline, we directly use the domain
space embeddings for the OOV words. We need
to align the domain space onto the semantic space,
which we do with a rotation matrix derived from
the anchor term embeddings in the two spaces via
singular value decomposition.

5.1 Results

The main results are displayed in Fig. 3 which
shows the Pearson correlation between cosine sim-
ilarities and human annotator scores for UMNSRS
similarity and relatedness. The error bars are stan-
dard deviations across 1,000 bootstrap resamples
of the test dataset. From left to right we show re-
sults for the trained/trained, imputed/trained, and
imputed/imputed subsets.

We compare two models trained on the filtered
corpus (which does not contain any mentions of
the imputed words): a skip-gram model extended
by LSI and a fastText model. For reference we
also show the correlation strengths obtained when
directly using the MeSH node embeddings which
form the basis of the imputation. Note that for this
last model, the test cases we evaluate are different,
since the MeSH model cannot represent all word
pairs in UMNSRS (see appendix 8.3 for details).
Uncertainties on the MeSH model are high for the
trained/trained subset due to the limited overlap
of the MeSH model with the words in the trained
subset (see Table 4).

In Fig. 3 the imputed/trained group also includes
the performance of the simple baseline, Skip-gram
(filtered) + MeSH, formed of a mixture of aligned
embeddings. We do not show the performance
of this baseline on the other two groups since, by
construction, it is identical to that of Skip-gram (fil-
tered) + LSI for trained/trained and that of MeSH
node2vec for imputed/imputed.

(a) UMNSRS similarity.
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(b) UMNSRS relatedness.

trained/trained imputed/trained imputed/imputed
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
ar

so
n 

co
rr

el
at

io
n

Skip-gram (filtered) + LSI
fastText (filtered)
MeSH node2vec
Skip-gram (filtered) + MeSH

Figure 3: Correlation with UMNSRS scores.

Three things stand out:

1. The LSI-based model is competitive on novel
vocabulary: it performs significantly better
than the fastText model on word pairs con-
taining only imputed terms (imputed/imputed)
and modestly better on mixed word pairs (im-
puted/trained). It also outperforms the simple
but surprisingly strong baseline, Skip-gram
(filtered) + MeSH.

2. There is a significant difference in Pearson
correlation between the different word pair
categories. Note that the same trend in corre-
lation across word pair categories can be seen
in the word embedding model trained on the
full corpus without imputation (see Fig. 4).

3. The LSI-based model obtains better scores
than the underlying MeSH node embeddings
across most categories. This proves that the
similarity and relatedness information directly
encoded in the domain embedding does not
limit the similarity and relatedness informa-
tion encoded in the resulting imputed model.
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5.2 Discussion

In this paper we use a significantly larger subset
of the MeSH graph compared to related work on
MeSH-based embeddings (Guo et al., 2021; Zhang
et al., 2019) by including more than just the topi-
cal descriptor nodes. Using a larger graph for the
imputation allows us to impute a wider variety of
words and evaluate the imputation procedure on a
larger subset of UMNSRS. The graph we use for
imputation is also much larger than the domain data
used in previous work on LSI (Yao et al., 2019).
This shows that LSI can apply to knowledge graphs
and scale to larger domain spaces which is crucial
for real-world applications.

We observe that the UMNSRS similarity and
relatedness correlations of the MeSH node embed-
ding models do not constitute an upper bound on
the correlations obtained for the imputed word em-
beddings. This is intuitively plausible since LSI
combines the global structure of the trained word
embedding vectors with the local structure of the
domain embeddings. This is in contrast to the orig-
inal LSI paper in which the domain data alone was
sufficient to obtain near perfect scores on the eval-
uation task and, as such, could have been used
directly which obviates the need for LSI. This ob-
servation reduces the pressure for an optimal knowl-
edge graph and associated embedding, although a
systematic search for better subgraphs to use is
likely to yield improved imputation results.

It is also of note that most of the trends displayed
by the LSI model hold for both the similarity and
relatedness scores, despite these being distinctly
separate concepts. Relatedness is a more general
measure of association between two terms whilst
similarity is a narrower concept tied to their like-
ness. This might not be the case if the graph con-
struction had been limited to particular relationship
types or if direction of the relations had been re-
tained.

There are noteworthy differences between our
experiment and the use cases we envisage for LSI.
The words we impute in our experiment are taken
from the constituent words of the UMNSRS word
pairs rather than being solely defined by training
corpus statistics. This is a necessary limitation of
our evaluation methodology. It remains a question
for further research to establish ways of evaluat-
ing embedding quality on a larger variety of OOV
words and use this for a broader analysis of the
performance of LSI.

6 Strengths and weaknesses of LSI

Our experiments highlight several beneficial fea-
tures of LSI. It is largely independent of the nature
of the domain data as long as embeddings for the
domain entities can be inferred. It does not rely
on retraining the word embedding and is therefore
applicable to cases where retraining is not an op-
tion due to limitations in compute or because of
lack of access to the training corpus. It allows word
embeddings to be improved on demand for specific
OOV terms, thus affording a high level of control.
In particular, it allows controlled updates of word
embeddings in light of new emerging research.

The current challenges we see for LSI are driven
by limited research in the constituent steps of the
imputation pipeline. Specifically, there is not yet
a principled answer for the optimal selection of
a subgraph from the full knowledge graph or the
optimal choice of node embedding architecture.
The answer to these may depend on the domain
knowledge graph. Also, there are not yet generic
solutions for quality control of LSI. This problem
is likely intrinsically hard since the words which
are most interesting for imputation are novel or rare
and thus exactly the words for which little data is
available.

7 Conclusion

In this paper, we show how LSI can be used to im-
prove word embedding models for the biomedical
domain using domain-specific knowledge graphs.
We use an intrinsic evaluation task to demonstrate
that LSI can yield good embeddings for domain-
specific out of vocabulary words.

We significantly extend the work of Yao et al.
(2019) by showing that LSI is applicable to scien-
tific text where problems with rare and novel words
are particularly acute. Yao et al. (2019) assumed a
small number of domain entities and a numeric do-
main data feature matrix. This immediately yields
the metric structure required to determine the near-
est neighbors and minimum spanning tree graph
used in LSI. We extend this to a much larger num-
ber of domain entities and to domain data which
does not have an a priori metric structure but is
instead given by a graph structure. We demonstrate
that LSI can also work with relational domain data
thus opening up a broader range of data sources.
The metric structure induced by node embeddings
trained on a domain knowledge graph provides an
equally good starting point for LSI.
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This shows that LSI is a suitable methodology
for controlled updates and improvements of sci-
entific word embedding models based on domain-
specific knowledge graphs.

8 Future work

We see several fruitful directions for further re-
search on LSI and would like to see LSI applied
to other scientific domains, thereby testing the gen-
eralizability of our methodology. This would also
provide more insight on how the domain knowl-
edge graph as well as the node embedding architec-
ture impact the imputation results.

The use of automatic methods for creating medi-
cal term similarity datasets (Schulz and Juric, 2020)
would facilitate the creation of large-scale test sets.
The UMNSRS dataset, along with the other human-
annotated, biomedical word pair similarity test sets
used in the literature, all consist of fewer than one
thousand word pairs (Pakhomov et al., 2016, 2010;
Chiu et al., 2018). The use of larger test sets would
remove the aforementioned evaluation limitations.

Further research could elucidate how to best uti-
lize the full information of the domain knowledge
graph in LSI. This includes information about node
and edge types, as well as literal information such
as human-readable node labels and numeric node
properties (such as measurement values). It also
remains to be studied how to optimally choose the
anchor terms (to be used in the imputation step)
to maximize LSI performance. Our methodology
could also be generalized from latent semantic im-
putation to what might be called latent semantic
information fusion where domain information is
used for incremental updates instead of outright
replacement of word embedding vectors.

Finally, LSI could also be extended to provide
alignment between knowledge graphs and written
text by using the spatial distance between imputed
vectors of knowledge graph nodes and trained word
embedding vectors as an alignment criterion.
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Appendix

8.1 Hyper-parameters for MeSH node2vec
We train node2vec (https://github.com/
thibaudmartinez/node2vec) embeddings
with the hyperparameters shown in Table 2 from
a subgraph of MeSH containing 58,695 nodes and
113,094 edges.

Hyperparameter Variable name Value

Training epochs epochs 50
No. of random walks n_walks 10
Return parameter p 0.5
Inout parameter q 0.5
Context window context_size 15
Dimension dimension 200

Table 2: Hyperparameters for MeSH node2vec training

8.2 Hyper-parameters for word embeddings
We use gensim (https://radimrehurek.
com/gensim; version 4.1.2.) for training skip-
gram and fastText word embedding models with
the hyperparameters provided in Table 3. All other
hyperparameters are set to the default values of the
gensim implementation. For the skipgram model
we use the hyperparameters from Chiu et al. (2016),
which are reported to be optimal for the biomedical
domain. For fastText we are not aware of literature
on optimal hyperparameters for the biomedical do-
main so we use the default values except for the
embedding dimension which we set to 200 to ease
comparison with the skipgram model. We trained
the fastText models for 10 epochs but found that
the performance of the fastText model on UMN-
SRS saturates after epoch 1. We use the fastText
model after the first epoch for the remainder of our
experiments and analysis.

Variable name fastText skipgram

epochs 1 10
negative 5 10
vector_size 200 200
alpha 0.025 0.05
sample 1E-03 1E-04
window 20 30

Table 3: Hyperparameters for skipgram and fastText
training. See the gensim documentation for the defini-
tion of the hyperparameters.
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Figure 4: UMNSRS correlations for skipgram models.
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Figure 5: UMNSRS correlations for fastText models.
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Figure 6: UMNSRS correlations for BioWordVec.
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UMNSRS relatedness UMNSRS similarity

Model
trained/
trained

imputed/
trained

imputed/
imputed

trained/
trained

imputed/
trained

imputed/
imputed

MeSH node2vec 28 70 133 30 72 135
all other models 83 99 124 84 101 126

Table 4: Number of test cases per model and test set split for UMNSRS evaluation.

8.3 Details on the UMNSRS evaluation
Table 4 shows the number of test cases per model
and UMNSRS test data split. All models have been
evaluated on the same subsets of UMNSRS ex-
cept for the MeSH node embeddings model where
limited overlap with the UMNSRS test vocabulary
prevents us from evaluating on exactly the same
subsets.

The embedding models (both skip-gram and fast-
Text) trained on the filtered corpus perform roughly
on par with those trained on the full corpus when
evaluated using the trained/trained subset of the
UMNSRS test data (see Fig. 4 and 5). When com-
paring the performance of the filtered skipgram
model + LSI to the full skipgram model on the
subset of test data involving imputed words (im-
puted/trained and imputed/imputed) the full model
outperforms LSI (see Fig. 4). This suggests that, if
training text for the OOV words were available, we
should make use of it. Similarly, and as expected,
when comparing the performance of the filtered
and full fastText models on the subset of test data
involving imputed words (imputed/trained and im-
puted/imputed) the full model again outperforms
the filtered model (see Fig. 5).

As a sanity check, we also compare the skip-
gram model trained on the full corpus to BioWord-
Vec, a recent state-of-the-art word embedding
model for the biomedical domain (Zhang et al.,
2019) and find similar performance across all sub-
sets of UMNSRS (see Fig. 6).
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Abstract

Scholarly Argumentation Mining (SAM) has
recently gained attention due to its potential
to help scholars with the rapid growth of pub-
lished scientific literature. It comprises two
subtasks: argumentative discourse unit recog-
nition (ADUR) and argumentative relation ex-
traction (ARE), both of which are challeng-
ing since they require e.g. the integration of
domain knowledge, the detection of implicit
statements, and the disambiguation of argu-
ment structure (Al Khatib et al., 2021). While
previous work focused on dataset construction
and baseline methods for specific document
sections, such as abstract or results, full-text
scholarly argumentation mining has seen little
progress. In this work, we introduce a sequen-
tial pipeline model combining ADUR and ARE
for full-text SAM, and provide a first analy-
sis of the performance of pretrained language
models (PLMs) on both subtasks. We estab-
lish a new SotA for ADUR on the Sci-Arg cor-
pus, outperforming the previous best reported
result by a large margin (+7% F1). We also
present the first results for ARE, and thus for
the full AM pipeline, on this benchmark dataset.
Our detailed error analysis reveals that non-
contiguous ADUs as well as the interpretation
of discourse connectors pose major challenges
and that data annotation needs to be more con-
sistent.

1 Introduction

Argumentation Mining (AM) is concerned with
the detection of the argumentative structure of text
(Stede and Schneider, 2018). It is commonly or-
ganized into two subtasks: 1) Recognition of ar-
gumentative discourse units (ADUs), i.e. detecting
argumentative spans of text and classifying them
into types such as claim or premise, and 2) deter-
mining which ADUs have a relationship to each
other and of what kind, e.g. support or attack. Con-
sider the following example, where the premise P
supports the claim C:

:::::::::::
Dot-product

:::::::::
attention

:::
is

::::::
much

::::::
faster

::::
than

::::::::
additive

:::::::::
attentionC, since it can

be implemented using highly optimized
matrix multiplication codeP.1

Since the amount of published scientific liter-
ature is growing exponentially (Fortunato et al.,
2018), there is recently an increased interest in
scholarly argumentation mining (SAM). Under-
standing the argumentative structure is key, not just
to efficiently digest such work, but also to assess
its quality (Walton, 2001). Solving scholarly AM
is challenging, because it requires, among other
things, the use of domain knowledge, the detection
of implicit statements, and the disambiguation of
argument structure (Al Khatib et al., 2021). This
is even harder when handling full-text that is often
less concise and standardized, than, for example,
abstracts.

Previous work in SAM has focused on dataset
construction (Teufel and Moens, 1999; Lauscher
et al., 2018b), ADU recognition (Lauscher et al.,
2018a; Li et al., 2021), and the analysis of spe-
cific document sections, such as abstract or results
(Dasigi et al., 2017; Accuosto and Saggion, 2019;
Mayer et al., 2020). However, to get a thorough un-
derstanding of a scientific publication, all parts of
the document matter. Ideally, they back up the main
argumentation and usually contain details that are
relevant for the knowledgeable reader, thus, they
should not be neglected. However, since the task is
very complex, also for humans, there is not much
training data for full-text SAM available.

Pretrained Language Models (PLMs) such as
SciBERT (Beltagy et al., 2019) may help to address
the above challenges because they contain a lot of
linguistic and domain knowledge and have better
long-range capabilities, allowing for improved con-
textualisation, especially when training data is rare.
We hence propose a PLM based model for full-text

1replicated from Vaswani et al. (2017)
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Figure 1: Example with argumentative structure from the Sci-Arg dataset.

SAM. To summarize, our contributions in this work
are:

• We are the first to investigate PLMs for full-
text SAM, and to present a sequential pipeline
for both ADU recognition and argumentative
RE on full-text scientific publications (Sec-
tion 3).

• Our experimental results show that a
SciBERT-based ADU recognition model im-
proves over the state-of-the-art by +7% F1-
score. We present the first relation extraction
baseline for the Sci-Args corpus and achieve
strong 0.74 F1 (Section 5.1).

• Our detailed error analysis reveals open chal-
lenges and possible ways of improvements
(Section 5.2).

2 Preliminaries

We first define the two tasks of ADUR and ARE,
and discuss differences to the standard Information
Extraction (IE) tasks of Named Entity Recognition
(NER) and Relation Extraction (RE).

An Argumentative Discourse Unit (ADU) can
be defined as “span of text that plays a single role
for an argument being analyzed and is demarcated
by neighboring text spans that play a different role,
or none at all” (Stede and Schneider, 2018). It is
the smallest unit of argumentation, and may span
anything from an in-sentence clause up to multiple
full sentences. ADU recognition requires both de-
tecting argumentative spans, as well as classifying
them into predefined categories. Typically, this is
realised as sequence tagging task similar to NER,
where a sequence of tokens X = {t1, t2, ..., tN} is
assigned with a corresponding N -length sequence
of labels Y = {l1, l2, ..., lN} with li ∈ C where
C is the set of tags that result from converting the
ADU types into a tagging scheme like BIO2.2 In
scholarly AM, common ADU classes are (Own /
Background) Claim, and Evidence, Data, or War-
rant (Green, 2014; Lauscher et al., 2018b).

2BIO2: Begin, Inside, Outside of an entity

In contrast to NER, ADUs typically vary much
more in length than named entities. They are also
highly context dependent and often discontinuous.
ADUR is also related to discourse segmentation,
but depends more on broader context and seman-
tics instead of linguistic structure. Elementary Dis-
course Units (EDUs), the building blocks in the
context of Rethorical Structure Theory (Mann and
Thompson, 1988), are more fine-grained, of shorter
length and usually cover the complete text which
is less the case for argumentative units.

Argumentative Relation Extraction is usually de-
fined as classifying a pair of ADUs, head and tail,
as either an instance of one of the target types or the
artificial NO-RELATION type. In other words, the
task is to assign a label Y ∈ C ∪ {NO-RELATION}
to a given input X = {T, h, t}, where C is the set
of relation types, T is the text and h = (sh, eh, lh)
and t = (st, et, lt) describe the candidate head and
tail entities where s and e are the start and end in-
dices with respect to T and l is the entity type. Typ-
ical relation types for SAM are Supports, Mentions,
Attacks, Contradicts, and Contrasts (Lauscher et al.,
2018b; Accuosto and Saggion, 2019; Nicholson
et al., 2021).

ARE is very similar to standard RE, but SAM
relations are often marked by syntactic cues such
as connectors, e.g. “because”, “however”, or “but”,
whereas in common RE, content words like verbs
and nouns are typical relation triggers. This makes
ARE challenging because these connectors do not
always realise argumentative structure, but also
mark other aspects of discourse. Consider, for ex-
ample, the different meanings of “while” in the
following example:

1. While I love a romantic dinner, I also like fast
food.

2.
:::::
While I prepare dinner, I watch a movie.

Here, the “while” in sentence 1) has a contrastive
meaning, whereas sentence 2) denotes a temporal
aspect.
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Bi-LSTM
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execution time increased quite substantially ( 4.54ms to 22.74ms )Furthermore

B-own-claim I-own-claim B-data I-data L-data OI-own-claim L-own-claimO I-own-claim O

SciBERT

(a) ADU Recognition. Tokens are embedded with a frozen
PLM, further contextualized with a trained LSTM followed
by a CRF to calculate the tag sequence.

supports

Bi-LSTM

Classifier

CNN+Pooling

Argument embeddings

ADU embeddings

SciBERT token embeddings

execution substantially ( 4.54ms )Furthermore

B-own-claim L-own-claim O B-data OO

B-Arg2 I-Arg2 O B-Arg1 OO

(b) Argumentative RE. Tokens are embedded with a frozen
PLM, ADU tags and argument tags are embedded with simple
embedding matrices. Embeddings are concatenated, contex-
tualized with a LSTM and converted into a single vector that
gets classified by a single fully connected layer.

Figure 2: Model setup for (a) ADUR (top) and (b) ARE
(bottom).

3 Models

We propose a pipeline of two distinct models, one
for each subtask, that are described in the follow-
ing.

ADU Recognition (ADUR). The architecture of
the ADUR model is visualized in Figure 2a. We
first embed the token sequence with a frozen PLM
encoder. For sequences that exceed the maximum
input length of the embedding model, we process
the sequence piece-wise and concatenate the result
afterwards. The embedded tokens are then fed into
a BiLSTM (Schuster and Paliwal, Nov./1997). Fi-
nally, a Conditional Random Field (CRF) (Lafferty
et al., 2001) is used to obtain the label probabilities
for each token. We use a combination of a frozen
PLM with a trainable contextualization (LSTM) on
top because its training requires less resources than
fine-tuning the PLM and initial tests have shown
similar performance.3

Argumentative RE (ARE). The model architec-
ture for the relation extraction subtask is shown in

3Note that the training dataset is relative small, so restrict-
ing the number of trainable parameters seems to mitigate
overfitting.

Train Test Total

ADUs
background claim 2563 661 3224
own claim 4608 1241 5849
data 3346 858 4204

Relations
supports 4426 1260 5686
contradicts 551 133 684
semantically same 36 3 39
parts of same 1000 269 1269

Table 1: Label counts for the Sci-Arg dataset.

Figure 2b. ARE is implemented as a classification
task, where a pair of candidate ADUs is selected
and marked in the input token sequence. To reduce
combinatorial complexity, only ADU pairs with a
distance smaller than some threshold d are consid-
ered. Similar to ADU recognition, we first embed
the token sequence in a window of k tokens around
the candidate entity pair with a frozen PLM model.
We also create non-contextualized embeddings for
the ADU- and argument-tags of the tokens within
the window. As argument tags we simply use head
and tail labels to mark the candidate entity tokens.
All three embedding sequences are concatenated
token-wise and fed into a BiLSTM. The result is
converted into a single vector using a Convolutional
Neural Network (CNN) and max-pooling, which
then is classified as one of the relation labels by a
linear projection with softmax.

4 Experimental Setup

Dataset. We use the Sci-Arg dataset (Lauscher
et al., 2018b) for model training and evaluation. It
is the only available full text argumentation min-
ing dataset for scientific publications. It contains
40 full text publications annotated with ADUs and
argumentative relations. Figure 1 shows an ex-
ample excerpt, and Table 1 summarizes the main
dataset statistics. The PARTS OF SAME relation
type is used to model non-contiguous spans. The
label counts differ slightly from values published
in Lauscher et al. (2018b), because annotations in
one file (A28) caused parsing errors and were ex-
cluded. Furthermore, non-contiguous spans are not
merged. We create a train/test split by using the
first 30 documents for training and the remaining 9
for evaluation.
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system span based token based
exact weak

Lauscher 2018c - - 0.447
ours 0.532 0.668 0.518

human 0.602 0.729 -

Table 2: ADU Recognition Performance as F1 macro
average over classes. For weak metrics, the gold and the
predicted span have to match for at least the half of the
characters of the longer span.

Preprocessing. We preprocess the documents by
removing the initial XML headers. To decrease
the sequence length of the input, we also split the
documents into sections, e.g. introduction or con-
clusion. This is important to lower computational
resource consumption since recent PLMs like SciB-
ERT (Beltagy et al., 2019) usually scale quadratic
with the input length and are restricted to a certain
max input size, e.g. 512 tokens. Unfortunately, this
leads to the removal of all relations labeled with
SEMANTICALLY SAME, since these connect ADUs
from different sections. However, this affects only
0.6% of the argumentative relations instances.

Data Augmentation. If the pair of ADUs (A,B)
is part of an argumentative relation, it is wrong to
assume that B is argumentatively unrelated with A,
i.e. (B,A) should not be in the NO RELATION class.
Thus, we add reversed instances for each available
relation in the dataset with the special label SUP-
PORTS REV in the case of SUPPORTS and keep
the labels for CONTRADICTS and PARTS OF SAME

since these relations are symmetric. In addition
to the positive training instances, we also sample
negative relation instances from all possible ADU
pairs that are no instances of any argumentative
relation.

Training Objective. We use the the cross entropy
loss (Rubinstein, 1999) as the training objective for
both models fADU and fRE :

LCE(y, ŷ;θ) := −fθ(y) · log fθ(ŷ)

where y and ŷ are the target and predicted proba-
bilities for the token or relation labels, respectively,
and θ is the set of trainable model parameters. In
the case of ADU recognition, we obtain the best
tagging sequence via Viterbi Decoding (Viterbi,
1967), as usual for CRF-based models.

F1-exact F1-weak

@gold ADUs 0.739
@predicted ADUs 0.210 0.310

human 0.341 0.469

Table 3: Argumentative RE Performance as micro
average over classes with provided gold ADUs (@gold
ADUS) or ADUs predicted with our entity recogni-
tion model (@predicted ADUs), i.e. the full relation
extraction pipeline. human indicates inter-annotator-
agreement for the corpus data (Lauscher et al., 2018c)
which is comparable to @predicted ADUs. For weak
metrics, best weakly matching ADUs are calculated
first, then predicted relations are mapped to these and
finally metrics are calculated as usual.

Metrics. Since we compare against evaluation
results from Lauscher et al. (2018d), we adopt
their metrics for ADU recognition, namely a token-
based F1-score that is macro-averaged over classes.
However, we also compute span-based macro-F1
scores in two variants as described in Lauscher et al.
(2018b): For exact span-based metrics, the recog-
nized ADU has to match exactly for start and end
indices, as well as ADU type. For weak matches,
the ADU has to match in type, but the target and
predicted spans only have to overlap by at least the
half of the length of the shorter span. Weak match
evaluation is motivated by considerable length and
variance of ADU expressions, which makes ex-
act matches difficult, and also allows for compar-
ison with human annotator agreement scores as
presented in Lauscher et al. (2018c).

For the relation recognition task, we follow the
literature and present micro-averaged F1 scores.
Similar to ADU recognition metrics, we calculate
weak metrics by first determining target ADUs that
can be assigned to predicted ADUs in the way
of weak ADU matching as described above, and
then calculate F1 scores as usual (Lauscher et al.,
2018b). Note that PARTS OF SAME is just a helper
relation, so we merge ADUs connected by this re-
lation type first, and then compute scores over the
remaining relation types.

Training Details & Hyperparameters. For both
tasks, we first conduct a hyperparameter search.
We use token-based macro-F1 as the optimization
target for ADU recognition and micro-F1 as the tar-
get for relation classification. Final hyperparameter
values are listed in Appendix A.2.
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P R F1

background claim 0.56 0.44 0.49
exact own claim 0.48 0.55 0.51

data 0.57 0.62 0.60

background claim 0.77 0.60 0.68
weak own claim 0.63 0.73 0.67

data 0.62 0.69 0.65

Table 4: ADUR Performance per Class. Macro aver-
aged precision (P), recall (R), and F1.

Since there is no dev split, we perform 5-fold
cross validation for each subtask on the train split
with the best hyperparameter settings and differ-
ent random seeds for parameter initialization. The
best of these 5 models are used for the final eval-
uation. Detailed training configurations, logs and
statistics for the ADU recognition and the ARE
subtasks are collected within the Weights & Biases
framework.4 We make these and our source code
publicly available for better reproducibility of our
experiments.5

5 Results and Discussion

This section presents our experimental results.
First, we compare against the ADU recognition
baseline as provided by Lauscher et al. (2018c).
Then, we present findings about prominent error
cases and close with an ablation study.

5.1 Results
Table 2 presents the macro-F1 scores of the ADUR
baseline, our approach, and human performance
in terms of inter-annotator agreement, as reported
in Lauscher et al. (2018c). Our model achieves
0.518 token-based F1, significantly outperforming
the baseline by 7%. The gap to the human per-
formance is also narrow, especially when looking
at the weak metrics with relaxed boundary con-
straints, where our model achieves 92% of to the
human score. For exact metrics, the model reaches
only 88% of the human performance, suggesting
that exact ADU boundary detection is more chal-
lenging. The performance of the model for argu-
mentative RE is a strong 0.739 micro-F1. Note,

4see https://wandb.ai
5For ADU recognition, see https://wandb.ai/

sam_dfki/best_adu_uncased, for argumenta-
tive RE, see https://wandb.ai/sam_dfki/
best_rel_uncased, and for the source code, see
https://github.com/DFKI-NLP/sam.

P R F1

contradicts 0.505 0.724 0.595
supports 0.739 0.774 0.756

Table 5: ARE Performance per Class. Micro averaged
precision (P), recall (R), and F1 on gold ADUs. Note
that non contiguous ADUs linked via predicted PARTS
OF SAME relations are merged first before calculating
the scores.

that we need to merge non-contiguous ADUs first
before calculating the ARE scores. We do this
via predicted PARTS OF SAME relations, which are
recognized with a F1-score of 0.860. For the full
pipeline, the model achieves a respectable 0.210
micro-F1 score, which corresponds to 62% of the
human performance.

5.2 Error Analysis

ADUR Error Analysis. The decrease in perfor-
mance when comparing weak with exact metrics is
high for the classes BACKGROUND CLAIM (−28%)
and OWN CLAIM (−24%), but low for class DATA

(−8%), see Figure 4. This may be because the
latter is mainly about references or mentions of
concise facts where boundaries are much easier to
detect.

Most of the errors originate from detecting
ADUs, i.e. deciding if a text span is an ADU from
any type, in comparison to classifying a detected
ADU span into one of types. The exact span-based
macro-F1 for the subtask of ADU classification is
0.854, whereas the respective score for ADU de-
tection is only 0.617. This difference is even larger
for the RE subtask where the micro-F1 is 0.749 for
relation detection and 0.992 (!) for relation classi-
fication. Figure 3 shows the confusion matrices for
the ADUR and ARE subtasks.

Interestingly, many of ADU classification errors
(48%) are instances of type BACKGROUND CLAIM,
where the model predicts OWN CLAIM instead, indi-
cated by low precision for OWN CLAIM and low re-
call for BACKGROUND CLAIM as shown in Table 4.
Looking into these misclassifications revealed the
following main challenges (in order of decreasing
frequency): 1) an island of one or two background
claims surrounded by many own claims or located
at the border between regions of these two types,
2) the ADU is linked via the structural PARTS OF

SAME relation, i.e. it is split by some other con-
tent and at least one part of the complete ADU is
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Figure 3: Confusion matrices for ADU recognition (left) and argumentative RE (right).

not detected correctly, and 3) mentions of the au-
thor in a background claim (e.g. "[A] drawback
of this model for our application is [...]" or "It
enables us to model [...]"). Issues 1) and 2) may
suggest that looking at the sequence of ADU types
or linguistic surface features is not enough and a
deeper "understanding" and/or domain knowledge
are required, especially since the training data is
very limited. Lauscher et al. (2018c); Accuosto
and Saggion (2019) analyse the impact of SAM to
related tasks, suggesting to train on these may miti-
gate this issue. Finally, issue 2) may be improved
by using a joint ADUR+ARE model or an ADUR
model that allows to predict non-contiguous spans.
Note that we tackle ADU detection in fact with
both models in combination because we require the
PARTS OF SAME predictions to merge the respec-
tive ADUs. This poses a challenge for both models:
The ADUR model is trained to predict incomplete
instances and the ARE model needs to handle in-
stances from conceptional different types of classes,
i.e. argumentative and structural relations.

ARE Error Analysis. For the relation extraction
subtask, the general performance is higher than
for ADUR with approximately only one third of
false negatives or false positives with respect to
true positive. However, the performance for CON-
TRADICTS is much lower than for SUPPORTS, see
Figure 5. On reason appears to be the class imbal-
ance. There are substantially less training instances
for that class (ratio of 1 : 8, see Figure 1). Fur-
thermore, the model significantly overpredicts the
CONTRADICTS relations (see confusion matrix in

Figure 3). To unravel this phenomenon, we manu-
ally analysed 255 relation candidates from differ-
ent error categories (true positives, false positives,
and false negatives). This revealed, that most of
the instances falsely predicted as CONTRADICTS

can be associated with specific linguistic surface
features, especially occurrences of discourse con-
nectors like “however” that are commonly used to
express contrastive ideas, but not in this case (see
the example in the end of Section 2). Apparently,
the model overfits on these shallow markers which
is further supported by the fact that all analysed
correctly predicted relation instances of that type
could be associated with entries of a small set of
connectors.6

Regarding the SUPPORTS relation, the analysis
revealed that sentence boundaries seem to be a very
strong signal. An over-proportional amount (85%)
of correct predictions has both arguments in the
same sentence compared to 20% and 15% for false
positives and false negatives, respectively. This
is even stronger when taking the argument types
into account: SUPPORTS relations that are in the
same sentence and connect a DATA ADU with any
claim ADU make up for 88% true positives, but
only for 19% and 12% of false positives and false
negatives. Note, that per definition of the Sci-Arg
annotation scheme7 DATA never participates in a
CONTRAST relation which may be one reason why

6Consisting of (in decreasing order of frequency): “how-
ever”, “but”, “while”, “in contrast”, “though”, “despite”, and
“even though”.

7The original annotation guidelines can be found here:
http://data.dws.informatik.uni-mannheim.
de/sci-arg/annotation_guidelines.pdf
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relation classification performance is so high. More
detailed results of the manual analysis can be found
in Figure 5 in the Appendix.

During our analysis we noticed a reasonable
amount of potentially mislabeled relation instances
(16%), especially missing support relations be-
tween OWN CLAIMs. Table 6 shows some examples
where relations were correctly detected by the ARE
model, but they do not exist in the gold data.

5.3 Ablation Study

We analysed the effect of our approach to add re-
versed relations. We trained another set of models
in a 5-fold cross validation setting with same hy-
perparameters, but without the augmentation. The
resulting mean bootstrapped micro F1 is 0.601, sig-
nificantly lower than the mean result with augmen-
tation enabled which is 0.762 with p < 1e-10. We
gather bootstrapped scores by randomly sampling
10 test document sections, calculate the scores for
both model variants as usual and repeat that process
for 100 times. Note that there are 114 document
sections in total after preprocessing the test set.

6 Related Work

AM is intensively studied for domains like public
debates, essays, or legal texts (Lawrence and Reed,
2019). As one of the earliest work for the scien-
tific domain, Teufel and Moens (1999) proposed
Argumentative Zoning (AZ) where sentences are
classified as AIM, CONTRAST, TEXTUAL, OWN,
BACKGROUND, BASIS, or OTHER. The authors cre-
ated a corpus of 80 annotated full-text papers. They
trained Naive-Bayes (NB) and Support-Vector-
Machine (SVM) models with hand crafted features
and achieved a performance of 0.442 macro-F1.
Later work defines similar concepts like "zone of
conceptualization" (Liakata, 2010) with classes like
EXPERIMENT, BACKGROUND, or MODEL, and
trained CRF based models on that (Liakata et al.,
2012) (0.18 to 0.76 F1 depending on classes). Guo
et al. (2010) compares these schemes with abstract
section name detection and trains NB and SVM
models. Dasigi et al. (2017) studied the problem
of scientific discourse parsing and annotated the
result sections of 75 papers with a seven label tax-
onomy described in de Waard and Pander Maat
(2012) like GOAL, FACT, or HYPOTHESIS. They
use an LSTM based model augmented with Atten-
tion (Vaswani et al., 2017) to obtain sentence rep-
resentations and present 0.74 F1 performance. In

their follow-up work (Li et al., 2021) they achieve
a strong 0.841 F1 by using a combination of trans-
fer learning from discourse annotated abstracts
(PubMedRCT, Dernoncourt and Lee (2017)) and a
model consisting of SciBERT, Attention, BiLSTM,
and CRF. In that respect, their approach is similar
to ours for ADUR, however, they apply their meth-
ods only on the results section of a document and
detect full sentence ADUs only. In a similar vein,
Achakulvisut et al. (2019) propose a sentence based
claim extraction model consisting of BiLSTM and
a CRF that they pre-trained on the PubMedRCT
dataset. They achieve a performance of 0.790 F1
on a dataset of 1500 abstracts from the Medline
dataset. Lauscher et al. (2018a) proposes a tool for
automatic ADU recognition and other tasks. Their
models are trained on the Sci-Arg dataset and con-
sist of pre-trained word embeddings and a BiLSTM
for token classification tasks (e.g. ADUR) and an
additional Attention mechanism to obtain sentence
representations for the other tasks.

All work mentioned above focuses primarily on
the detection and classification of argumentative
components. Stab et al. (2014) argues for the need
to also analyse argumentative structure, e.g. to auto-
mate knowledge base population or reasonable vali-
date claims because that requires to link the respec-
tive premises. They also highlight that discourse
theory and data is not suited out of the box for ar-
gumentative analysis because discourse relations
do not cover relevant argumentative relation types
and connect primarily neighboring elements which
does not reflect argumentative structure. However,
Accuosto and Saggion (2019) propose to derive ar-
gumentative structure information from discourse
data. They annotate a subset of 60 abstracts from
the SciDTB scientific discourse dataset (Yang and
Li, 2018) with argumentative units and relations.
Then, they train models consisting of a BiLSTM,
CRF, contextualized word embeddings (ELMo, Pe-
ters et al. (2018)) and an encoder pre-trained on
the discourse data. They show that adding the en-
coder significantly improves the performance up
to 0.40 F1 argumentative attachment scores, which
subsumes argumentative component and relation
recognition. Kirschner et al. (2015) created a new
corpus by annotating the introduction and discus-
sion sections of 24 scientific articles. The authors
consider two argumentative relations, SUPPORT

and ATTACK, and also two discourse relations, DE-
TAIL and SEQUENCE borrowed from RST (Mann
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Text with ADUs Annotated Correction

As
:::
the

:::::::::::
calculations

:::
of

::::
the

:::::::::
wrinkling

:::::::::::
coefficients

:::
are

:::::
done

::::
on

:
a
::::

per

:::::::
triangle

:::::
basisADATA, the computational time is linear with respect to

number of trianglesBOWN CLAIM.

A←S B A→S B

:::::
There

::::
are

::::::
several

::::::::::::
possibilities

::
to

::::
deal

:::::
with

::::
this

:::::::::
restrictionAOWN CLAIM.

One could decide to restrict the simulations to small deformations
where the approximation is validBOWN CLAIM.

- A←S B

As stated in Section 3.3ADATA,
:::
two

:::::::::
different

::::::::
wrinkle

:::::::::
patterns

::::
give

:::::::::
different

:::::::::::
wrinkling

::::::::::::
coefficients

:::::
for

:::::
the

::::::
same

:::::::::
triangle

::::::::
geometryBOWN CLAIM. Hence, for the same deformation of the
triangleCDATA, corresponding to each pattern,

:::
the

::::::::::
modulation

:::::::
factors

:::
will

:::
be

::::::::
differentDOWN CLAIM.

A→S B
C →S D

A→S B
C →S D
B →S D

If a pattern is orthogonal to the deformation directionAOWN CLAIM (as
compared to the other),

::::::::::::
corresponding

:::::::::::
modulation

::::::
factor

:::::
will

:::
be

:::::
smallBOWN CLAIM. In other words, the direction of the deformation
favors one pattern over the otherCOWN CLAIM.

A→S B A→S B
B →S C

Table 6: Examples for potentially mislabeled relation instances. A→S B means that the pair of ADUs (A,B) is an
instance of the SUPPORTS relation. All proposed corrections are predicted by our model.

and Thompson, 1988), annotated on the sentence
level. Recently, Mayer et al. (2020) proposed an ar-
gumentation mining pipeline for ADUR and ARE
on a new dataset. They annotate 500 Medline ab-
stracts with CLAIM and EVIDENCE ADUs as well
as SUPPORT and ATTACK relations. The authors
trained and analysed the performance of different
models consisting of encoders, like word embed-
dings, contextualized word embeddings and BERT
variants, in combination with a Gated Recurrent
Unit (GRU) or LSTM and a CRF. They present a
strong micro-F1 of up to 0.92 for ADUR and a per-
formance of up to 0.69 for the full pipeline and con-
clude that Transformers, especially domain specific
ones like SciBERT, work best for SAM at Medline
abstracts. Note that, similar to our weak measures,
they count predictions as true positive when 75% of
the tokens8 overlap. Another work (Fergadis et al.,
2021) that analyses the performance of Transform-
ers for SAM proposes a new corpus of 1000 ab-
stracts with sentence level annotations for CLAIM

and EVIDENCE. The authors use a SciBERT ap-
plied sentence wise with a BiLSTM over the CLS
token embeddings as contextualizer and present a
0.624 macro-F1.

8This differs from our weak measures in two ways: Fol-
lowing Lauscher et al. (2018b), we require 50% overlap in
means of characters, not tokens.

7 Conclusion and Future Work

In this paper, we presented a pipeline based ap-
proach to handle full-text argumentation mining on
scientific publications and showed its effectiveness
by establishing new state-of-the-art performance
on the Sci-Arg corpus. However, there is still a
significant gap to human performance. We used
PLM based models for both subtasks, argumen-
tative discourse unit recognition (ADUR) and ar-
gumentative relation extraction (ARE), and found
similar improvements gains (+7%) as reported else-
where when using Transformers over traditional
approaches without Attention mechanism, even
without fine-tuning the PLMs.

Our detailed error analysis revealed several find-
ings. First, recognizing instances is much harder
than assigning the correct label, which is true for
both tasks, but especially for ARE. The perfor-
mance suffers from shallow processing, i.e. the
models are tricked by linguistic surface features
like author referencing pronouns in background
claims or non-argumentative discourse connectors.
Furthermore, ADUR detection struggles a lot in the
context of non-contiguous elements which is rea-
sonable because it is trained with incomplete infor-
mation. This calls for conceptional better modeling
of the task, for instance with a joined model for
ADUR and ARE. Finally, we could confirm that
SAM is a complex problem that is even hard for hu-
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mans. However, the low inter-annotator-agreement
reported by the Sci-Arg authors and our finding
that a significant amount (16%) of the manually
analysed ARE instances are questionable labeled
raises the need for even more annotation rounds,
maybe with multiple domain experts, or a simpli-
fied annotation scheme.
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Figure 4: Distribution of input sequence lengths. This is after splitting the document text into sections and
tokenization. Note that this is primarily relevant for the ADU model since we use a much smaller token window
size k to restrict the input for the ARE model.

A Appendix

A.1 Preprocessing

We use the following regular expression pattern
to match content in the beginning of the files
that we remove: “<\?xml[^>]*>[^<]*<
Document xmlns:gate="http://www.
gate.ac.uk"[^>]*>[^<]*” (without the
outer quotes). Main sections are marked by
<h1>SECTION_HEADING</h1> in the Sci-Arg
corpus where SECTION_HEADING is any text, so
we use this regular expression pattern to split the
texts: “<H1>”(without the quotes). Note, that we
keep that content in the input. The input sequence
lengths for the ADU model reaches still values
> 4000. Figure 4 shows its distribution.

A.2 Experimental Setup and
Hyperparameters

We use the AllenNLP framework to implement the
models and execute the training. As PLM, we use
the uncased variant of SciBERT (Beltagy et al.,
2019) as provided by AllenAI9. ADAM (Kingma
and Ba, 2014) is used as optimizer. We use batch
sizes of 8 and 128 for ADU recognition and RE,

9see https://huggingface.co/allenai/
scibert_scivocab_uncased

respectively, that are derived from resource con-
straints. The ADU tags are encoded with the BI-
OUL tagging scheme. For the RE subtask, we
hand-picked embedding sizes of 13 and 3 for the
ADU-tags and argument-tags, respectively, that are
derived form the number of classes.10

As a result of the hyperparameter search, we use
the following parameters for the ADU recognition
task: a learning rate of 0.005, dropout probability
of 0.5 before and after the PLM and 0.4394 in the
LSTM, a gradient normalization threshold of 7.0,
a patience of 20 epochs for early stopping, two
layers for the LSTM with a hidden size of 300.
In the case of RE, we got the following values: a
learning rate of 0.0005, a dropout probability of
0.3061 before and after the PLM and 0.4394 in
the LSTM, a gradient normalization threshold of
4.12, 4 layers for the LSTM with a hidden size of
430, 193 filters for the CNN (with ngram sizes of
3, 5, 7, and 10), a hidden size of 860 for the final
projection layer, a token window size k of 479
tokens around the center of the candidate argument
pair, a max inner token distance d between the
arguments of 17711, and finally, we use a factor

10Note, the three ADU-tags are each BIOUL encoded and
the argument types, head and tail, are BIO encoded.

11This causes a loss of 0.23% of SUPPORT instances and
0.5% of PARTS OF SAME instances, which is neglectable.
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of three for the amount of negative examples, i.e.
we add three times as many existing argumentative
ADU pairs as NO RELATION instances which we
sample from all available pairs without a relation
label and within the distance constraint.

A.3 Training Resources
The hyperparameter search was performed on a
single Nvidia RTX A6000 (48GB). The training
of the final models, i.e. 5 for each subtask, and
inference was calculated on single Nvidia GeForce
GTX 1080 Ti (12GB). The total training time for
all final models was 5h51m for ADUR and 40h17m
for ARE.
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(a) Distribution of connecting phrases. Despite being no real discourse connectors, we also collected markers like BRACKETS
that seem to be important surface features. NONE indicates that no connective element was found.

(b) Distribution of relation arguments (sorted and men-
tioned only once if both arguments are the same).

(c) Distribution of the feature that both arguments are in the
same sentence.

Figure 5: Results of the manual error analysis for argumentative relation extraction. The figures show proportions
of different features (connectors, arguments, and same sentence feature) at different subsets by error type (false
negative, false positive, or true positive). The lowest entries per category are excluded. Values are calculated on a
manually collected subset of 255 relation instances in total.66
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Abstract
There are still hurdles standing in the way of
faster and more efficient knowledge consump-
tion in industrial environments seeking to fos-
ter innovation. In this work, we address the
portability of extractive Question Answering
systems from academic spheres to industries
basing their decisions on thorough scientific
papers analysis. Keeping in mind that such in-
dustrial contexts often lack high-quality data
to develop their own QA systems, we illustrate
the misalignment between application require-
ments and cost sensitivity of such industries
and some widespread practices tackling the
domain-adaptation problem in the academic
world. Through a series of extractive QA ex-
periments on QASPER, we adopt the pipeline-
based retriever-ranker-reader architecture for
answering a question on a scientific paper and
show the impact of modeling choices in differ-
ent stages on the quality of answer prediction.
We thus provide a characterization of practical
aspects of real-life application scenarios and no-
tice that appropriate trade-offs can be efficient
and add value in those industrial environments.

1 Introduction

It is widely recognized today that the most ad-
vanced countries have moved to the so-called
knowledge-based economy. In the industrial field,
including service providers, this new paradigm
has particular consequences for most players in
R&D and innovation activities where decisions are
based on the analysis of huge corpora of docu-
ments (scientific papers, patents, reports, etc). The
thorough exploitation of this pre-existing knowl-
edge by highly-skilled workers is costly and time-
consuming, but such costs can be significantly re-
duced by NLP technologies that make exploita-
tion and consumption of textual content faster and
more efficient. For instance, Information-Seeking
Question-Answering is of particular interest to in-
dustrial environments conducting scientific mon-
itoring, but there still remain significant hurdles

to efficiently adopt such systems in those environ-
ments, predominantly the complexity and accessi-
bility of the data landscape.

As a matter of fact, extracting information from
scientific publications is a cognitively complex pro-
cess and requires domain expertise, but obtaining
and ensuring such high-quality annotations could
become unreasonably expensive and unreliable.
The scarcity of in-house annotation efforts, fre-
quent domain shifts, and lack of deep understand-
ing of data-model interaction and evaluation make
these technologies inaccessible especially for indus-
trial environments lacking computational resources.
One direction would be to entirely rely on models’
transfer learning capabilities and make use of the
knowledge they learn on academic benchmarks that
meet the size requirement. However, zero and few-
shot settings successes, i.e, when few to no annota-
tions are available, seem to be largely dominated
by large-scale autoregressive models (Chowdhery
et al., 2022), which are accessible only to a hand-
ful of researchers and practitioners with enormous
compute power.

In this paper, we take on extractive information-
seeking QA on scientific papers from an industrial
point of view. We identify the hurdles standing in
the way of adopting such systems and show through
a simulation of such context that some modeling
and evaluation practices might not align with a suit-
able return on investment sought by such industries.
Our contributions can be summarized as follows:
First, we explore the portability challenges of QA
models toward scientific content-consuming indus-
trial environments and split them into three major
long-standing issues. Second, we simulate through
a series of experiments on QASPER (Dasigi et al.,
2021) the context where information is sought in
research papers and thus illustrate the identified
portability issues. Third, we discuss based on the
results the relevance of modeling and evaluation
choices when compared to the goal of adequately
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solving the task in a cost-effective way.

2 The portability challenge in industrial
environments

For small and medium-sized enterprises (SMEs)
interested in Information-Seeking QA on scientific
publications, the question of work to be done com-
pared to the benefit of it is very important as it
informs the way resources are allocated. When
bringing advancements like QA systems into real-
world applications suffering data scarcity issues,
choosing a benchmark representative of contexts,
questions, and answers one would expect in their
application remains the most widely adopted prac-
tice for maximizing accuracy. Unfortunately, due
to the fact that meeting an information need is a
hard concept to quantify, adopting such technolo-
gies can fall short of quantitatively measuring the
impact and the business value created. We discuss
hereafter three major inter-connected long-standing
issues that restrain from successful portability:

Issue 1: Modeling real-world problems is chal-
lenging. Question Answering aims at meeting an
information need and providing a user with relevant
answers to their questions. However, in domains
with high levels of expertise, assisting profession-
als in such complex processes requires, depending
on the nature of the query, cognitive abilities that
AI systems have not yet matured to (Chollet, 2019).
The AI community has factually been benchmark-
ing intelligence by comparing the defined skill ex-
hibited by AI and humans at specific tasks, and
building special-purpose systems capable of han-
dling narrow, well-described tasks, more and more
above human-level performance. This created a
plethora of QA benchmarks/tasks measuring very
specific skills (Rogers et al., 2021) as opposed to
the complex processes one would long for in in-
telligent systems. Further, annotating the required
amount of quality data to build such systems can
be unaffordable for many industries and organiza-
tions. The question that arises here is whether to
favor quantity in task format adequacy and thus
potentially model performance, or limited content
representativeness with complexity that guarantees
quality and better alignment with real-world appli-
cations.

Issue 2: There is a real need for transparency
and confidence not only in predictions but also in
the whole predictive process in a way that allows
users to assess how well-informed their decisions

would be. However, there still remains insufficient
understanding of the capabilities and limitations of
models and the way they interact with data during
the different stages of their training (Ramnath et al.,
2020; Zhou and Srikumar, 2021). Up until recently,
there has been little guidance on the suitability of
which models for which cases in Question Answer-
ing (Luo et al., 2022). Tremendous work contin-
ues to be done on modeling and exploring new
model architectures and training schemes, however
interpretation and explanation of models’ behav-
iors that inform modeling choices in adopting such
technologies, have not developed at the same pace.
This makes it challenging for adopters to select
their models for real-world settings, whether the
intended use is at early stages or later in production.
The obvious issue here is to identify what makes
a certain model a trustworthy fit for the project
motivation rather than another.

Issue 3: A good performance metric is not syn-
onymous with how well application requirements
are met. While current evaluation schemes con-
tribute to overly specializing solutions for perfor-
mance benchmarks, adopters and end-users are not
only more sensitive to the plus-value models pro-
vide, but also the costs of developing and deploying
such systems. Extractive QA systems are mainly
evaluated using the F-measure, but a token-overlap
metric is not informative on how well the system is
assisting the user and providing relevant answers.
For this reason, misaligning what is measured and
what is intended and desired might lead in cer-
tain cases to misallocating resources, and although
progress has been made towards user-centered eval-
uation (Chen et al., 2022), real-world applications
still have more complexity and demands whereas
models’ evaluation is lagging behind.

These issues impact different phases of the devel-
opment cycle of QA systems in real-world expert
applications. For instance, issue 1 impacts prob-
lem definition and adequate data collection, which
are the backbone of the whole cycle. Issue 2 in-
troduces hurdles to experiment design and model
training, while issue 3 directly impacts evaluation
and complicates the path to successful model de-
ployment. In the rest of the paper, we simulate
a scenario of seeking information in research pa-
pers and consider our end-user to be an expert in
decision support based on scientific publications
analysis. We particularly focus on the extractive
QA setting where the goal is to provide the user
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with answers to a particular question on a given
paper. This translates to the following formulation
of the issues mentioned above: 1. What kind of
task and data should we use, given the complexity
and the level of expertise present both in the ques-
tions and the context? 2. What models would solve
this task and would interact well with such data,
peculiarly since we need as much transparency as
possible in the process of identifying the answers?
3. How does the performance of the chosen model
on the chosen task and data reflect the return on
investment for deploying such systems?

3 Related work

3.1 Information-Seeking Question Answering

Figure 1: Example instance taken from QASPER as
presented in Dasigi et al. (2021)

Rogers et al. (2021) make the distinction be-
tween information-seeking and probing questions
based on the communicative intent of the user. We
are more interested in information-seeking ques-
tions that aim to bring forth answers that are un-
known at the time of formulating the query. There
exists conversational information-seeking datasets
such as QuAC (Choi et al., 2018), and grounded-
in-documents datasets such as Natural Questions
(Kwiatkowski et al., 2019) and QASPER (Dasigi
et al., 2021).

3.2 Domain Adaptation for Question
Answering

QA systems are often considered to be reliable
when they have been trained on enough in-domain
data, which is typically around 100k question and

answer training examples. However, it is well
known that such data is not abundant in special-
ized and restricted domains that require high-levels
of expertise. Sparked industrial interest in QA use-
cases has given rise to a line of work on Domain-
Adaptation (Hazen et al., 2019; Miller et al., 2021;
Yue et al., 2021) hoping to build robust systems for
domains with limited data.

Overall, the general approach to domain adap-
tation of Question-Answering models is to synthe-
size question-answer pairs (Shinoda et al., 2021;
Yue et al., 2022). Nevertheless, in the case of
information-seeking QA on research papers, such
approaches fall short of producing high-quality
questions and are so far unable to efficiently deal
with complex question and answer generation
from long context dependencies (Luu et al., 2020).
Therefore, domain adaptation of QA techniques
cannot yet deal with generating synthetic, high-
quality, and representative question-answer pairs
of information sought in research papers.

3.3 Modular pipelined systems for Question
Answering

Although modular pipelined QA systems are
mainly developed and used in Open-Domain QA
(Zhu et al., 2021), their components can be also ben-
eficial for tackling in-context QA. Figure 2 shows
the way we adopt retriever-ranker-reader architec-
ture for answering a question on a scientific pa-
per. We favor such building blocks of a solution
rather than complex do-it-all models to increase our
chances of understanding and trusting the system.

Retriever
A retriever aims at retrieving passages from a cor-
pus that are relevant w.r.t. a given query. Its goal is
to filter out irrelevant context and therefore it can
be used in QA grounded in documents when these
are very long sequences of text like research papers.
The granularity of passages to be retrieved depends
on the application and the type of answers sought.

State-of-the-art retrievers are mostly dense re-
trievers (Luan et al., 2021), i.e, they extract dense
representations of a question and a context by feed-
ing them into a language model and using the
dot-product of these representations as a similarity
score to rank and select most relevant passages.

Re-ranker
In information-seeking QA, especially on research
papers, the end-user might not always employ the
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terms in their query as they appear in context,
whether for lexical reasons like specific terminol-
ogy or simply because the terms themselves are
sought by the query. To this end, in order to im-
prove retrieval quality, a common strategy is to
process the retrieved passages or answers using a
re-ranking module. Rankers post-retrieval in par-
ticular are useful when retrievers have a high recall
but fail to rank documents according to relevance,
sometimes due to the semantic similarity between
questions and passages being very low (Lin et al.,
2020).

Reader
A reader infers the answer to the question from a set
of ordered documents it receives in a pipelined QA
system. Readers are generally regarded as either
extractive or generative. Extractive readers mainly
assume the correct answer is present in the context
and usually focus on learning to predict the start
and end position of the answer, while the generative
ones generate the answers from their vocabulary.
The choice of reader type depends on the nature
of questions and context and therefore evaluation
procedures differ (Zhang et al., 2020).

Figure 2: Modular pipeline for Information-Seeking
Question Answering grounded in research papers. Left
is a retriever-reader pipeline (referred to as pipeline R);
Right is retriever-ranker-reader (R-2).

4 Experimental Setup

4.1 Datasets
QASPER for simulation
In restricted domains with high level of expertise,
users tend to ask questions that are naturally dif-
ferent from those in open and general domains.
For instance, the distribution of Google Search
queries is not representative of all questions an

astrophysicist or an economist routinely ask in a
work-day. Such big datasets, arising from real-
world use cases, might contain microscopic frac-
tions of those specialized distributions one seeks,
but will not be representative if regarded as a whole
general domain. Therefore, we chose to focus our
simulation on a dataset that drifts away from those
general and “natural” distributions. To this end,
QASPER (Dasigi et al., 2021) is an information-
seeking dataset of questions and answers anchored
in research papers whose main topic is NLP: it
compromises 5,049 questions over 1,585 papers.
The dataset is challenging in nature because of
the long context requiring reading entire papers
and the multiple types of questions (extractive, ab-
stractive, yes/no, and unanswerable). Its task is
formally defined as determining the answerability
of the question and outputting an answer that can
have different formats (span(s), free-form, yes/no).

We consider QASPER to be a good dataset for
simulating an industrial environment seeking infor-
mation in scientific text as the nature of the context,
as well as the annotation strategy, are suitable and
equivalent to our use-case. At the time of writing,
it is currently the only existing benchmark focusing
on entire research papers and not just abstracts.

The official baseline for QASPER is Longformer
Encoder-Decoder (LED) (Beltagy et al., 2020).
LED was trained in a multi-task setup for evidence
identification and answer generation and chosen be-
cause of its ability to handle the variety of answer
types as well as encoding papers’ full text.

SQuAD

The Stanford Question Answering Dataset (Ra-
jpurkar et al., 2016, 2018) has been widely used in
QA tasks since its creation. It compromises over
100k crowd-sourced question-answer pairs derived
from Wikipedia. Questions in SQuAD are diverse
but answers are very short spans and require less
expertise than QASPER to produce.

Natural Questions

Natural Questions (Kwiatkowski et al., 2019) in-
troduced user queries issued to the Google search
engine paired with high-quality annotations in the
form of (question, Wikipedia page, long answer,
short answer) quadruples. Additionally, Natural
Questions is compromised of 323k examples, mak-
ing it 64 times the size of QASPER.
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4.2 Evidence Retrieval

For identifying relevant evidence paragraphs, we
use Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020), a highly efficient dual-encoder using
two BERT (Devlin et al., 2019) based models to
encode documents and queries separately. Both the
question encoder and context encoder have been
trained on Natural Questions (Kwiatkowski et al.,
2019). We use Haystack1 as a framework and re-
trieval is performed using ElasticSearch.

Instead of encoding the entire long-context pa-
pers that cannot be handled with BERT-like en-
coders, and building on the definition of the task it-
self, i.e, identifying evidence paragraphs, we chose
to deal with paragraphs as units of passages (Fig-
ure 2). Furthermore, 55% of the answers to ques-
tions with text-only evidence in QASPER have
multiple evidence paragraphs. For this reason, and
because retriever results could serve as explana-
tions for the end-user and thus increase their confi-
dence in predictions, we experiment with returning
k candidate paragraphs with k ∈ {1, 3, 5, 10}. We
chose these values to be "human-readable": an end-
user is not visually bothered by having such k ≥ 1
returned paragraphs highlighting answer elements.

Finally, because the semantic similarity between
questions and passages can be very low (Figure 1),
we experiment with re-ranking paragraphs using
cross-encoders (Hofstätter et al., 2020) based on
two models: MiniLM (Wang et al., 2020) and
ELECTRA (Clark et al., 2020), trained on the
MS Marco Passage Ranking2 (Microsoft Machine
Reading Comprehension) task. We choose to pass
the minimum between the top-50 ranked para-
graphs and the total number of paragraphs in the
article3 to the re-ranker because of its computa-
tional cost.

4.3 Answer Prediction

QASPER is composed of questions with multiple
evidence and answer types. We focus on text-only
evidence excluding tables and figures. We further
limit experiments to extractive questions as we
mentioned before (roughly 51.8% of the dataset)
because we prioritized our focus on accessible and
extensively-studied models as well as the extrac-

1https://github.com/deepset-ai/
haystack

2https://github.com/microsoft/
MSMARCO-Passage-Ranking

3Articles in QASPER have a number of paragraphs ranging
from ≈ 20 to a maximum of ≈ 230

tive evaluation scheme. Finally, because we use a
pipelined system with paragraphs as units of pas-
sages, we are able to fit candidate evidence in all
readers4. We conduct two sets of experiments:

• Zero-shot settings on a few selected models
that are known for robustness, generalization
ability, and efficiency among others. This
scenario is the closest to a real-world setting
where no annotated data is available and the
application is quite different from existing
benchmarks. Such experiments lay the ground
for what can be expected in a least-available
resources scenario and it is interesting to see
if there is value in those settings.

• Fine-tuned settings where all models are fine-
tuned on the extractive set of questions in
QASPER. We are particularly interested in
seeing how models adapt their answers to bet-
ter suit the answers’ nature in QASPER. Since
there would intuitively be improvements over
the zero-shot setting when fine-tuning, this
kind of scenario gives hints about the rele-
vance of investing in expert annotations when
considering the nature of such improvements.

The readers we chose to experiment with are the
following: RoBERTa (Liu et al., 2019) offering
a great trade-off between performance and infer-
ence speed, SciBERT (Beltagy et al., 2019) trained
on scientific text, deBERTaV3 (He et al., 2021)
particularly performing on NLU tasks, UnifiedQA
(Khashabi et al., 2020) for its strong generalization
abilities and Longformer (Beltagy et al., 2020)
which, although we do not need long-range mod-
els as the pipeline deals with paragraphs as units,
has the ability to produce longer answer spans if
needed.

We choose to have RoBERTa, SciBERT, de-
BERTa and Longformer trained on SQuAD v2.0
(Rajpurkar et al., 2018) because it is a simple and
accessible starting point, i.e, a widely used dataset
and trained models are open-sourced. UnifiedQA
has been trained on other datasets with other for-
mats in addition to SQuAD.

5 Results

We present in this section the results of the different
stages of the pipeline when adding components or
using different training strategies.

4For readers with 512 tokens limit, one passage exceeded
the maximum length so we truncated the input.
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Evidence Span (F1) Top-k retrieval accuracy (%)
LED 32.28 -

Retriever ↓ Ranker ↓ k = 1 k = 3 k = 5 k = 10 k = 1 k = 3 k = 5 k = 10

DPR
w/o 37.68 54.73 66.68 79.38 23.23 40.69 55.57 71.86

ELECTRA 52.63 72.07 80.28 89.17 39.08 62.63 73.45 85.60
MiniLM 54.65 74.05 81.76 90.91 41.54 65.31 75.48 87.97

Table 1: Evidence F1 and top-k retrieval accuracy on extractive questions in QASPER test.

5.1 Evidence retrieval

We show in Table 1 the results of the evidence
retrieval stage with and without the use of a re-
ranker for k ∈ {1, 3, 5, 10} where k is the number
of retrieved paragraphs. For k > 1, evidence-span
(F1) refers to the maximum overlap found between
the gold evidence and the k retrieved paragraphs,
whereas top-k retrieval accuracy (%) considers the
case where an exact match is found within the top-k
retrieved elements. We chose to report this metric
because it is more informative to the end-user.

The retriever adequately improves with greater
values of k, which is expected since the more it
retrieves the more chances of finding a relevant
paragraph. However, the use of the re-ranker con-
siderably enhances the evidence retrieval step, with
an average gain of 13.92F1 points with ELEC-
TRA, and 15.73F1 points with MiniLM for the
different values of k. In terms of retrieval accu-
racy, re-ranking adds on average 17.35% accuracy
with ELECTRA and 19.74% with MiniLM. If we
want to avoid overloading the end-user with irrel-
evant/incomplete evidence, using a ranker with a
smaller k can be a very good option.

5.2 Answer identification

We select the best performing retrieval pipeline, i.e,
DPR and MiniLM, and test different readers for
end-to-end answer selection. We report the results
in Table 2: for pipelines where k > 1, the reader
produces an answer ai for each retrieved (ranked)
paragraph pi. The results show the maximum over-
lap between {ai}i≤k and gold answers5.

In both zero-shot and fine-tuned settings, all
models surpass the LED baseline when returning
k ≥ 3 with ranking (note that LED does not return
multiple candidates). When seeing QASPER for
the first time, deBERTa outperforms the rest of the
models, widening the gap with greater values of k.

5In QASPER, many questions have multiple annotators
and therefore many answers. In v0.3, the answers have the
same nature, i.e, all extractive in our case.

It is interesting to see that RoBERTa, UnifiedQA,
Longformer and SciBERT have very close scores
to each other.

Further, finetuning on QASPER does not pre-
serve the performance ranking of models: Uni-
fiedQA outperforms ∀k ∈ {1, 3, 5, 10} all other
models, both with and without ranking. This is
to be expected with such generalization abilities.
Unsurprisingly, models do not all benefit the same
from re-ranking and fine-tuning as discussed in
Issue 2. We present hereafter the differences in
end-to-end performance gain for each model.

Effect of re-ranking

Figure 3: Gain in Answer-Span (F1) when reranking

Figure 3 shows how much performance Uni-
fiedQA, Longformer, SciBERT and deBERTa gain
from re-ranking. The cross-encoder pre-reading
helps improve answer identification in all scenar-
ios: ∀k ∈ {1, 3, 5, 10}, with and without fine-
tuning. The most significant gains are observed
for k = 1 (a model average of 9.2F1(zero-shot)
and 10.73F1(fine-tuned)) and k = 3 (10.45F1 and
12.33F1 respectively). This is a sign of the ranker
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Answer-span (F1) end-to-end
LED 32.0 (29.97⋆)

DocHopper 36.4⋄

k = 1 k = 3 k = 5 k = 10
R R-2 R R-2 R R-2 R R-2

RoBERTa-base 13.01 22.08 25.05 35.75 32.28 40.52 40.10 45.82
UnifiedQA-base 13.58 22.03 25.31 35.02 32.47 40.09 40.61 46.35

Longformer 11.96 21.49 24.59 35.12 31.30 40.20 39.36 45.73
SciBERT 13.23 22.24 25.24 35.74 32.21 40.49 40.89 46.33
deBERTa 12.87 22.79 25.70 36.53 33.57 42.15 42.76 48.15

RoBERTa-baseft 15.57 26.00 28.42 40.37 36.58 45.62 45.59 51.52
UnifiedQA-baseft 16.41 27.54 30.30 42.42 38.14 47.84 47.47 55.08

Longformerft 15.66 26.80 28.32 42.13 36.58 47.22 45.60 52.70
SciBERTft 15.80 26.62 28.79 41.13 36.71 46.60 46.42 52.62
deBERTaft 16.34 26.45 30.01 41.42 38.14 46.87 47.12 53.19

Table 2: Answer-span predictions on extractive questions in QASPER test using DPR and MiniLM for retrieval. ft
stands for further fine-tuning on QASPER. (⋆ reported in Dasigi et al. (2021), ⋄ reported in Sun et al. (2021))

propelling better context at the top. For all values
of k, Longformer benefits most from re-ranking.

Effect of fine-tuning
Similarly, Figure 4 shows the gain in performance
that the two pipelines benefit from when fine-tuning
readers on QASPER. In all scenarios, fine-tuning
enhances performance, with UnifiedQA having the
largest gains (an average of 4F1(without-ranking)
and 7.35F1(with-ranking)). The greater the value
of k, the more models benefit from fine-tuning.
This is due to the retrieval stage providing more
relevant context.

Figure 4: Gain in Answer-Span (F1) when fine-tuning

6 Discussion

We discuss hereafter the sources of improvements
and their alignment with the portability challenges.

6.1 Retrieval stage
Intuitively, we suspect that LED is under-optimized
not only due to the size of QASPER but also be-
cause it treats evidence selection as a classification
task (which is probably good for dealing with mul-
tiple evidence). DPR on the other hand has an
appropriate training dataset size and the approach
is done in a contrastive learning setting that might
be better aligned with identifying how close a pas-
sage is to a query. If we consider the modeling
issue (1) in this case, Natural Questions is one of
the benchmarks that have the most similarities with
QASPER: different levels of granularity (long and
short answers), different types of answers, and no
observation bias. With DPR being trained on NQ,
this offers an adequate trade-off between task for-
mat adequacy and content representativeness.
The remaining issue would be the low seman-
tic similarity faced in Information-Seeking QA
grounded in research papers, which we try to cir-
cumvent with the use of a re-ranker. The latter
very significantly enhances the evidence selection
stage. As research papers are themed and specific,
and throughout an article, information is redun-
dant with varying degrees of detail, a bi-encoder
might not be enough to relevantly score those dif-
ferences. Additionally, top-k retrieval accuracy is
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Paper Question Zero-Shot Fine-Tuned Gold Answer

1602.03483

Which un-
supervised
representation-
learning
objectives do
they intro-
duce?

Sequential
Denoising
Autoen-
coders

Sequential Denoising Au-
toencoders (SDAEs) and
FastSent, a sentence-level
log-linear bag-of-words
model

Sequential Denoising Au-
toencoders (SDAEs) and
FastSent

1606.07043
On which cor-
pora do they
evaluate on?

20 News-
group

20 Newsgroups and the
i2b2 2008 Obesity Chal-
lenge BIBREF22 data set

20 Newsgroups, i2b2
2008 Obesity Challenge
BIBREF22 data set

1602.04341

What was
the margin
their system
outperformed
previous
ones?

15.6/16.5

The margin between
our best-performing
ABHCNN-TE and
NR is 15.6/16.5 (ac-
curacy/NDCG) on
MCTest-150 and 7.3/4.6
on MCTest-500

15.6/16.5 (accu-
racy/NDCG) on MCTest-
150 and 7.3/4.6 on
MCTest-500

1707.07212

What are the
components
of the classi-
fier?

context
words,
distance
between
entities

context words, distance be-
tween entities, presence of
punctuation, dependency
paths, and negated key-
word

log-linear model, five fea-
ture templates: context
words, distance between
entities, presence of punc-
tuation, dependency paths,
and negated keyword

Table 3: Longformer’s predictions where the fine-tuned model produces longer spans over the zero-shot prediction.

more informative than span-F1: for instance with
an appropriate retriever and ranker, the user can
expect to have 3 questions over 4 where a correct
evidence paragraph is placed within 5 suggestions.

6.2 Reading stage

Having models that are fine-tuned with large
general-domain datasets before fine-tuning on
QASPER is helpful. However, It has to be kept
in mind that higher performance is not necessarily
a sign of different and thus better answer identifi-
cation, as the F1 metric does not faithfully reflect
the actual performance (especially if the difference
is about very few points): greater (lesser) non-zero
values of F1 are not systematic indicators of bet-
ter (worse) candidate answers (Bulian et al., 2022).
The fact that many models have extremely small
differences of performance in zero-shot emphasizes
the need to look for other preferences than perfor-
mance when selecting readers before considering
investing in their improvement; for instance an abil-
ity to return longer answers. To this end, we exam-
ined Longformer’s predictions in the case k = 1,
i.e, either it receives correct evidence or not, to

see how faithful the performance gain is to the im-
provement of predictions. When investigating the
questions where fine-tuning improved the zero-shot
prediction, we surprisingly noticed that the gained
performance in the pipeline R is due in 36.36% of
cases to longer answers containing the string of the
zero-shot prediction. Similarly for pipeline R-2,
43.78% of the improved answers are merely longer
spans. This might be a sign of completeness, but
how necessary is it really compared to the cost of
attaining such gains if the answer is visually lo-
cated in its context? We provide examples of such
predictions in Table 3.

6.3 Implications for the portability issues

In real-world settings, a user seeking information
in scientific publications might face very frequent
topic change. It is well known, both in academia
and industry, that QA annotations on scientific pa-
pers is extremely scarce: QASPER is the current
only benchmark on entire papers. Further, its sub-
set of extractive questions compromises over 1000
expert-annotated questions. As this is very expen-
sive to obtain, users will be tempted to focus on
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zero-shot settings performance. We discuss here-
after the implications for the portability issues from
what we observed on QASPER:

Issue 1: Current benchmarks do not faithfully
translate the complexity of tasks humans carry in
their quests for innovation and knowledge con-
sumption and there is a tendency to criticize how far
real-world data can be from such datasets. Because
obtaining high-quality and representative annota-
tions in such environments is way too costly, there
can be a plus-value in trading-off content represen-
tativeness with task format adequacy. For instance,
Natural Questions accounts for a great "similar"
task for the retrieval stage.
Issue 2: In some cases, accessible models trained
on adequate benchmarks can provide satisfying
zero-shot results without incurring the need to in-
vest in having a greater reported F1. To this end,
building simple and fast to deploy blocks of a solu-
tion does not imply jeopardizing performance since
design complexity is not necessarily the ground-
laying part of accuracy: LED is outperformed by
simpler pipelines offering more transparency of the
whole predictive process.
Issue 3: Users should align their application needs
with models’ characteristics rather than solely fo-
cusing on performance metrics and the processes
of improving it. Not only enhancing model per-
formance by fine-tuning on domain-specific data
might not align well with the cost sensitivity of
adopters, but also experts seeking to more effi-
ciently consume scientific content are not to be
withdrawn from the information-seeking process
the greater the reported performance metric is. For
instance, a user visually locating the answer span
in a paper accounts for 43% of Longformer’s per-
formance improvement with fine-tuning (and the
related costs).

6.4 Limitations of this work

We did not experiment on few-shot settings, even-
though such scenarios are anchored in real-world
settings. The reason for this is that such scenarios
heavily rely on data augmentation techniques; but
these approaches fall short of producing the qual-
ity we seek in such annotations as we explained
in Section 3.2. Therefore we are left with large
autoregressive models with stunning few-shot abil-
ities, but those are not yet accessible options either.
Another limit is that we restrained our experiments
to the extractive questions only. We made this

choice because evaluation schemes would be more
complex and it would be harder to interpret perfor-
mance variations (Gehrmann et al., 2022). It is also
not mandatory from the industrial point of view at
this time to go beyond extractive models, as these
already have a plus-value for the workers.

7 Conclusion

Information-seeking QA on scientific content is
gaining popularity in a world of knowledge-based
economies. In this paper, we identified the hur-
dles that stand in the way of efficient portability
of such systems into industrial environments suf-
fering data scarcity. We revealed through a series
of experiments on extractive QA anchored in re-
search papers, that bridging the gap between aca-
demic benchmarks along with their models’ per-
formance, and concrete user needs that are most
often hindered by resource allocation constraints
in business can be done with appropriate trade-offs
and that caution needs be taken when investing in
widespread but costly practices.
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Abstract

Information Extraction from scientific litera-
ture can be challenging due to the highly spe-
cialised nature of such text. We describe our
entity recognition methods developed as part
of the DEAL (Detecting Entities in the Astro-
physics Literature) shared task. The aim of
the task is to build a system that can identify
Named Entities in a dataset composed by schol-
arly articles from astrophysics literature. We
planned our participation such that it enables
us to conduct an empirical comparison between
word-based tagging and span-based classifica-
tion methods. When evaluated on two hidden
test sets provided by the organizer, our best-
performing submission achieved F1 scores of
0.8307 (validation phase) and 0.7990 (testing
phase).

1 Introduction

A large body of scientific literature is published
in different domains, making it difficult for re-
searchers in their respective fields to find infor-
mation or keep up-to-date. Automatic information
extraction, in particular Named Entity Recogni-
tion (NER), is one of the core methods from the
NLP community to assist researchers. It finds
mentions of entities of interest in a given text,
such as in medicine (Rybinski et al., 2021), astron-
omy (Murphy et al., 2006), geology (Consoli et al.,
2020), chemistry (Corbett and Boyle, 2018), mate-
rials (Friedrich et al., 2020) or even finance (Loukas
et al., 2022).

Astrophysics scientific literature has its own
unique properties, raising some specific challenges
for handling of the text. For example, it contains
ambiguous names chosen based on the scientists
names responsible for a mission or a facility name.
While it is not the first time that NER for astro-
physics has been studied (Murphy et al., 2006), it is
rather under-studied. DEAL (Detecting Entities in
the Astrophysics Literature) shared task introduced

as part of the AACL-IJCNLP 2022 conference has
challenged the community with the release of an
annotated dataset to pave the way for advancing
information extraction methods in this field.

We investigate two different NER methods,
word-based tagging and span-based classification,
on astrophysics data provided by the organisers of
the DEAL shared task. In particular, we examine
their effectiveness in extracting 31 different types
of entities of interest, such as ComputingFacility
and Wavelength, and report our experimental re-
sults, which led our team to an overall third ranking
among 12 teams.

2 Related Work

Information extraction, and in particular NER,
on scientific literature has attracted substantial re-
search (Augenstein et al., 2017; Luan et al., 2018;
Jain et al., 2020). NER refers to the task of iden-
tifying mentions of different types of entities in
free-text. Types of entities of interest depend on
the domain of the text; for example disease names
in biomedical text (Islamaj Doğan et al., 2014;
Dai, 2021) or numbers in finance (Loukas et al.,
2022). Methods to recognise such entities should
also handle different types of the text, including
both formal and informal text , such as social media
posts (Karimi et al., 2015; Basaldella et al., 2020).

For astronomy, there are two existing annotated
datasets. Hachey et al. (2005) created The Astron-
omy Bootstrapping Corpus (ABC) which is a cor-
pus of 209 annotated article abstracts in English
from the radio astronomical papers from the NASA
Astrophysics Data System archive. It also includes
a further unannotated 778 abstracts used for boot-
strapping. Hachey et al. experimented with active
learning for NER on a then novel domain of as-
tronomy. Murphy et al. (2006) annotated 200, 000
words of text from astronomy articles published
on arXiv. The dataset is manually annotated with
approximately 40 entity types of such as galaxy,

78



...

...

... wereperformed on the COSMOS SharedMemorysystem at DAMTP University of Cambridge operated on behalf

O O O O B-Fac I-Fac I-Fac I-Fac I-Fac I-Fac B-Org I-Org I-Org O O O

words ...

Encoder

hi hi+1 hi+2 hi+3 hi+4 hi+5 hi+6 hi+7 hi+8 hi+9 hi+10 hi+11 hi+12 hi+13 hi+14 hi+15

... wereperformed on the C SharedMemorysystem at DAM University of Cambridge operated on behalf ...sub-
tokens OS OSM TP

contextual
word

representations

NA
NA

ComputingFacility

Organization

NA

contextual
word

representations

...

hi+4 ⊕ hi+12 ⊕ 6

hi ⊕ hi ⊕ 1
hi ⊕ hi+1 ⊕ 2

hi+14 ⊕ hi+16 ⊕ 3

hi+19 ⊕ hi+19 ⊕ 1

Span-based
classifier

hi+16 hi+17 hi+18 hi+19

Word-based tagger

Figure 1: A high-level illustration of word-based and span-based entity recognition methods. These two methods use
the same encoder and differ in their classifiers. We use ‘Fac’ to replace ‘ComputingFacility’ for brevity purposes.

star and particle. Murphy et al. also propose a max-
imum entropy-based NER method on this dataset,
reporting an F1 score of approximately 87%.

Grezes et al. (2021) created astroBERT, a lan-
guage model for astronomical text provided by the
NASA Astrophysics Data System (ADS). 1 It is
pre-trained on 395, 499 English documents from
ADS, and is benchmarked for NER, showing im-
provements over BERT (Devlin et al., 2019).

3 Method

We start from splitting a long document into sen-
tences S1S2 · · · SD using a heuristic rule. That is,
every full stop is used to mark the end of a sen-
tence if the current sentence consists of more than
10 words. Given a sentence Si, two neural entity
recognition models are employed to recognize all
entity mentions. They use the same encoder (i.e.,
Transformers (Vaswani et al., 2017)) and differ in
their classifiers,

A high-level illustration of these two models is
shown in Figure 1. We describe the encoder in
Section 3.1 and two classifiers—word-based tagger
and span-based—in Section 3.2 and Section 3.3,
respectively.

3.1 Encoder
Sentence words are further split into sub-tokens
which can be directly found in the vocabulary (Sen-
nrich et al., 2016). Token embeddings added with
position embeddings are taken as input of a stack
of Transformer layers (Vaswani et al., 2017). Trans-
former layer, which consists of self-attention and

1https://ui.adsabs.harvard.edu/

feed-forward networks, is designed to let tokens
interact with each other and thus builds contextual
token representations. In the era of Transformer-
based models, model weights (e.g., embeddings,
Transformer layers) are usually initialized using
publicly available pre-trained models, such as
RoBERTa (Liu et al., 2019), in this work.

3.2 Word-based Tagger

Once we get the contextual representations from
the encoder: a list of vectors h0, h1, · · · , hn, where
n is the number of sub-tokens in the sentence. We
use the vector corresponding to the first sub-token
with each word to represent the word (e.g., hi+4

and hi+12 in Figure 1). The word-based tagger
takes as input a vector representing one word and
outputs a tag which is usually composed of a posi-
tion indicator and an entity type. We use BIO posi-
tion indicators, where B stands for the beginning
of a mention, I for the intermediate of a mention,
O for outside a mention. For example, COSMOS
in Figure 1 is assigned a tag B-ComputingFacility,
indicates it is a beginning word of an entity name
and its entity type is e ComputingFacility.

3.3 Span-based Classifier

We obtain the vector representations for each word
in a similar way as described above and then use
them to build span representations. The vectors rep-
resenting two boundary words and the span length—
embedded as a dense vector—are concatenated and
taken as input of the span-based classifier. Note
that we use the number of words within the span
as span length. For example, the span length of
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Development Validation Testing

Method Encoder F1 P R MCC F1 P R MCC F1 P R MCC

Word-based
base 0.8158 0.8080 0.8238 0.9124 0.8138 0.8047 0.8230 0.9064 0.7910 0.7958 0.7862 0.8921

(0.0069) (0.0092) (0.0053) (0.0026) (0.0039) (0.0059) (0.0019) (0.0016) (0.0038) (0.0052) (0.0030) (0.0018)

large 0.8342 0.8261 0.8424 0.9167 0.8242 0.8191 0.8294 0.9106 0.7985 0.8082 0.7890 0.8959
(0.0032) (0.0006) (0.0065) (0.0030) (0.0048) (0.0052) (0.0044) (0.0013) (0.0040) (0.0048) (0.0034) (0.0016)

Span-based
base 0.8264 0.8302 0.8227 0.9057 0.8223 0.8326 0.8123 0.8907 0.7996 0.8238 0.7768 0.8760

(0.0125) (0.0123) (0.0130) (0.0068) (0.0027) (0.0013) (0.0042) (0.0032) (0.0004) (0.0024) (0.0014) (0.0015)

large 0.8490 0.8499 0.8482 0.9169 0.8267 0.8328 0.8210 0.8999 0.8034 0.8229 0.7849 0.8837
(0.0125) (0.0050) (0.0200) (0.0127) (0.0019) (0.0088) (0.0113) (0.0042) (0.0015) (0.0092) (0.0101) (0.0036)

1st — — — — 0.8364 0.8296 0.8434 0.9129 0.8057 0.8137 0.7979 0.8954
2nd — — — — 0.8262 0.8145 0.8382 0.9139 0.7993 0.8013 0.7972 0.8978

3rd (ours) — — — — 0.8307 0.8249 0.8366 0.9138 0.7990 0.8076 0.7906 0.8946

Table 1: A comparison between word-based and span-based entity recognition models. We report mean scores
and standard deviations (in brackets), averaged over three repeats. Shared task results, shown in the bottom, are
retrieved from the shared task leaderboard at the end of shared task scoring period. Bold indicates highest number
among word- and span-based methods.

Training Development Validation Testing

# Documents 1,753 20 1,366 2,505
# Tokens 573,132 7,454 447,366 794,739
# Mentions 41,159 628 32,916 61,623

Table 2: The descriptive statistics of the DEAL dataset.

‘COSMOS Shared Memory system at DAMTP’ is
6, and the boundary word representations are hi+4

and hi+12, shown in Figure 1. The classifier deter-
mines whether a span is a valid entity name and
what is its entity type.

4 Dataset and Experimental Setup

The DEAL shared task organisers released one la-
belled training set (1, 753 documents) and one la-
belled development set (20 documents), on which
participants can develop their NER systems. Two
holdout labelled sets (validation and testing) were
used to score submissions, and the labels of these
holdout sets were not available to participants until
the official scoring period ends.

The dataset has 31 entity types, with entity ‘Or-
ganization’ comprising 16.3% as highest and entity
‘TextGarbage’, lowest with 0.1%. A descriptive
statistics of the dataset is shown in Table 2.

We train our models on the first 1, 578 docu-
ments of the training set, and the remaining 175
documents are used for hyper-parameter tuning
and best checkpoint selection. We use the Micro-
average string match F1 score to evaluate the effec-
tiveness of the models. The model which is most
effective on these 175 documents is finally eval-

uated on the development, validation, and testing
sets. We repeat all experiments three times using
different random seeds, and the mean scores and
standard deviations are reported.

In addition to the F1 score, we report precision
(P), recall (R) and Matthew’s correlation coefficient
(MCC) (Matthews, 1975) metrics, calculated using
the scripts provided by the shared task organizers.

5 Results and Discussion

We compare word-based and span-based entity
recognition models using both RoBERTa-base and
RoBERTa-large models. Results in Table 1 show
that span-based model outperforms word-based
model by 0.011 F1 when RoBERTa-base is used,
while 0.015 F1 when RoBERTa-large is used.
From Table 1, we also observe modest benefit of
using RoBERTa-large over RoBERTa-base (0.019
with word-based and 0.023 with span-based).

Task-adaptive pre-training does not guarantee
better performance Some studies have shown
that pre-trained language models are more effective
when pre-training data is similar to downstream
task data (Dai et al., 2019). Task-adaptive pre-
training (Howard and Ruder, 2018; Gururangan
et al., 2020)—continue pre-training on the unla-
beled training set for a given task—is a cheap adap-
tation technique that aims to reduce the disparities
between models pre-trained on generic data and
domain-specific task data.

We continue pre-training RoBERTa-large on the
DEAL training set using masked language mod-
eling. The total number of optimization steps is
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Figure 2: F1 scores evaluated on the development set
when task-adaptive pre-trained checkpoints are used.
Step 0 means the vanilla RoBERTa-large is used.

3,000 (≈ 100 epochs), and we save checkpoints ev-
ery 600 steps. During the task-adaptive pre-training
stage, we observe both the training and develop-
ment losses keep decreasing, however, the resulting
task-adaptive pre-trained checkpoints seem to be
very unstable and do not guarantee improved ef-
fectiveness (Figure 2). Note that Gururangan et al.
(2020) reported improved effectiveness via task-
adaptive pre-training RoBERTa-base, whereas we
use RoBERTa-large. We conjecture the observed
instability may be attributed to the optimization dif-
ficulties discussed by Mosbach et al. (2021), when
continue training large size models on small data.

Errors due to over-segmentation One problem
we observe is that many domain-specific terminolo-
gies are split into multiple sub-tokens and then
taken as input to the encoder. Taking the sentence
in Figure 1 as an example, since the term ‘COS-
MOS’ is not in the vocabulary associated with the
RoBERTa pre-trained models, it is split into four

1 (720) 2 (334) 3 (166) 4 (92) 5 (46) >= 6 (55)
# Sub-tokens per word
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Figure 3: Word-level F1 scores calculated on words
that belong to entity names. Number in brackets are the
number of corresponding words.

Development Validation Testing

Orig 0.8490 0.8267 0.8034
Innermost 0.8533 0.8293 0.8033
Outermost 0.8491 0.8298 0.8065

Table 3: The results of applying simple post-processing
on outputs from span-based methods. We post-process
outputs from span-based model using RoBERTa-large.
Bold indicates highest number in the column.

sub-tokens: ‘C’, ‘OS’, ‘M’, and ‘OS’.
We calculate the fragmentation ratio—the total

number of sub-tokens divided by the total number
of words—on the training set of DEAL. The result,
1.380, is much higher than the ones calculated on
clinical notes (1.233) and legal documents (1.118)
as reported by Dai et al. (2022). This problem
becomes more severe when we only consider words
that are part of entity names. Less than half of
these words (49.8%) can be directly found from
the RoBERTa vocabulary, and 25.5% of words are
split into three or more sub-tokens.

We measure the impact of over-segmentation
by calculating word-level F1 score on tokens that
are part of entity names and grouping words by
the number of sub-tokens they are split into. Fig-
ure 3 shows that both word-based and span-based
methods suffer from over-segmentation, especially
when words are split into three or more sub-tokens.

Errors due to nested predictions Span-based
methods were originally designed to tackle nested
NER (Byrne, 2007; Ringland et al., 2019; Wang
et al., 2020), where two entity names may nest each
other. For example, the span-based method may
predict both ‘COSMOS Shared Memory system’
and ‘COSMOS Shared Memory system at DAMTP’
as ComputingFacility entities. However, the anno-
tations of DEAL shared task do not allow nested
structure. We find that span-based method bene-
fit from post-processing via resolving these nested
predictions. Results in Table 3 show that simple
post-processing—keeping only entity names that
are not contained by any other names (Innermost)
or only entity mentions that do not contain any
other names (Outermost)—can bring moderate im-
provements.

6 Conclusions

We reported our experiments on extracting men-
tions of 31 different types of entities from astro-
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physics scientific literature. Two different sets
of methods based on words and spans were com-
pared. Results show that span-based method using
RoBERTa-large pre-trained models outperforms
the widely used word-based sequence tagging
method.

Potential research directions include building
better span representations with the help of exter-
nal knowledge base; enhancing pre-trained models
with domain-specific vocabulary; and, combing the
strengths of word-based and span-based models.
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Abstract

Current neural network solutions in scien-
tific document processing employ models pre-
trained on domain-specific corpi, which are usu-
ally limited in model size, as pretraining can
be costly and limited by training resources. We
introduce a framework that uses data augmen-
tation from such domain-specific pretrained
models to transfer domain-specific knowledge
to larger general pretrained models and im-
prove performance on downstream tasks. Our
method improves the performance of Named
Entity Recognition in the astrophysical do-
main by more than 20% compared to domain-
specific pretrained models finetuned to the tar-
get dataset.

1 Introduction

Scientific Document Processing (SDP) is an emerg-
ing field in Natural Language Processing (NLP)
that proves to have more obstacles than every-
day text due to the extensive scientific jargon and
long text spans. Recent work in SDP on trans-
former architectures (Vaswani et al., 2017) has
placed emphasis on constructing pretrained models
in scientific corpi, such as BioBERT (Lee et al.,
2019), SciBERT (Beltagy et al., 2019), and as-
troBERT (Grezes et al., 2021). However, such
models are usually trained on the base size of its
corresponding architectures, limiting the potential
inference performances due to the smaller number
of trainable parameters compared to the large-size
models usually used in state-of-the-art (SOTA) per-
formance for benchmarks in everyday text. Are
we able to achieve similar or better results with
finetuning models larger in size whilst transferring
knowledge from such pretrained scientific models
to increase robustness?

In this paper, we propose a training method
inspired by the Unsupervised Data Augmenta-
tion (Xie et al., 2020a) and the Noisy Student (Xie
et al., 2020b) framework. We first augment the

training data with model that is trained on a cor-
pus that is more closely aligned with the context
domain of the target dataset. We then train a larger
model on both the original training data and the
augmented training data, combining the compu-
tational availability of the larger model with the
domain-specific trained knowledge of the smaller
domain-pretrained model.

We describe the shared task DEAL (Grezes et al.,
2022) and its dataset in Section 2 and briefly re-
view the previous work we used in Section 3. We
detail our model architecture and methodology in
Section 4, and go through our experimental setup
and results in Section 5. Finally, we go through an
in depth discussion of our results in Section 6 and
conclude our findings in Section 7.

2 Task Description and Dataset

Named Entity Recognition (NER) refers to the
identification and recognition of entities from a
string of text. Although this task is well explored
in everyday text in benchmarks such as CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003) and
WNUT2017 (Derczynski et al., 2017), the focus of
scientific text is not prominently showcased in such
work. Even in benchmarks that focus on scientific
document processing (SDP), the corpi in question
often lie in the domain of biology and chemistry,
such as the NCBI-Disease (Doğan et al., 2014) and
BioCreative V CDR (Li et al., 2016) corpi, with
a lack of evaluation and state-of-the-art models in
the astrophysics domain.

The shared task DEAL (Detecting Entities in
the Astrophysics Literature; Grezes et al. 2022)
is a sequence labeling task that aims to increase
the accuracy in Named Entity Recognition in the
domain of astrophysics. Given the overlapping us-
age of historical names and acronyms in different
types of astrophysical entities, it may be difficult
to extract named entities in astrophysics purely by
carefully constructed systematic rules. For exam-
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ple, Maxwell may refer to either the physician
James Clerk Maxwell, a crater on the far side of
the moon, or a series of equations. DEAL aims
not only to discern such entities, but also to discern
between such different types of entities.

The training dataset consists of 1,753 samples
of text fragments from the text and acknowledg-
ments of astrophysics papers provided by the
NASA Astrophysical Data System (NASA ADS;
Kurtz et al. 1993). For evaluation purposes,
the labeled development dataset consists of 20
samples, while the unlabeled validation and test
dataset consists of 1,366 and 2,505 samples, re-
spectively. We evaluate the performances based
on the seqeval (Nakayama, 2018) F1 score at
the entity level and Matthew’s correlation coeffi-
cient (Matthews, 1975) at the token level in the
validation and test dataset.

3 Literature Review

We briefly review some previous work that are uti-
lized in our proposed system.

3.1 Pretrained Transformer Models
With the introduction of BERT (Devlin et al., 2019),
the usage of pretraining as a self-supervised tech-
nique to optimize model weights in a particu-
lar text domain for transformer architectures has
been widely used in scientific document process-
ing and other domain-specific language tasks such
as biomedical text (Lee et al., 2019) and clinical
notes (Alsentzer et al., 2019). We now discuss key
transformer models we use in our work.

• RoBERTa (Liu et al., 2019), which is more
optimally pretrained on a larger corpus com-
pared to BERT, and has a larger vocabulary.

• SciBERT (Beltagy et al., 2019), which is pre-
trained on a scientific corpus with a mixture of
biology and computer science papers. SciB-
ERT’s vocabulary is also constructed sepa-
rately, consisting of more scientific jargon
than BERT, with a token overlap of 42%.

• SpaceTransformers (Berquand et al., 2021),
a series of models including SpaceRoBERTa
and SpaceSciBERT, which are further trained
on astronomical text based on the base model
of RoBERTa and the uncased version SciB-
ERT on its scientific vocabulary, respectively.
SpaceTransformers do not construct a new vo-
cabulary and instead reuse the vocabularies
constructed in the original models.

3.2 Adapter Architecture

Adapters (Houlsby et al., 2019) are introduced as
a parameter-efficient alternative to finetune trans-
former models (Vaswani et al., 2017) for down-
stream tasks. Unlike finetuning, which modifies the
top layer of the transformer, adapters inject layers
of parameters into the architecture itself, training
only on these injected parameters while freezing
the parameters of the original network. Adapter
training consumes much less computational cost
when compared to direct finetuning, making it a
more cost-efficient architecture to adopt while train-
ing large sized models.

3.3 Data Augmentation and Semi-Supervised
Methods

Data augmentation is a commonly used technique
in semi-supervised training in conjunction with un-
labeled data to increase the robustness of the model.
Xie et al. (2020a) noted that such augmentations
should have both diversity and validity compared to
the original data. They proposed using backtransla-
tion (Sennrich et al., 2016; Edunov et al., 2018) as
an augmentation method to produces paraphrases
of the original text that can be utilized for sequence
classification tasks.

In the same paper, the authors introduced a semi-
supervised learning technique named Unsupervised
Data Augmentation (UDA; Xie et al. 2020a) which
compares unlabeled data with its augmented ver-
sion by introducing a consistency loss term, rea-
soning that a robust enough model should yield
similar predictions. For sequence labeling tasks,
Lowell et al. (2021) proposed to augment the data
by randomly masking parts of the test and filling in
the masked tokens with BERT (Devlin et al., 2019),
similar to a cloze test, as known as the MaskLM
task. Furthermore, Lowell et al. (2021) also showed
that even without the inclusion of unlabeled data,
adding a consistency loss term by comparing train-
ing data and its augmented version can also in-
crease the robustness of the inference model.

Another semi-supervised learning framework,
the Noisy Student, proposed by (Xie et al., 2020b),
utilizes self-training and pseudo-labeling to itera-
tively train a series of student-teacher models that
increase in performance level. A normal teacher
model is first trained on labeled images. The
teacher model is then used to generate pseudo la-
bels for the unlabeled data. The labeled and now
pseudo-labeled data would then be used to train an

85



equal-or-larger student model with noise injected
via data augmentation and model dropout. The pro-
cess can then be iterated using the student model as
the new teacher model and training a new student
model.

4 Architecture and Methodology

We propose a system that uses data augmentation
as a low-cost method of teacher-student training
to transfer domain-specific knowledge to a larger
adapter-based model.

4.1 Preprocessing

The DEAL training dataset contains samples that
far exceed the size of the token number of 512 that
transformer models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) are pre-
trained on. Although transformer architectures for
long text such as Big Bird (Zaheer et al., 2020) can
be used train the entire text in less than quadratic
time, we reason that the recognition of named enti-
ties may not require the contextual information of
text in sentences in which the named entity itself
does not reside. We instead partition the sample
text into multiple input cases, separating the text
by sentence via regex.

We first identify end-of-sentence characters,
namely periods, question marks, and exclamation
marks. We then partition the text unless the end-
of-sentence character is followed by another punc-
tuation or whitespace followed by punctuation, in
which case we partition after the punctuation. Us-
ing the nltk library (Bird et al., 2009), we avoid
tokenizing common abbreviations such as “Mr.”
and “Dr.”, as well as other abbreviations found in
the training data and scientific text in general such
as “fig.”, “tab.”, “et al.”, etc. Due to capitaliza-
tion being important in the identification of named
entities, we retain capitalization after tokenization.

The training dataset is partitioned into 25596
samples after our preprocessing, with an average
of 22.39 words and a standard deviation of 15.64
words. Furthermore, the number of named entities
in a sample has an average of 1.6, and a standard
deviation of 2.6, with 41159 named entities in the
training dataset in total.

4.2 Augmentation

For our data augmentation step, we borrowed the
consistency loss term from UDA (Xie et al., 2020a)
on a supervised basis and augment our text by

Figure 1: Our Proposed Architecture for Low Cost Do-
main Specific Teachers

BERT based MaskLM as suggested by Lowell et al.
(2021). We take this a step further and view the
MaskLM data augmentation technique as a low-
cost teacher model that we can use to further train
a larger student model while finetuning the train-
ing dataset. Replacing the simple BERT for data
augmentation domain-specific pretrained models
such as SciBERT (Beltagy et al., 2019), we aim
to transfer the domain-specific knowledge of such
models to the main backbone model. We randomly
mask 30% of the total tokens as suggested by Low-
ell et al. (2021), and, following Devlin et al. (2019),
replacing 80% of such tokens with the [MASK]
token, 10% of such tokens with a random token,
and keep 10% unchanged. However, as our task re-
quires the augmented text to have the same amount
of words as the original, since our labels are pro-
vided on a word-level basis, we revert the tokens to
the original if the replaced token causes a reduction
or increase of words in the augmented sentence.

4.3 Backbone Model Architecture

Instead of training smaller student models to per-
form knowledge distillation, we take inspiration
from the Noisy Student framework (Xie et al.,
2020b) and train a student model larger than the
teacher model to act as our backbone model for
training. Due to its various SOTA performances in
GLUE (Wang et al., 2018), we select DeBERTaV3-
large (He et al., 2021a,b) as our backbone model.

As opposed to finetuning the backbone model
directly, we use the adapter (Houlsby et al., 2019)
version of the model to decrease computational
costs, while obtaining similar results to finetuning
the full model itself.
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Original:

This research made use of NASA’s Astrophysics Data System Bibliographic Services;
the SIMBAD data base (Wenger et al. 2000 ) and VizieR catalogue access tool
(Ochsenbein, Bauer Marcout 2000 ), both operated at CDS, Strasbourg, France;
and the Jean-Marie Mariotti Center Aspro2 service 1 .

Augmented:

The project made use of NASA’s Astrophysics Data System Bibliographic database;
the SIMBAD data base (Wenger et al. 2000 ) and VizieR data access tool
(Sch,ouin, and Marcout 2000 ), which operated at CNR, Strasbourg, France;
and the Jean-Marie Mariotti Center Asprox service 1 .

* Bold text indicates augmented text.
† ulined text indicates named entities.

Table 1: Sample Augmentations by CosmicRoBERTa

4.4 Loss Function Engineering

Incorporating the augmented data created from the
MaskLM task, we add an additional consistency
loss between the original data and the augmented
data during training, as shown in Figure 1.

We now write the full loss term that we use for
training. Let X = {(xb, yb) : b ∈ 1, 2, · · · , b}
be a batch of B labeled data samples with xb be-
ing the input sample and yb being the ground-truth
label. We denote ŷ(x) as the predicted class dis-
tribution of sample x made by the model. Further,
we also denote H(q, p) the standard cross-entropy
loss of predicted distribution p and target distri-
bution q, and D(q||p) as the Kullback–Leibler di-
vergence (Kullback and Leibler, 1951) between
distributions p and q. Denoting the augmentation
via MaskLM as A(·), we get the loss term that we
use for training:

L =
1

B

B∑

i=1

H(yb, ŷ(xb)) +D(ŷ(A(xb))||ŷ(xb))

(1)
For validation and testing purposes, we compute
the loss term based on the cross entropy loss alone.

5 Experiments

We describe the experimental setup and the results
in this section.

5.1 Experimental Setup

We implement our model using PyTorch (Paszke
et al., 2019) and Lightning1, importing pretrained
model weights from Huggingface (Vaswani et al.,
2017). We set the learning rate of 3× 10−4 on the
AdamW optimizer (Loshchilov and Hutter, 2019).

1https://github.com/Lightning-AI/
lightning

Training was conducted on a single core 12GB
NVIDIA K80 kernel.

5.2 Results
We present an abridged comparison of our re-
sults and established baselines provided in the
DEAL task in Table 2. Our best model on
the DEAL testing dataset uses Pfeiffer et al.
(2020)’s adapter architecture of the DeBERTaV3-
large model as the backbone model and uses Cos-
micRoBERTa2, a further pretrained version of
SpaceRoBERTa (Berquand et al., 2021), as the aug-
mentation teacher model. Our model has a +20
improvement on the F1 score, while having a +8
improvement on the MCC score, indicating an in-
crease in performance both on the token-level and
the entity-level recognition of entities.

6 Analysis

We now present a more detailed analysis of the
performance of different variants of our model and
some considerations between experimental setups.

6.1 Large Parameter Efficient Models
Our first idea to increase performance is simple:
Use a larger model to boost performance, as the
increased number of hyperparameters to tune and
the larger architecture indicates a larger capacity
to generalize to the training dataset. In order to
train a large sized model on limited training re-
sources to increase accuracy, we adopt the usage of
adapter architecture due to the reduction of tunable
parameters by two orders without affecting training
convergence (Houlsby et al., 2019), which also re-
duces memory usage as less gradient computations
need to be computed and stored. According to the

2https://huggingface.co/icelab/
cosmicroberta
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F1(entity) MCC(word)

Random 0.0166 0.1089
BERT (Devlin et al., 2019) 0.4738 0.7405
SciBERT (Beltagy et al., 2019) 0.5595 0.8016
astroBERT (Grezes et al., 2021) 0.5781 0.8104

(Ours) DeBERTaV3adapter (He et al., 2021a,b; Houlsby et al., 2019)
+ SciBERT (Beltagy et al., 2019) 0.7751 0.8898
+ CosmicRoBERTa (Berquand et al., 2021) 0.7799 0.8928

Table 2: Evaluation Results on Testing Dataset

F1(entity) MCC(word) Accuracy(entity)

astroBERT 0.5781 0.8104 0.9389

DeBERTaV3adapter (He et al., 2021a,b; Houlsby et al., 2019) 0.7896 0.8987 0.9667
+ SciBERTcased (Beltagy et al., 2019) 0.7988 0.9063 0.9692
+ RoBERTa (Liu et al., 2019) 0.7970 0.9057 0.9690
+ CosmicRoBERTa (Berquand et al., 2021) 0.7972 0.9050 0.9687
+ SpaceSciBERTuncased (Berquand et al., 2021) 0.7859 0.9030 0.9680

Table 3: Augmentation Model Comparison on Validation Dataset

empirical results of Rücklé et al. (2021), the use
of adapters speeds up training approximately 1.35
times. With such settings, we are able to construct
the baseline model directly by using DeBERTV3-
large in an adapter setting, achieving a +21 im-
provement on the entity-level F1 metric and a +8
improvement on the word-level MCC metric with-
out further augmentations. (See Tab. 3)

6.2 Augmentation as Teacher Models

Using the results of direct finetuning of the DeBER-
TaV3 model as our baseline, we explore the effects
of using different pretrained “teacher models” to
augment training data. We present the training re-
sults in Table 3, evaluated in the validation dataset.

We find that augmentation via SciBERT seems
to provide the best performance on the validation
dataset, while augmentation via CosmicRoBERTa
provides the best performance on the test dataset.

As we are using the MaskLM task to augment
sentences, the model would only fill the masked
tokens with tokens in its vocabulary, which would
rely on both the vocabulary itself and the model’s
ability to fill in the correct token. While Cosmi-
cRoBERTa is pretrained on an astronomical corpus,
the vocabulary itself is based on RoBERTa, thus
producing a more valid augmentation, but not di-
verse enough. On the other hand, SciBERT has
a self-constructed vocabulary, thus such an aug-

mentation would produce a more diverse augmen-
tation, or at least an augmentation containing more
scientifically oriented text, but not valid enough.
On the other hand, while SpaceSciBERT seems to
fit the above two criteria of diversity and validity,
the model itself is uncased, hence the produced
augmented words are uncased, leading to a poor
augmentation, the model would underfit on the aug-
mented data and overfit on the training data, leading
to poorer performance during inference.

For further work, we expect the usage of as-
troBERT as an augmentation teacher model to
be more beneficial than previous attempts, as the
model is both pretrained on astrophysical text, and
contains a vocabulary with more jargon, achieving
both diversity and validity in augmentation.

7 Conclusion

In this paper, we show that we are able to surpass
models pretrained on domain-specific knowledge
by utilizing general corpus pretrained adapter mod-
els of larger sizes. Furthermore, such a method
can by used in conjunction to the aforementioned
domain-specific pretrained models via data aug-
mentation to transfer such knowledge to the back-
bone model. Further work may explore other meth-
ods of augmentation to act as teacher models or
combining multiple augmentations in training.
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Moving beyond word lists: towards abstractive topic labels for human-like
topics of scientific documents
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Abstract
Topic models represent groups of documents as
a list of words (the topic labels). This work asks
whether an alternative approach to topic label-
ing can be developed that is closer to a natural
language description of a topic than a word list.
To this end, we present an approach to gener-
ating human-like topic labels using abstractive
multi-document summarization (MDS). We in-
vestigate our approach with an exploratory case
study. We model topics in citation sentences
in order to understand what further research
needs to be done to fully operationalize MDS
for topic labeling. Our case study shows that
in addition to more human-like topics there are
additional advantages to evaluation by using
clustering and summarization measures instead
of topic model measures. However, we find that
there are several developments needed before
we can design a well-powered study to eval-
uate MDS for topic modeling fully. Namely,
improving cluster cohesion, improving the fac-
tuality and faithfulness of MDS, and increasing
the number of documents that might be sup-
ported by MDS. We present a number of ideas
on how these can be tackled and conclude with
some thoughts on how topic modeling can also
be used to improve MDS in general.

1 Introduction

Topic modeling, a common approach for extract-
ing themes from scientific documents, is currently
facing many challenges: methodological validity
(Shadrova, 2021), validity of automated evaluation
(Doogan and Buntine, 2021; Hoyle et al., 2021),
and utility of classical approaches (Sia et al., 2020;
Zhang et al., 2022). We propose an additional chal-
lenge: are lists of words the best we can do for
topic labels?

Topic models have tended to represent a topic
as a list of words. Traditional topic labels are sup-
posed to be “a set of terms, when viewed together,
enable human recognition of an identifiable cate-
gory” (Hoyle et al., 2021). However, a set of terms

do not align with our intuitive understandings of
what a topic is: a common theme or concept expli-
cated as a word, phrase, or natural language descrip-
tion (Shadrova, 2021). In this paper, we present
an exploratory case study using multi-document
summaries (MDS) as labels for clusters of citations
in order to understand current limitations and fu-
ture work needed for using abstractive topic labels
for human-like topics of scientific documents. To
our knowledge, it is the first work that proposes to
use MDS for topic labeling on top of topic clusters
constructed with contextualized embeddings.

In addition to word lists not aligning with natural
understanding of what a topic is, Shadrova (2021)
has presented an extensive criticism of why tradi-
tional topic models based on lexical overlap mea-
sures lead to problematic topic models. Namely
that they they fail to understand word sense and
capture context. Recent approaches have relaxed
these restrictions when constructing topic clusters
(Bianchi et al., 2021; Grootendorst, 2022) by using
contextualized word embeddings. However topic
labels in those models are still constructed as word
lists drawn from documents such as through TF-
IDF.

Some work has anticipated this challenge by de-
veloping topic representations with phrases (Popa
and Rebedea, 2021) and summaries (Basave et al.,
2014; Gourru et al., 2018; Wan and Wang, 2016).
But those works tend to be extractive, drawing the
phrase or summary from a single document in the
cluster1. In the extractive setting, there may be
no existing and fluent phrase or sentence that is
capable of describing all documents in the clus-
ter or there may be multiple and even conflict-
ing subtopics in the cluster that require a longer
abstractive representation for producing a factual
summary.

1see Alokaili et al. (2020); Popa and Rebedea (2021) for
recent abstractive works.
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2 Proposed Method

2.1 Topic modeling as clustering and MDS
In order to address the issues presented above, we
propose using abstractive MDS as an approach to
topic labeling. Topic modeling can be reframed as a
set of two tasks: (1) finding meaningful clusters for
documents (Sia et al., 2020; Zhang et al., 2022) and
(2) performing MDS on those individual clusters
to find meaningful topic labels. In this framework,
LDA (Blei et al., 2003) uses document-word distri-
butions to construct clusters and word lists drawn
from those clusters as a form of MDS. Since we
are looking at abstractive MDS that moves beyond
word lists, we propose that the topic representation
be a sentence or paragraph but there is no reason
why an abstractive MDS can’t be trained to gener-
ate phrases or even word lists (see Alokaili et al.
(2020)) since word lists may still be appropriate in
some situations.

In order to accomplish this, one can first use an
approach for document clustering that uses con-
textualized word embeddings to avoid the issues
mentioned above. By separating the clustering step
from the representation step, we can use separate
measures of cluster coherence to evaluate the qual-
ity of document clusters before we proceed to topic
representation. We can also use evaluations of re-
sulting topic representations later as an additional
step to inspect the quality of our topic clusters.

After obtaining document clusters, MDS models
such as (Lu et al., 2020) can be used to produce nat-
ural language summaries that synthesize common
themes from documents. Recent work on MDS
within the scientific and biomedical domain (DeY-
oung et al., 2021; Lu et al., 2020; Shen et al., 2022)
show good results in producing both single sen-
tence (extreme) summaries as well as long form
summaries over many scientific documents.

2.2 Evaluation
Topic model evaluation is challenging (see Chang
et al. (2009); Hoyle et al. (2021); Doogan and Bun-
tine (2021)). Traditional metrics like coherence
(NPMI), perplexity, and diversity scores are stud-
ied in the context of topic word lists and validated
with correlation to human ratings of the utility or
coherence of those topic word lists. Since we sug-
gest developing abstractive topic representations,
we want a way to compare various forms of both
abstractive and extractive topic representations pre-
sented by the model. Since we are treating rep-

Model Source
multi-lexsum-long Shen et al. (2022)
multi-lexsum-tiny Shen et al. (2022)
ms2 DeYoung et al. (2021)
multixscience Lu et al. (2020)
topic lists Bianchi et al. (2021)

Table 1: Generative models used for abstractive MDS
topic representations.

resentation as a summarization task and this task
includes measures that work across extractive and
abstractive settings, we suggest that we start with
standard summarization metrics such as overlap
metrics like Rogue (as used in Cui and Hu (2021)
or semantic metrics such as BERTScore (Zhang
et al., 2022) (as used in Alokaili et al. (2020)).

3 Case study: how has a scientific
document been cited?

To evaluate our proposed method, we chose topic
modeling over scientific documents as a setting.
While several methods exist for determining cita-
tion intent function (Basuki and Tsuchiya, 2022;
Nicholson et al., 2021) and the relationship be-
tween two papers (Luu et al., 2021), there is very
little work on topic models over citations (for some
representative work on "citation summary" see
Elkiss et al. (2008); Wang et al. (2021); Zou et al.
(2021)). Topic representations of citations are inter-
esting for characterizing trends in how a paper has
been cited or helping researchers identify relevant
citations to read among potentially thousands of
other citations. In this work, we treat topic labels
as a "citation intent" label and use the proposed
approach to understand the utility of MDS for topic
modeling in this setting.

4 Experimental Setup

We apply the method described in section 2 in order
to identify clusters of citations and provide labels
for those clusters without any supervision. Specif-
ically, we present a case study of what this looks
like on a single paper to illustrate the potential of
our approach and try to assess future work needed
in order to make MDS a good solution for topic
labeling in general and citation summarization in
particular.

For this study, we used scite.ai (Nicholson et al.,
2021) to extract in-text passages which contained
citations (citation statements) to the paper (Lau
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Model R-1 BERTScore
multi-lexsum-long 38 85
multi-lexsum-tiny 3 81
ms2 3 81
multixscience 15 80
topic lists 1 76

Table 2: Rouge-1 (R-1) and BERTScore (F1) results
for each models topic representations measured against.

et al., 2014), a well known paper that introduces
the NPMI metric in topic modeling. This resulted
in 183 citation statements which is the corpus we
will use for topic modeling.

In order to identify meaningful groups of clus-
ters we use contextualized topic models (CTM)
(Bianchi et al., 2021) since this method uses con-
textualized word embeddings (we used SPECTER
for constructing embeddings (Cohan et al., 2020)).
We selected CTM since we still get word lists as
topic labels which we used for evaluation. In order
to select the number of topics hyperparameter, we
trained CTM several times steadily increasing the
number of topics from 3 to 50 and selected the best
model according to coherence (NPMI) resulting in
a 10 topic model (see Appendix A for more details)
over 183 citation statements.

The models selected for generating abstractive
MDS are outlined in Table 1. All MDS models used
are based on the longformer architecture (Beltagy
et al., 2020) and used beam search (5 beams) with
greedy decoding.

5 Results

Table 2 shows the Rogue-1 (R-1) and BERTScore
(average F1 across topics) for each of the models
selected for generating topic representations us-
ing MDS as well as the topic lists generated by
CTM. It is important to underscore that R-1 and
BERTScore are not validated against human stud-
ies for topic representations and this is simply a
small case study on what an approach might look
like. In spite of this, our results paint an initial
picture of how these methods perform, especially
when compared to model outputs (see Appendix
B for samples). Topic word lists have the worst
R-1 and BERTScore. The MDS models do a lit-
tle bit better with multi-lexsum-long having the
best overall score. multixscience also does well
with regards to R-1. Since multixscience and multi-
lexsum-long are long form summaries, it appears

that R-1 is potentially biased towards longer sum-
maries and may not be a good measure across rep-
resentations, in particular it may be uninformative
for evaluating the performance of topic lists. ms2
and multi-lexsum-tiny are smaller and have bet-
ter BERTScore then multixscience indicating they
might provide more semantically similar represen-
tations. We are also not sure whether BERTScore
suffers from the same bias towards longer or more
sentence-like inputs.

We randomly sampled 3 topics to explore their
representations. As an example, table 3 shows
representations using the multi-lexsum-tiny model
(full details are available in Appendix B. In rep-
resentations for topic 0 (Table 5), we see there is
a general agreement across models that the citing
documents are discussing measurement. We can
see that the topic representations appear to be split
between measuring interpretability (multixscience,
multi-lexsum-long) and those discussing the corre-
lation between measures (ms2, multi-lexsum-long)
or even potentially an additional topic of describ-
ing measures used (multi-lexsum-tiny). Conflicting
summaries are not surprising given issues in MDS
with regards to summarizing diverse and potentially
conflicting documents (DeYoung et al., 2021). Ta-
ble 5 shows a diversity of topic labels that might
be appropriate under different scenarios of apply-
ing topic models. Labels like the ones in Table 3
might be useful for labels that are easy and fast to
read while longer summaries in multixscience and
multi-lexsum-long might be useful for users who
want to engage deeper.

6 Discussion

In order to ensure downstream topic labels are co-
herent, document clusters must represent mean-
ingful and well separated clusters. Grootendorst
(2022); Sia et al. (2020); Zhang et al. (2022) have
shown that traditional clustering methods might
provide good candidates for moving beyond topic
models like LDA that suffer from lack of contextu-
alized natural language understanding due to their
use of word co-occurence statistics for constructing
topic clusters. However in order to fully replace
traditional methods we would like to see: (1) the
demonstration of effective mixed-membership ap-
proaches in abstractive topic modeling to recover
the ability for documents to belong to multiple
topic clusters, (2) the demonstration of cluster eval-
uation measures that correlate well with how hu-
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Topic 0
NPMI and Topic Coherence are measures used to measure the semantic coherence of topics.
Topic 4
Topic model quality and interpretability are two different metrics used to measure the semantic inter-
pretability of a topic.
Topic 2
Evaluation metrics: Log predictive probability (LPP) and topic interpretability

Table 3: Topic representations produced by multi-lexsum-tiny. Compared to word lists they are much more readable
and closer to everyday notions of topics.

mans might group documents and possibly (3) the
development of fully learnable architectures where
clustering might be learned with feedback from
topic representation quality.

DeYoung et al. (2021) has shown that MDS
struggles with factual consistency. We see an op-
portunity for topic clustering as a step before per-
forming MDS as a potential method for improving
factual consistency since a contradicting source
document that would normally be in the document
set might be separated out with initial topic clus-
tering. Furthermore, initial topic clustering might
provide a way for developing more granular multi-
aspect summarization techniques by clustering doc-
uments by aspect. Either way, we are weary of the
known issues with factuality in MDS (DeYoung
et al. (2021)) especially in the scientific domain
where factual consistency is critical. To develop
our approach along these lines, we suggest contin-
uing to extend evaluation of factuality and faithful-
ness to the MDS setting (as identified in (DeYoung
et al., 2021)).

In order to make this approach work for a
wide variety of application and analysis scenarios,
controllable summarization (such as Keskar et al.
(2019)) should be investigated so that users can
control for length of summaries (such as question,
phrase, sentence, or paragraph) or style of sum-
mary (such as in the style of a paper title, abstract,
citation, or literature review). Additional controls
such as the ones suggested in Shadrova (2021) like
granularity of topic label can also be developed in
a controllable summarization framework in such a
way as to make topic representations better fit for
user’s needs.

Finally while methods like longformer (Beltagy
et al., 2020) enable the use of transformers with
multiple documents as input, more research needs
to be done to enable a method like the one we pro-
posed on large sets of documents. In the scientific

domain, where we might want to model hundreds
or even thousands of full-text articles belonging to
a single cluster, the approaches presented would
be intractable without further development of long-
attention transformer models.

One advantage of our approach is that since we
are breaking topic models out into clustering and
MDS as separate steps we can rely on a established
work for evaluation of document clusters and sum-
maries to assess models performance. While we’d
need to validate the application of these metrics in
end-to-end topic modeling scenarios, if text clus-
tering and summarization metrics do correlate with
human judgements of topic cluster and representa-
tion quality then we can avoid using topic modeling
metrics which have come into question repeatedly
Chang et al. (2009); Hoyle et al. (2021); Doogan
and Buntine (2021)). However, we will not know
this until we design robust human studies to vali-
date the approach we have proposed above.

7 Conclusion

In this paper, we presented a reframing of topic
modeling as document clustering with MDS ap-
plied to produce topic representations that might
(1) align more intuitively with what humans un-
derstand as topics and (2) overcome some of the
issues with topic models using bag of word as-
sumptions such as inability to capture context. An
initial case study on using this approach for unsu-
pervised discovery of citation intents was explored.
We found that while cohesive alternatives to topic
representations can be produced using MDS in a
variety of styles (short and long summaries), there
are still many obstacles that need to be overcome
before we can fully evaluate whether this approach
could provide a viable alternative to traditional
topic modeling and representation. Namely, im-
proving cluster cohesion, improving the factuality
and faithfulness of MDS, and increasing the num-
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ber of documents that might be supported by MDS.
While there might be an advantage in utilizing well
validated approaches for evaluating clustering and
summarization as measures of our approach, fu-
ture studies will need to validate those with human
studies. It is our hope that further work in this area
can use our discussion as a roadmap towards what
needs to be done if we want to move past word lists
as topic representations.
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A Topic Model Selection

Table 4 describes the evaluation of all the CTM
(Bianchi et al., 2021) models we trained by co-
herence (NPMI), diversity, and topic number. We
trained the model on a dataset of 183 citation state-
ments which are in-text passages from publications
citing (Lau et al., 2014) retrieved from scite.ai
(Nicholson et al., 2021). This dataset was also used

coherence (NPMI) diversity topics
-0.25 0.97 10
-0.27 0.97 20
-0.32 0.96 25
-0.32 0.97 15
-0.35 1.00 5
-0.38 1.00 3
-0.38 0.97 50

Table 4: Selecting CTM topic model by evaluating
CTM coherence (NPMI) and diversity on different topic
numbers parameters.

as the reference corpus for evaluating NPMI in
this initial case study. We acknowledge that when
building robust topic models a standard reference
corpus should be used so results can be comparable
in future works.

B Topic Representations

Three randomly sampled topics are presented here
so readers can inspect the quality of the topic labels
as well as the original topic labels produced by
CTM.
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Model: topic lists
measure perplexity npmi probability paper correlation high log_p ranking correspond
Model: ms2
In conclusion, NPMI has a positive correlation with the human evaluation of topic coherence.
Model: multixscience
NPMI has been shown to correlate better with human evaluation of topic coherence than PMI
cite cite cite. The NPMI measure was first introduced by Lau et. al cite and has been used
extensively in the literature since cite. It is used to evaluate the coherence of the top @math
words of a topic and to measure the difficulty of associating an individual topic with a single
semantic concept, and consequently, evaluating topic models by their interpretability. It has
also been used as a measure of the performance of automatic topic evaluation methods, and has
shown to be more correlated with human performance than other traditional topic measures
such as perplexity cite, co-occurrence cite cite, and held-out likelihood cite. In this paper, we
focus on NPM I since it has been found to have a higher correlation with the human evaluation
than other topic measures, such as PMI, and will be used as the evaluation measure in this paper.
We refer the reader to cite cite for more details.
Model: multi-lexsum-tiny
NPMI and Topic Coherence are measures used to measure the semantic coherence of topics.
Model: multi-lexsum-long
For simplicity, we will refer to this measure as NPMI since it has been shown to have a higher
correlation with the human evaluation of topic coherence than PMI (Lau et al, 2014). For more
on this topic, see our related article. Introduction to Topic Coherence. In the literature, human-
annotated topic models are usually measured using the Coherence and Normalized Pointwise
Mutual Information (NPMI), which consider the probability that both terms in a particular
term pair, where frequent terms will be downweighted with respect to those that occur less
frequently, such as education from this example. However, in this paper, the authors adapted it
to measure the difficulty of associating an individual topic with a single semantic concept, and
consequently, evaluating topic models by their interpretability. The authors of this paper also
used the predictive Probability and Predictive Probability to see the performance of the learning
methods. The results of this study were shown to be significantly improved compared with the
counterparts without PPMI, especially in terms of perplexity and topic-coherence and with low
proportion of the training words. The performance measure was estimated using 2 measures to
evaluate the methods: Log predictive probability (LPP) which considers the generalization of a
model and Normalization pointwise mutual information (NPI) which evaluates the coherence in
the most significant words (top words) of a topic. The coherence score was estimated through
the point-wars mutual information. The Coherence Score was calculated using the standard
linear predictive probability method and was estimated to correlate well with human judging.

Table 5: Outputs for topic #0
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Model: topic lists
automate measure mutual correlate röderal coherence draw recent pointwise topic
Model: ms2
The meta- analysis showed that topic coherence was positively correlated with the interpretabil-
ity of the topic models.
In contrast, the meta-analyses did not find a significant association between topic co-occurrence
and interpretability.
Model: multixscience
Topic coherence is a measure of the interpretability of a topic model. It is based on the
coherence of the words assigned to a topic and has been studied extensively in the context
of topic modeling. Various measures have been proposed to measure topic coherence, such
as the pointwise mutual information (PMI) between the topic words and the co-occurrence
frequency of these words in the reference corpus, as well as the number of topics in the model.
The PMI-based methods have been widely used in the evaluation of topic models (see for
example cite cite and the references therein). However, these methods do not take into account
the internal representation of the topic models. To the best of our knowledge, there is no prior
work that evaluates the topic interpretability by measuring the PMI. However, there has been a
large body of work on evaluating topic models by measuring their interpretability, including
methods based on model perplexity, coherence, predictiveness cite, NPMI, topic diversity, and
distributional semantics
Model: multi-lexsum-tiny
Topic model quality and interpretability are two different metrics used to measure the semantic
interpretability of a topic.
Model: multi-lexsum-long
More specifically, Chang et al showed that models that fare better in predictive perplexity
often have less interpretable topics, suggesting that evaluation should consider the internal
representation of topic models and aim to quantify their interpretability. The idea soon gave
rise to a new family of methods (Newman et al, 2010). Auto-Auto-NPMI that evaluate the
semantic interpretability by measuring the number of chosen topics. These methods assume
that topic coherence correlates with the coherence of the words assigned to that topic and thus
quantify topic model quality. The resulting output does not explicitly provide an interpretation
to human users, but remains a list of words with associated topic probabilities, which humans
must interpret (as rated by human annotators) despite the observation that evaluation methods
such as perplexity are often not correlated with human judgements of topic quality. According
to the most recent work in topic design evaluation, indirect approach with word intrusion, and
direct approach with observed coherence are two major approaches to measure the human
interpretability in ML algorithms. The direct approach is to choose the model with the lowest
perplexity on unseen data, which may generate topics that are hardly interpretable, and the
direct approach uses the automated evaluation measure OC-Auto NPMI in Grieser et al. that
evaluates the co-occurrence frequencies of terms within a reference corpus. Both methods
have been developed to provide empirical evidence for the number chosen topics, because
they are based on topic diversity; it is the percentage of unique words in the top 25 words of
all topics, without mention of obstruction 5/10/20 topic words. The second method is to use
coherence, which is to compute topic diversity by measuring topic diversity. The third method
uses coherence to offer empirical evidence.

Table 6: Outputs for topic #4
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Model: topic lists
compute word mutual coherence draw interpretability similarity assess pointwise human
Model: ms2
Meta-analyses of topic coherence showed that the coherence of topics was in line with human
evaluation of the interpretability of the topics.
Model: multixscience
Topic coherence is a quantitative measure of the interpretability of individual topics. It is the
average pointwise mutual information of two words drawn randomly from the same document
cite. The coherence between top words within a topic is estimated using the PMI between topic
words cite cite cite. Various formulations have been proposed to compute topic coherence,
including those based on the NPMI cite cite, PMI and its variations cite, the Normalised PMI
cite, and the Point-wise Mutual Information (PMI) cite. Topic coherence scores judged by
human annotators cite cite are used as a measure of topic interpretability. The most popular
evaluation metrics are LPP cite, which measures the generalization of a topic model on unseen
data, and NPMI cite, that measures the coherence of the topics. However, LPP is not the best
measure for evaluating topic coherency.
Model: multi-lexsum-tiny
Evaluation metrics: Log predictive probability (LPP) and topic interpretability
Model: multi-lexsum-long
Evaluation metrics: Log predictive probability (LPP) and Normalized pointwise mutual in-
formation (NPMI) are used. While LPP measures the generalization of a model on unseen
data, NPMI examines the coherence and interpretability of the learned topics. For each topic
t, Experiments show topic coherence (TC), which is in line with human evaluation of topic
interpretability, and Experiments ShowTopic Coherence Experiments (TC) computed with the
Coherence between a topic’s most representative words (e.g., top 10 words) is inline with human
eval of topic interpretationability. As the reference corpus for computing word occurrences,
we use the English Wikipedia. As various formulations have been proposed to compute TC,
we refer readers to Röder et al. (2015) for more concrete ways to see how the topic models
interact with each other. To quantitatively measure the interpretability or the semantic quality of
individual topics, we used the observed coherence measure from (Lau et al., 2014), which was
adopted from psychology theory and showed better topic interpretation compared with other
measures [1, 2]. In addition to the above measures, we looked for the observed relationship
between the topic and human interpretation of topic models. The observed correlation between
the top N words within a topic and its coherence between the bottom 10 words was inline with
the human evaluation in evaluations 2-5 8. It is a preferred method for such tasks (Aletras and
Stevenson, 2013;Newman and al, 2010a) as it is unaffected by variability in the range for each
dataset.

Table 7: Outputs for topic #2
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Abstract

Scientific research requires reading and extract-
ing relevant information from existing scien-
tific literature in an effective way. To gain in-
sights over a collection of such scientific doc-
uments, extraction of entities and recognizing
their types is considered to be one of the im-
portant tasks. Numerous studies have been con-
ducted in this area of research. In our study,
we introduce a framework for entity recogni-
tion and identification of NASA astrophysics
dataset, which was published as a part of the
DEAL SharedTask. We use a pre-trained multi-
lingual model, based on a natural language pro-
cessing framework for the given sequence la-
beling tasks. Experiments show that our model,
Astro-mT5 1, outperforms the existing baseline
in astrophysics related information extraction.

1 Introduction

Extracting information about entities and their re-
lationships from unstructured text is an important
area in natural language processing (NLP). Fast
evolution of many scientific disciplines has led
to a continuous influx of a large number of re-
search papers into the publication repositories (e.g.,
Arxiv 2, Anthology 3 and Biorxiv 4). Literature
study is an important step in any scientific study.
Till now, this has been limited to human effort i.e.,
the amount of previous literature that an individual
is exposed to is limited to human capabilities. This
may lead to a few fundamental problems, such
as, the researcher’s inability to find out relevant
previous works and identify suitable baselines for
performance comparison. It poses a significant
problem due to the limitation of human abilities,
unless a framework could be designed to obtain

∗Equal Contribution to this work
1Our source code is available at https://github.

com/MLlab4CS/Astro-mT5.git
2http://arxiv.org
3http://anthology.org
4http://www.biorxiv.org

the literature corpus by using machine learning
methods. To overcome this problem, Luan et al.
(2018); Jain et al. (2020); Hou et al. (2021); Mon-
dal et al. (2021) proposed an end-to-end informa-
tion extraction (IE) system from AI-based scien-
tific documents for preparing suitable knowledge
graph (KG). Recently, fine-tuning of pre-trained
language models (PLMs) have shown remarkable
performance on IE task such as named entity recog-
nition (NER), and relation extraction (RE) from
unstructured text in NLP (Baldini Soares et al.,
2019). Self-supervised pre-training allows these
PLMs to learn highly accurate linguistic, semantic,
and factual information from a significant quantity
of unlabeled data (Wang et al., 2022).

While tremendous progress has been made in the
field of AI, the area of astrophysics has been rarely
explored as an area of application by AI researchers.
The current search engine of NASA Astrophysics
Data System (ADS) shows poor performance on
information retrieval (IR) tasks due to the absence
of suitable KG (Grezes et al., 2021). Grezes et al.
(2021) have recently developed astroBERT, a lan-
guage model pre-trained on astrophysics literature,
in order to apply it to downstream tasks of NLP in
the astrophysics domain.

The first edition of the shared task, named
Detecting Entities from Astrophysics Literature
(DEAL) took place in 2022, for building a system
that is capable of extracting fine-grained entities of
different categories such as CelestialObjectRegion,
CelestialRegion, Instrument (Grezes et al., 2022).

We participated in DEAL SharedTask 2022 and
proposed a neural architecture based model to iden-
tify the required entities from a collection of as-
trophysics articles. Our proposed model namely,
Entity Extraction from Astrophysics Literature us-
ing mT5 Language Model (Astro-mT5), seeks to
devise a transfer learning strategy by fine-tuning
the mT5 (Xue et al., 2020) model. Furthermore, we
apply conditional random field (CRF) decoder to
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implement the entity extraction task. Experimental
results show that the proposed framework achieves
state-of-the-art (SOTA) performance on this task.

2 Related Works

Recently, researchers have explored many direc-
tions for applying information extraction from the
unstructured text of scientific articles written in
english. Adding token-level classifiers or CRFs
above the sentence encoders is a popular strategy
for NER task (Chiu and Nichols, 2015; Strubell
et al., 2017; Ma and Hovy, 2016). Pennington et al.
(2014) empirically showed that using pre-trained
word embeddings such as GloVe along with CNN-
based (Ma and Hovy, 2016) and LSTM-based
models (Lample et al., 2016) produced better re-
sults on the NER task. Recent releases of trans-
former based PLMs such as BERT (Devlin et al.,
2019), SciBERT (Beltagy et al., 2019), T5 (Raffel
et al., 2019), RoBERTa (Liu et al., 2019), Big-
BIRD (Zaheer et al., 2020), ALBERT (Lan et al.,
2019), RemBERT (Chung et al., 2020), and Long-
former (Beltagy et al., 2020) showed a significant
performance improvement in many downstream
tasks in NLP such as NER and RE. Additionally,
Akbik et al. (2018) developed an easy-to-use inter-
face namely FLAIR, that allows users to fine-tune
any word embedding and any PLMs to produce im-
proved results on the NER task. There has been a
recent surge in proposing multilingual pre-trained
language models such as mBERT (Devlin et al.,
2018), mBART (Liu et al., 2020), XLM-R (Con-
neau et al., 2019), mT5 for achieving SOTA results
in many downstream IE tasks in NLP.

3 System Description

Given a sentence from the astrophysics documents,
we follow a sequence labeling approach for the
fine-grained entity extraction task. Formally, given
a sentence (word sequence) s = (w1,w2...wn),
the objective is to learn a function fθ (parame-
terized by θ) that maps an observed sequence of
embedded vectors to a sequence of labels fθ :
(w1, . . . ,wn) → (y1, . . . , yn), where each wi ∈
Rd is an embedded vector of the token wi, and each
yi ∈ {B, I,O} stands for a label, which indicates
if it is the beginning, continuation or the end of a
text span (in the context of our work - predicted
entity category). Given a set of examples of such
D = {(s, y)} sequence pairs, the parameters θ of
a sequence classification models are learned by op-

Figure 1: The overall architecture of our proposed
model Astro-mT5

timizing the cross-entropy loss. In our work we
use FLAIR 5, a neural framework, proposed by Ak-
bik et al. (2018). In this framework, we employ
mT5 as a base pre-trained language model, which
gets fine-tuned on our downstream entity extrac-
tion sequence labeling task. Say, the internal output
representation produced at the fine-tuning stage is
xi ∈ Rd1 . Then, we pass it to the CRF decoder
layer and get the probability sequence over the pos-
sible sequence labels y by using the Eqns. 1 and
2.

P (y0:n|x0:n) ∝
n∏

i=1

ϕi(yi−1,yi,xi) (1)

where,

ϕi(yi−1,yi,xi) = exp(Wyi−1,yi
xi + byi−1,yi

)
(2)

Here, W, b ∈ Rd2 are the required parameters,
which are trained during end-to-end training of our
model.

5https://github.com/flairNLP/flair
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Figure 2: Frequency of each NER tag in the training, testing, and validation dataset.

The overall architecture diagram of our proposed
model, Astro-mT5, has been shown in Fig. 1.

4 Experimental Setup

4.1 Data Description
Throughout our experiments, we have used the as-
trophysics dataset released for the DEAL Shared-
Task. The dataset mainly consists of the full texts
and the acknowledgement sections of a collection
of astrophysics articles. The total number of en-
tity categories used for the sequence classification
task is 32 and the frequency of the categories (NER
tags) has been depicted in Fig. 2. The dataset statis-
tics has been shown in Table 1. A sample snippet
of the dataset has been presented in Table 2.

Dataset # of Samples
Training Data 1753
Validation Data 1366
Test Data 2505

Table 1: DEAL Dataset statistics

DEAL Dataset

The question of whether the SunCelestialObject acts (mag-

netically) as other SLSEntityofFutureInterest is difficult to
answer. If all such stars are indeed magnetically similar,
it implies that stars have a consistent magnetic variabil-
ity over stretches only 0.01 million years into the past

(Wu et al. 2018Citation).

Table 2: A sample snippet of the tagged astrophysics data.

4.2 Implementation Details
We submitted three experimental results in different
settings against the released test data. We apply the
stratified train-test split6 strategy with a splitting

6https://scikit-learn.org/stable/
modules/generated/sklearn.model_

ratio of 80:10:10 on the released training dataset
to train and tune our model accordingly. We fine-
tune different transformer based language models
and apply separate subtoken pooling strategy at
the penultimate layer of the used language model.
For our first submission, namely DEAL_1, we use
xlm-roberta-large 7 language model by ap-
plying subtoken pooling operation namely ‘first
and last’ on the internal transformer embeddings.
For our second and third submissions, namely
DEAL_2 and DEAL_3 (Astro-mT5), we fine-tune
mt5-large 8 language model with different pool-
ing strategies such as ‘first’ and also ‘first and last’
on the transformer embeddings. In all the experi-
ments, we utilize the FLAIR framework and train
all the neural models for 100 epochs with the batch
size of 4 using AdamW (Loshchilov and Hutter,
2019) optimizer with a very small initial learning
rate of 5e−5 and a stopping criterion as mentioned
in Conneau et al. (2020). We use Google Colab
PRO plus to carry out all the experiments.

Models F1-Score MCC
Random 0.0166 0.1089
BERT 0.4738 0.7405
SciBERT 0.5595 0.8016
astroBERT 0.5781 0.8104
DEAL_1 0.8168 0.9053
DEAL_2 0.8261 0.9085
Astro-mT5 0.8364 0.9129

Table 3: Validation results

selection.train_test_split.html
7https://huggingface.co/

xlm-roberta-large
8https://huggingface.co/google/

mt5-large
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Models F1-Score MCC
DEAL_1 0.7881 0.8874
DEAL_2 0.7977 0.8933
Astro-mT5 0.8056 0.8954

Table 4: Test results

4.3 Results
In our experiments, we adopt F1-Score and
Matthews correlation coefficient (MCC score) as
the required evaluation metrics for the given en-
tity extraction task. We compare our results pro-
duced on the validation dataset with the previous
baselines released by the DEAL SharedTask team.
From Table 3, we can see that our model, Astro-
mT5, outperforms all the baselines in terms of both
F1-Score and MCC score on the validation dataset.
Table 49 shows that our model also achieves SOTA
results in terms of F1-Score against the test dataset
released by the SharedTask team.

5 Conclusion

This study discusses a transformer-based deep neu-
ral architecture to identify named entities from
an astrophysics literature dataset provided by the
DEAL SharedTask team. Our model, Astro-mT5,
has achieved F1-score of 80.58% and MCC of
89.54% on the test data, which remarkably out-
performs previously reported models and all other
competing models submitted in the DEAL Shared-
Task. Our future work will include more research
on fine-grained NER and boundary detection in
context of astrophysics to support a wide range
of practical applications. We can plan to enhance
our framework by introducing fine-grained NER
in place of coarse-grained NER to handle a named
entity with various types. We can also investigate
data-driven factored modeling approaches to han-
dle the class imbalancing problem.
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Abstract

As the rate of scientific output continues to
grow, it is increasingly important to be able
to develop systems to improve interfaces be-
tween researchers and scholarly papers. Train-
ing models to extract scientific information
from the full texts of scholarly documents is im-
portant for improving how we structure and ac-
cess scientific information. However, there are
few annotated corpora that provide full paper
texts. This paper presents the NLPSharedTasks
corpus, a new resource of 254 full text Shared
Task Overview papers in NLP domains with an-
notated task descriptions. We calculated strict
and relaxed inter-annotator agreement scores,
achieving Cohen’s kappa coefficients of 0.44
and 0.95, respectively. Lastly, we performed a
sentence classification task over the dataset, in
order to generate a neural baseline for future
research and to provide an example of how to
preprocess unbalanced datasets of full scientific
texts. We achieved an F1 score of 0.75 using
SciBERT, fine-tuned and tested on a rebalanced
version of the dataset.

1 Introduction

Scholarly Document Processing (SDP) research is
concerned with developing methods for improv-
ing the retrieval and organization of information
from academic papers. This interest is partly driven
by the rapid growth rate of scientific publications,
which Larsen and von Ins (2010) estimate to be
between 2.7 and 13.5 percent between 1997 and
2006. Some disciplines are expanding even more
rapidly. Dhawan et al. (2020) examined the global
output of machine learning research between 2009
and 2018 and estimated a growth rate of roughly
28 percent per year, while Li et al. (2020) suggest
an average annual growth rate of 152.9 percent in
the deep learning domain between 2013 and 2019.

∗The work presented in this paper was performed while
the first author was affiliated with the University of Minnesota,
Duluth.

Because of the rapid expansion of scientific lit-
erature, it is beneficial to use natural language pro-
cessing (NLP) and information extraction (IE) tech-
niques to structure scientific and bibliometric data
into machine-actionable forms. One method is to
automatically identify scientific and bibliometric
entites and relations from scholarly literature and
organize them into knowledge graphs, which can
be used to improve access to scholarly documents
by enhancing Digital Libraries (Ammar et al., 2018,
Auer et al., 2020).

One scientific entity type relevant to NLP and
Machine Learning domains is TASK. Machine
Learning and NLP tasks can be useful to extract,
as they are a unit of information relevant to under-
standing research trends and constructing leader-
boards (Hou et al., 2019). We are particularly inter-
ested in the utility of augmenting scholarly digital
library resources with automatically extracted task
descriptions such that a reader could quickly under-
stand the NLP task described in the paper at hand.
We find that NLP shared task workshop overview
papers are a rich resource for training a model to
extract such task descriptions.

Our contribution towards information extraction
(IE) from scientific articles is a new gold-standard
corpus of task description annotations from Shared
Task Overview papers. This corpus provides an
interesting IE situation for two reasons. First, the
full texts are provided for each paper in the corpus
rather than individual sentences or paragraphs.
Second, the annotation goal was to extract a
single span of text from each paper rather than
any number of qualifying phrases. The benefit of
this kind of annotation strategy is that it provides
test data that is close to the “real world” data that
downstream applications might encounter, such
as a digital library tool tasked with extracting
the task descriptions from NLP papers. This IE
scenario is also difficult, since extracting a single
span from full paper texts results in an extremely
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unbalanced dataset. For this reason, we describe
in detail the data preparation and preprocessing
steps we performed for the sentence classification
task we ran over the NLPSharedTasks corpus. The
original NLPSharedTasks corpus, preprocessed
dataset, and experimental code is available
at https://github.com/anmartin94/
martin-masters-thesis-2022.

2 Related Work

Numerous corpora for scientific information ex-
traction have been hand-annotated by experts in
computational linguistics and NLP domains. Many
of these corpora provide parts of scientific papers,
such as paragraphs (Augenstein et al., 2017), ab-
stracts (Gábor et al., 2018, Gábor et al., 2016,
QasemiZadeh and Schumann, 2016, Luan et al.,
2018), and sentences (Hou et al., 2021).

The SemEval-2021 Task 11 (NLP Contribution
Graph) (D’Souza et al., 2021) provided the corpus
that serves as the main source of inspiration for our
annotation project. The NLPContributionGraph
corpus comprises 442 scholarly papers in NLP
domains, with 12 different types of information
annotated at three levels of granularity (D’Souza
and Auer, 2020). It is similar to our work in that
full paper texts and sentence-level annotations are
provided, but the annotation scheme allowed for
multiple spans to be extracted for each entity type,
rather than a single sequence from each paper. Ad-
ditionally, the NLPContributionGraph annotation
scheme includes a TASKS information unit, which
was applied to 277 triples found across approxi-
mately 69 sentences in eight papers.

The differences between the NLPContribution-
Graph and NLPSharedTask annotation schemes
relate to the different intended downstream tasks.
The information extracted by D’Souza et al., 2021
is designed to populate a research knowledge graph
with a variety of types of scientific information,
while the information extracted in NLPShared-
Tasks is intended to convey to a human reader the
task described in the Shared Task Overview paper.

3 Corpus Selection

The resource we drew from was the annual research
workshop SemEval and similar initiatives. These
venues host shared tasks that approach a wide va-
riety of semantic problems and provide a rich re-
source for understanding the state of the art in se-
mantic analysis. We assembled our task descrip-

Venue Frequency
SemEval Workshop 176 (69%)
CoNLL Conference 21 (8%)

ACL Conference 18 (7%)
EMNLP Conference 12 (5%)
NAACL Conference 8 (3%)
EACL Conference 7 (3%)

IJCNLP Conference (2017) 5 (2%)
BioNLP Workshop (2011) 3 (1%)

AACL Conference 2 (<1%)
∗SEM Workshop 2 (<1%)

Total 254

Table 1: The conferences and workshops that hosted the
Shared Tasks in our corpus and the number of papers
from each venue.

tion corpus by searching the ACL Anthology for
shared task description papers, including all Se-
mEval task description papers from the year 2001
to 2021, all CoNLL1 shared tasks 2000-2020, and
selected shared tasks from a variety of other confer-
ences and workshops (see Table 1). The dataset was
developed in two stages. The first stage selected
only Shared Task Overview papers associated with
the SemEval workshop from 2001 to 2020, yield-
ing 165 papers. During the second stage we added
89 papers to the dataset. These papers were found
by searching the ACL Anthology for Shared Task
Overview papers published at non-SemEval work-
shops hosted by the venues described in Table 1.
Additionally, this second batch of papers contained
the newly published set of papers from SemEval
2021. The final dataset contains a total of 254
shared task description papers between the years
2000 and 2021 and encompasses twenty natural lan-
guage processing research topics that we identified
(see Figure 1).

4 Annotation Methodology

The aim of this annotation project was to develop
a gold standard corpus of shared task overview pa-
pers with annotations of shared task descriptions.
We define “shared task description” as a span of
text containing information on an NLP or compu-
tational linguistics task to be performed by partici-
pating systems. This information must describe in
brief what is to be done to accomplish the task, and
may also contain details on the dataset the task is
performed over.

1https://www.conll.org/
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Set # Strict Score Relaxed Score
Set 1 .3830 .6401
Set 2 .4374 .9488

Table 2: This table presents the inter-annotator agree-
ment scores measured with Cohen’s kappa coefficient.
Strict scores were calculated by comparing the exact
spans of text. The relaxed scores were calculated by
including the full sentence(s) containing the span. The
difference between rows 2 and 3 is due to guideline
revisions. The annotators often chose sequences that
overlapped but were not exactly the same, resulting in
the difference between columns 2 and 3.

The first annotator extracted a task description
sequence2 from every paper in the corpus, gener-
ated a set of guidelines for the second annotator
to follow, and created two representative sets of
twenty papers each. Intra-annotator agreement was
determined using Cohen’s kappa coefficient. A
strict score and a relaxed score were calculated for
each dataset, where the strict score compared the
exact sequence spans and the relaxed score counted
overlapping annotations as matches. After the first
subset was annotated by the second annotator, the
guidelines were refined by the first annotator to
address ambiguities before releasing the second set
to annotator 2.

4.1 Guidelines
The final version of annotation guidelines performs
two functions: it defines Task Description and de-
scribes various subtypes and task-description sce-
narios including “full task description”, “partial
task description”, and “multiple subtasks descrip-
tion”; and it provides two sets of rules, one explain-
ing how the task description sequence boundaries
should be determined, and another detailing how
ambiguous annotation situations might be resolved.
See Appendix A.6 for more information on the
annotation process.

5 Annotation Results

We calculated the inter-annotator agreement be-
tween annotator 1 and annotator 2 using Cohen’s

2on occasion, the first annotator extracted two sequences
if the texts were extremely similar. Following is such an
example: “Given a set of documents and a set of target entities,
the task consisted of building a timeline for each entity, by
detecting, anchoring in time and ordering the events involving
that entity” and “Given a set of documents and a set of target
entities, the task consists of building a timeline related to
each entity, i.e., detecting, anchoring in time, and ordering the
events in which the target entity is involved”.

kappa coefficient (Cohen, 1960). The strict Co-
hen’s kappa coefficient for the first subset was
0.383, and the relaxed Cohen’s kappa coefficient
was 0.6401, indicating fair to substantial agreement
(Viera et al., 2005). After we made revisions and
clarifications to the annotation guidelines, we anno-
tated the second subset, and achieved a strict score
of 0.4373 and a relaxed score of 0.9488, indicating
moderate to almost perfect agreement. The differ-
ence between the strict and relaxed scores indicates
that, though the annotators often spans from the
same sentence context, mutually choosing equiva-
lent sequences is somewhat difficult. For example,
from the following sentence

The 2020 iteration of our task is similar to
CoNLL-SIGMORPHON 2017 (Cotterell et
al., 2017) and 2018 (Cotterell et al., 2018)
in that participants are required to design a
model that learns to generate inflected forms
from a lemma and a set of morphosyntactic
features that derive the desired target form.
-SIGMORPHON 2020 Shared Task 0: Typo-
logically Diverse Morphological Inflection,
Vylomova et al. (2020),

annotator 1 extracted “design a model that learns
to generate inflected forms from a lemma and a set
of morphosyntactic features that derive the desired
target form”, and annotator 2 extracted “partici-
pants are required to design a model that learns to
generate inflected forms from a lemma and a set
of morphosyntactic features that derive the desired
target form”.

6 Corpus Statistics

One benefit of annotating shared task overview
papers published over a long period of time is that
this resource could potentially be used to study
NLP research progress and trends. For this reason,
we provide some basic statistics on the content of
the papers included (see Section 6.1). We also
provide data on the extracted task descriptions in
Section 6.2, as such information may be useful
to others for building task description extraction
systems.

6.1 Characteristics of Shared Task Overview
Papers

The 254 shared task overview papers collected for
this dataset encompass a wide variety of research
topics. We identified 20 distinct topics (see Figure
1), and found that the frequency of publications
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mean+− std max min
word count 29+−21.8 126 3

sentences in span 1.17+−.48 4 1

Table 3: Mean word count and sentences per task de-
scription

included in our corpus increases between the year
2000 and 2021 (see Figure 2). Another interesting
characteristic of these shared tasks is that not all
tasks are novel; it is fairly common for tasks to be
re-run for several years. This allows participants to
improve benchmarks by building on previous work,
and allows task organizers to add to the complexity
of the task. Approximately 65 papers in the corpus
describe rerun tasks.

6.2 Task Description Characteristics

One of the most consistent patterns observed is that
task descriptions tend to appear under the same
limited set of section headers (Figure 3). While
they are most commonly found in the abstract, they
also frequently appear in introduction sections. Un-
surprisingly, sections with titles such as “Task De-
scription” or “Task Overview” often contain task
descriptions suitable for our project. Rarely, pa-
pers may not contain a good task description until
the conclusion or discussion section. Furthermore,
there were thirteen papers that did not contain a
task description in the body, but had a title that
was sufficient. Consequently, the first quadrant of
full paper texts contain a higher concentration of
task descriptions, as seen in Figure 4. This pattern
persists within sections as well; more than half of
the task descriptions were found in the first half of
the containing section (see Figure 5).

A complicating aspect of this corpus in terms
of information extraction and text classification is
the varying lengths of task descriptions. This low-
homogeneity can make it more difficult to train
traditional classifiers, but is important because it
provides a more “real-world” environment. The ex-
tracted sequences span between 1 and 4 sentences,
and contain between 3 and 126 tokens (Table 3).

7 Dataset Preparation

Scholarly papers are often stored as PDFs, which
are not very machine-actionable3. For this reason

3Some journals and archives such as arXiv (https:
//arxiv.org/) provide LaTeX source code for papers in
addition to PDFs.

the full text for each paper had to be extracted
and stored in a different format. We processed
paper PDFs into XML encoded files using GRO-
BID (Lopez, 2009), then extracted the text data
into plain text files. GROBID is not always com-
pletely accurate, so we manually compared each
text file with the original PDF. Two papers had to
be manually typed because the PDF files could not
be processed by GROBID. For the majority of pa-
pers with tables, the table output from GROBID
had to be manually removed.

To prepare our corpus for a sentence classifica-
tion task, we randomly divided the 254 papers into
a training set of 228 papers and a test set of 26
papers. The resulting training set contains 259 pos-
itive samples and 41,493 negative samples, and test
set contains 34 positive and 4725 negative samples.
This is an extremely unbalanced dataset, where
less than 1% (0.63%) of the total sentences are pos-
itive samples. The reason for this is the annotation
goal was to extract a single candidate per paper.
However, extra steps must be taken to change the
balance enough so that machine classifiers are able
to learn how to identify task descriptions.

7.1 Leveraging Paper Context and
Hierarchical Structure

Scholarly papers tend to have a predictable struc-
ture. Task description overview papers usually start
with an abstract and introduction, which tend to
be followed by task description and dataset prepa-
ration sections, before describing the system so-
lutions and reporting results. There are patterns
within sections as well; for example, sections that
contain a task description often contain the se-
quence near the beginning of the section. For this
reason, we added positional data as features to the
dataset following the example of (Liu et al., 2021).

We added a section header feature to the dataset
by iterating through the plain text files and captur-
ing the header for each section. Each sentence’s
position was quantified with four values: the sen-
tence index relative to its section; the sentence in-
dex relative to the full paper; the quadrant of the
sentence’s section; and the quadrant of the paper
that the sentence is found in.

We ran experiments with and without the header
feature and positional features and ultimately found
that the additional features did not improve model
performance (see Table 6 to compare results).

In addition to extracting positional information
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Figure 1: The distribution of paper topics. There were situations where a Shared Task encompassed more than one
topic. In this situation, we chose the more specific topic. For example, note that the topic classification appears
to only contain five papers. There are more classification tasks found in the corpus, but they were assigned other
desciptors such as sentiment analysis and social factors.

Figure 2: The distribution of publication dates. Note
that the years 2000, 2002, 2003, 2005, 2008, and 2009
appear to be outliers. This is because most of the corpus
(69.3%) was taken from the SemEval workshops, which
were not held in those years.

Figure 3: Distribution of sections containing task de-
scriptions
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Figure 4: Distribution of task descriptions across paper
quadrants

Figure 5: Distribution of task descriptions across section
quadrants

for each sentence as features, we also removed any
section for each publication that did not provide a
task description. A paper with the task description
in the introduction, for example, would only have
its introduction included in our dataset. This im-
proved the balance between positive and negative
samples by increased the proportion of task descrip-
tions to non-task descriptions. It also addressed the
following problem: because the goal was to extract
a single sequence from each paper, some papers
have negative samples that would actually qualify
as task descriptions if a better candidate had not
been found. Reducing each paper to a single sec-
tion eliminated some of those perplexing sentences.
The resulting training set contains 259 positive sam-
ples and 2,304 negative samples, and the resulting
test set contains 34 positive samples and 293 nega-
tive samples. After reducing the dataset, 11.28% of
the total data is positive, which is more manageable
than the previous 0.64%.

One problem with manually removing samples
from the dataset based on which sections contain
task descriptions is that the reduced test set is less
“real world”. In a non-experimental setting, the
machine reader should be able to extract a task
description from a whole paper, since it does not
know ahead of time which section contains the task
description. To address this issue, we tested our
model on three versions of the test set. The first was
manually reduced the same way as the training set.
The second had sections automatically removed by
fine-tuning a BERT model on section headers seen
in the training set. This model was then applied
to the test set to classify section headers as either
likely or unlikely to contain a task description. This
is a more fair test set because one could apply this
classifier to any unseen papers to filter out paper
sections. The third set is the full test set without
any data removed.

8 Sentence Classification Experiments

Despite the fact that task descriptions are defined as
sequences that can be longer or shorter than a single
sentence, we designed a sentence classification task
because we achieved much higher inter-annotator
agreement scores when we compared the chosen
sentences spanned by the sequences rather than the
exact sequences (see Section 5). We fine-tuned the
cased and uncased base versions of BERT (Devlin
et al., 2019) and SciBERT (Beltagy et al., 2019) on
every hyperparameter combination in Table 4.
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hyperparameter settings
epochs 2, 3, 4

batch size 16, 32
learning rate 2e-5, 3e-5, 5e-5

Table 4: The hyperparameter options are based on
the fine-tuning recommendations made by Devlin et al.
(2019).

8.1 Training Loop

Each hyperparameter and BERT model combina-
tion was fine-tuned on two versions of the training
dataset, ten times each. The first version of the
dataset contained the contextual features described
in Section 7.1, and the second version contained
only the text data. In between runs, the data was
shuffled and a new validation set containing 10%
of the training data was selected. The precision,
recall, and F1 score was recorded for each training
run. Then the mean scores and standard deviation
were calculated for each classifier-encoding pair.

8.2 Baseline

We calculated a baseline based on common vocabu-
lary and positional patterns. We analyzed common
word patterns in the training set by tokenizing each
sample, removing English stop words, and looking
at the 10, 15, 20, 25, and 30 most frequent words in
the positive and negative samples from the training
set. The most common words for the positive and
negative samples are identical, but the density of
common words per sentence differs. The density
of common words is greater in task description sen-
tences: see Table 5 for the mean common word
density per sentence for task descriptions and non-
task descriptions. In calculating the baseline, we
used a threshold density value of > 0.03 as one
of the criteria for classifying a sentence as a task
description, with the common word list containing
20 words.

We also experimented with the use of positional
information seen in Figures 4 and 5 in calculating
our baseline. We found that restricting positive
classifications to the first halves of each paper sec-
tion yielded the highest baseline scores. However,
setting a threshold for the total paper quadrants
lowered the scores.

The highest baseline scores were calculated by
classifying sentences as task descriptions when the
density of common words was greater than 0.03
and the sentence was found in the first half of its

Common word density
N Task Non-task
10 0.0518 0.0281
15 0.0647 0.0314
20 0.0762 0.0349
25 0.0848 0.0435

Table 5: The mean density of N most common words
among task description sentences and non-task descrip-
tion sentences. Density is calculated by dividing the
number of common words in the sentence by the total
number of words in the sentence.

section. The F1, precision, and recall baseline
scores are .4000, .2687, and .7826, respectively.

8.3 BERT Training Results
The precision, recall, and F1 scores for the best
model and hyperparameter combination are shown
in Table 6. Scores are reported for both the dataset
with additional contextual features and the dataset
containing sentences alone.

The highest performing model scored better on
the dataset comprising sentence data only without
additional features. The cased scibert model earned
an average F1 score of 0.72 on the simple dataset
and an average F1 score of 0.69 on the dataset
containing contextual features. However, the other
three models all returned higher mean scores when
trained on the dataset containing contextual fea-
tures. The mean F1 score across all four models
trained on the contextual dataset is 0.7, while the
mean score across all four models trained on the
simple dataset is 0.68. Notice also that the standard
deviations are somewhat high, indicating a not in-
significant spread around the mean. From this data
it is unclear whether one variant of the dataset is
better than the other.

8.4 Test Results
Tests were run using the cased SciBERT model
fine-tuned on the simple dataset over four epochs
with a batch size of 32 and a learning rate of 5e-
05 (the model with the highest training results).
Three versions of the test dataset were used in order
to determine how well our system would perform
given data of varying levels of preprocessing. The
three versions of the test data are:

1. The dataset manually reduced in the same way
that the training data is reduced. Only sections
that contain a task description are included;
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model epochs batch size learning
rate

metric score

Training results using data annotated with positional features

bert-cased 4 16 2e-05
Precision 0.69± 0.1

Recall 0.73± 0.1
F1 0.71± 0.09

scibert_uncased 3 16 3e-05
Precision 0.69± 0.03

Recall 0.73± 0.12
F1 0.71± 0.06

Training results using text data only

bert-uncased 3 32 5e-05
Precision 0.63± 0.08

Recall 0.7± 0.1
F1 0.66± 0.08

scibert_cased 4 32 5e-05
Precision 0.73± 0.11

Recall 0.71± 0.07
F1 0.72± 0.08

Baseline

baseline - - -
Precision 0.27

Recall 0.78
F1 0.40

Table 6: Mean training results and standard deviations for BERT and SciBERT classifiers across ten runs. Only the
results for the best hyperparameter and model combinations are reported here.

Predicted Labels

Manually reduced
test set

+ - Sum

Tr
ue

L
ab

el
s

+ 24 (7.34%) 10 (3.06%) 34 (10.40%)
- 6 (1.83%) 287 (87.77%) 293 (89.60%)

Sum 30 (9.17%) 297 (90.83%) Total=327

Automatically
reduced test set

+ - Sum
+ 21 (1.76%) 8 (0.67%) 29 (2.43%)
- 63 (5.27%) 1104 (92.31%) 1167 (97.58%)

Sum 84 (7.03%) 1112 (92.98%) Total=1196

Full test set

+ - Sum
+ 25 (0.53%) 9 (0.19%) 34 (0.72%)
- 128 (2.69%) 4597 (96.60%) 4725 (99.29%)

Sum 153 (3.22%) 4606 (96.79%) Total=4759

Table 7: The confusion matrices for the test results on the manually reduced, automatically reduced, and full
(non-reduced) test sets. The sums of the positive and negative labels are displayed for the predicted labels and the
true labels, as well as the total number of samples in the respective test set. Occasionally the percentages don’t sum
to 100%; this occurs due to rounding.
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test dataset precision | recall | F1
manually reduced 0.80 | 0.71 | 0.75

automatically reduced 0.25 | 0.72 | 0.37
full test set 0.16 | 0.74 | 0.27

Table 8: Test results for each version of the test dataset

2. The dataset automatically reduced by learn-
ing which section headers are likely to appear
over a section containing a task description.
Only sections that have a high probability of
containing a task description are included;

3. The full dataset without any sections removed
from any papers.

Figure 7 shows the resulting confusion matrices for
each version of the test dataset. The scores reflect
the variation in proportion of positive to negative
samples; the most balanced dataset is associated
with the highest F1 score (0.75) and the least bal-
anced is associated with the lowest (0.27).

Surprisingly, the F1 score for the manually re-
duced dataset (0.75) is higher than the mean train-
ing result (0.72). This is surprising because the
hyperparameter settings were chosen based only
on the training data; the test data was unseen during
the process of hyperparameter selection. However,
0.75 is within one standard deviation of the mean
training result (standard deviation = ±0.08). The
dataset used to train the model used to classify
the test set was bigger than the dataset used dur-
ing training experiments because 10% of it did not
need to be set aside for validation. It is possible
that, due to the relatively small amount of posi-
tive samples, that increasing the training data by a
small amount could be enough to improve results
on during testing.

8.5 Error Analysis

Many of the errors made by our system reflect
the situations that were difficult or ambiguous for
the human annotators. Papers with subtasks, joint
tasks, and multiple tracks were particularly hard.
There were two papers with subtasks in the test
set for which the system failed to classify any sen-
tences as task descriptions; one paper that describes
multiple tracks for which the system wrongly chose
multiple sentences (one for each track); and a pa-
per describing four joint tasks for which the system

found all but one of the four task descriptions4.
There were six instances where, when faced with

more than one good task description candidate, the
system either chose both or chose the wrong one.
One interesting pattern is that the false positives
are often adjacent to true positives extracted by the
system. While these false positives may be lacking
in detail on their own, some of them work quite
well as auxiliary sentences to the true positives.

Our system struggled in two cases to recognize
short task description phrases embedded in broader,
more generic statements. This indicates that taking
a span-based approach to Task Description extrac-
tion could be more effective than sentence classifi-
cation. See Appendix B for more examples.

9 Conclusion

Our primary contribution is the creation of a new
Scholarly Document Processing corpus that pro-
vides full paper texts rather than short, curated
contexts, and a method for reducing and rebal-
ancing the dataset for an information extraction
task. Corpora such as NLPSharedTasks can be
used in scholarly information extraction systems
to automatically identify and display fine grained
scientific information to users of digital libraries.
Our most significant finding is the importance of
the data preparation and preprocessing decisions.
These choices about how to build and filter the
datasets had a much greater impact on the results
than the hyperparameter settings.

A future annotation project could be conducted
that is generally based on our rules but is more
lenient in terms of the sentences to be extracted.
Instead of focusing on conciseness, this project
would prioritize obtaining as much information as
is required to produce a more thorough account of
the shared task. This resource might subsequently
be utilized as the basis for an extractive task sum-
mary effort. A span-based information extraction
task could be designed over our corpus to extract
the original annotated sequences rather than full
sentences. Sentence classification could be used
as a preprocessing step to narrow down the search
space.

4The guidelines instructed the annotators to only extract
subtask descriptions if they appeared in consecutive sentences,
did not allow annotators to extract track descriptions, and
permitted annotators to choose multiple task descriptions for
joint task papers even if the spans were discontiguous.
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A Data Statement

Provided in this is the Data Statement for our cor-
pus NLPSharedTasks, version 1, following Bender
and Friedman (2018).

A.1 Curation Rationale
Our corpus contains the full texts of 254 Shared
Task Overview papers published in the ACL An-
thology between the year 2000 and 2021. The
criteria for inclusion are:

• The paper was written by the organizers of a
Shared Task

• The paper provides a description of the Shared
Task, including details on the dataset the task
is performed over, the task to be implemented
by participating systems, and an overview of
participating systems

• The Shared Task described in the paper was
hosted by some research workshop in the do-
main of computational linguistics or natural
language processing (NLP)

These criteria ensure that the papers included in
the corpus are likely to contain a Shared Task De-
scription. The ACL Anthology was chosen as the
source because it provides a catalog that is easy
to browse for qualifying candidates for inclusion.
Furthermore, choosing a single anthology to draw
from provided some consistency of paper style and
organization. The starting year (2000) was chosen
because the formatting of papers describing earlier
initiatives was too dissimilar.

A.2 Language Variety
The papers included in NLPSharedTasks are in
English as used in scientific communication in lin-
guistics, computer science, and natural language
processing domains.

A.3 Speaker Demographic
The demographics of the paper authors are un-
known. The speakers are likely researchers and
students of computational linguistics and natural
language processing.

A.4 Annotator Demographic
The annotation was performed by two English-
speaking annotators well versed in a broad range
of NLP topics. Annotator 1 is a graduate student in
computer science with a B.S. in computer science,

and annotator 2 is a post doctoral researcher in data
science with a PhD in computer science. Both an-
notators had shared task experience, annotator 1
as a participant and annotator 2 as an organizer of
SemEval 2021: NLPContributionsGraph (D’Souza
et al., 2021). Neither annotator was compensated.

A.5 Speech Situation
The papers included in NLPSharedTasks were writ-
ten between 2000 and 2021 in research settings.
The speech included in these papers is written and
is assumed to be scripted and edited, as well as peer-
reviewed. In the case of multiple authors, it is un-
known whether interaction was either synchronous
or asynchronous. The intended audience of the
papers included in NLPSharedTasks is researchers
and practitioners of computational linguistics and
natural language processing.

A.6 Text Characteristics
The genre of the texts included in NLPSharedTasks
can be described as written scientific communi-
cation in computational linguistics domains and
other fields. As such, scientific vocabulary is used
throughout that is specific to these domains and the
documents are structured in a formal way. Texts are
structured with sections under headers including
Title, Abstract, Introduction, Related Work, Task
Description, Results, and Conclusion, among oth-
ers.

We define a task description as a span of text
containing information on the task that must be per-
formed by participating systems. The annotation
goal was to extract sequences of text that efficiently
describe the Shared Task such that a human reader
can understand the task outside of the context of
the full paper. Encountering a variety of ways of de-
scribing tasks, we developed three sub-definitions:
full task description, partial task description, and
multiple subtasks description, where a full task de-
scription contains information on the input data
and a brief description of what the participating
system must accomplish with the input data, a par-
tial task description only describes the task to be
performed by participating systems without men-
tion of the data to be used, and a multiple subtasks
description is a sequence of text that covers multi-
ple subtasks in a single continuous sequence (such
a task description is permitted even if the content
spans multiple sentences). See Table 9.
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Type Example Frequency
Full “<TASK>Given a short context, a target word in English, and several sub-

stitutes for the target word that are deemed adequate for that context, the
goal of the English Simplification task at SemEval-2012 is to rank these
substitutes according to how “simple” they are, allowing ties</TASK>.”
From SemEval-2012 Task 1: English Lexical Simplification, (Specia et al.,
2012).

127

Partial “We describe the CoNLL-2000 shared task: <TASK> dividing text into
syntactically related non-overlapping groups of words, so-called text chunk-
ing</TASK>.” From Introduction to the CoNLL-2000 Shared Task Chunking,
(Tjong Kim Sang and Buchholz, 2000).

104

Subtask “The task is <TASK>divided into three subtasks: (a) classification of text
snippets reporting sociopolitical events (25 classes) for which vast amount
of training data exists, although exhibiting slightly different structure and
style vis-a-vis test data, (b) enhancement to a generalized zero-shot learning
problem (Chao et al., 2016), where 3 additional event types were introduced
in advance, but without any training data (’unseen’ classes), and (c) further
extension, which introduced 2 additional event types</TASK>, announced
shortly prior to the evaluation phase.” From Fine-grained Event Classifi-
cation in News-like Text Snippets - Shared Task 2, CASE 2021, (Haneczok
et al., 2021).

13

NULL N/A 12

Table 9: Number of full, partial, subtask, and null task descriptions in 254 shared task overview papers with examples.
The full task description contains a description of the input (“Given a short context, target word in English, and
several substitutes for the target word”), and a description of what participating systems must do (“rank these
substitutes according to how “simple” they are, allowing ties”). In contrast, the partial task description only contains
a description of what participating systems must do (“dividing text into syntactically related non-overlapping groups
of words, so-called text chunking”).
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Figure 6: Distribution of features that help choose between two or more candidate task descriptions

Option 1 Option 2 Discussion
automatically assessing hu-
mor in edited news head-
lines

build systems for rating
a humorous effect that is
caused by small changes in
text

We chose option 2 because it contains
more detail.

quantify the degree of pro-
totypicality of a target pair
by measuring the relational
similarity between it and
pairs that are given as defin-
ing examples of a particular
relation

rate word pairs by the de-
gree to which they are proto-
typical members of a given
relation class

This is a difficult example because ini-
tially option 1 seems better because it
appears to have more detail. However,
the second option has better clarity, and
is more specific because of the phrase
“word pairs” instead of “target pairs”.

annotate instances of nouns,
verbs, and adjectives using
WordNet 3.1

label each instance with one
or more senses, weighting
each by their applicability

Both of these phrases provide different
pieces of information about the task.
Because these sentences are adjacent,
the guidelines permit extracting the full
sequence of text including both phrases
and the text in between them.

given a set of documents
and a set of target entities,
the task consisted of build-
ing a timeline for each en-
tity, by detecting, anchor-
ing in time and ordering the
events involving that entity

given a set of documents
and a set of target entities,
the task consists of building
a timeline related to each en-
tity, i.e. detecting, anchor-
ing in time, and ordering the
events in which the target
entity is involved

Both phrases are equally good candi-
dates and are equivalent in meaning.
Either may be chosen.

Table 10: Examples of ambiguous annotation scenarios where it may be difficult to choose between two candidates
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There are a number of situations that caused
ambiguity during the annotation process. Certain
kinds of sentences may appear at first glance to
contain Task Descriptions, but actually served a
different role. For example, task descriptions will
often mention the research area, but a sequence that
only describes the general research area is insuf-
ficient if it does not contain specific information
on the task to be performed, as in the following
example:

“Sensiting inflectionality: Estonian task for
SENSEVAL-2”
Discussion: “Sensiting inflectionality” de-
scribes the research area, but is insufficient
to describe the shared task to be performed.

One other pitfall we observed is the fact that
sometimes paper authors use language when de-
scribing the aim, goal, or “task” of the task orga-
nizers or dataset annotators that makes it seem like
they are describing the task to be performed by
participating systems. A description of the orga-
nizers’ aim or the dataset creation task would not
be extracted as a task description according to our
guidelines. For example:

Aiming to catalyze the development of mod-
els for predicting LE, we organized the
shared task described in this paper.
Discussion: “catalyze the development of
models for predicting LE” sounds like it
could be a task description. The surrounding
context shows us that it actually is describ-
ing the aim of the task organizers (“Aiming
to... we organized the shared task”).

Another source of ambiguity for the annotators
is the presence of sub tasks, joint tasks, and multi-
track or multi-language tasks. Developing a ma-
chine reader to determine how many subtasks are
described in the paper and to extract a task descrip-
tion for each one from potentially disparate parts
of the paper would not be trivial. For this reason,
we do not annotate subtask descriptions unless they
appear in consecutive sequences of text.

Another ambiguous situation is the scenario
where there are two or more candidate task descrip-
tions that are all decent choices. These ambiguities
could be resolved by choosing the option that had
either more detail or better clarity; choosing the
sequence that works best out of context when the
options contain complementary but different in-
formation; or choosing any candidate when the
sequences are truly equivalent. The frequencies of

each of these choices in the dataset can be seen in
Figure 6, and examples of ambiguous cases can be
seen in Table 10.

Lastly, sometimes a paper does not contain a
sequence of text that sufficiently describes the task
out of context. In any situation where a task de-
scription cannot be found, we use a portion of the
title of the paper if the title contained a phrase de-
scribing the task. If no task description could be
found in the body of the paper and the title did not
sufficiently describe the task, then that paper would
not receive an annotation. There were twelve such
cases in the entire corpus.

A.7 Corpus Access
NLPSharedTasks corpus is available on GitHub
and is licensed under a Creative Commons Attribu-
tion 4.0 International License.

B Error Analysis

Table 11 on the following page presents examples
and analysis of errors made by our system on the
test set.

119



Error Type Sample In Context Discussion
False Nega-
tive

Unsupervised Word Sense Induction and Discrim-
ination (WSID, also known as corpus-based unsu-
pervised systems) has followed this line of think-
ing, and tries to induce word senses directly from
the corpus.

This sentence may have been diffi-
cult for the system to classify be-
cause the actual task description
span is relatively short compared to
the overall sentence context.

False Nega-
tive

Nine sub-tasks were included, covering problems
in time expression identification, event expres-
sion identification and temporal relation identi-
fication.

Papers with subtasks were difficult
for the system. The system did not
extract a single sentence from the
paper containing this example.

Partial
False Nega-
tive

This task required participating systems to an-
notate instances of nouns, verb, and adjectives
using Word-Net 3.1 (Fellbaum, 1998), which was
selected due to its fine-grained senses. Partici-
pants could label each instance with one or more
senses, weighting each by their applicability.

Annotators were permitted to select
sequences of text that spanned mul-
tiple sentences, if the additional text
provided important details. Our sys-
tem successfully classified the first
sentence in this example as a task
description, but missed the second
sentence.

False Posi-
tive & False
Negative

We present a counterfactual recognition (CR) task,
the task of determining whether a given statement
conveys counterfactual thinking or not, and fur-
ther analyzing the causal relations indicated by
counterfactual statements. In our counterfactual
recognition task, we aim to model counterfactual
semantics and reasoning in natural language.

Some of the errors were also diffi-
cult cases for human annotators. In
this example, the system selected
the first sentence rather than the sec-
ond. However, the annotator chose
to prioritize readability over detail
in this case.

Partial
False Posi-
tive

This task seeks to evaluate the capability of sys-
tems for predicting dimensional sentiments of
Chinese words and phrases. For a given word
or phrase, participants were asked to provide a
real-valued score from 1 to 9 for both the valence
and arousal dimensions, respectively indicating
the degree from most negative to most positive
for valence, and from most calm to most excited
for arousal.

The system classified both of these
sentences as task descriptions, al-
though the annotator only chose a
span from the second sentence.

Table 11: Examples of errors made by our system. The bolded and italicized spans of text are the original sequences
identified by human annotators as task descriptions.
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Abstract
Electronic theses and dissertations (ETDs) con-
tain valuable knowledge that can be useful
for a wide range of purposes. To effectively
utilize the knowledge contained in ETDs for
downstream tasks such as search and retrieval,
question-answering, and summarization, the
data first needs to be parsed and stored in a
format such as XML. However, since most of
the ETDs available on the web are PDF docu-
ments, parsing them to make their data useful
for downstream tasks is a challenge. In this
work, we propose a dataset and a framework
to help with parsing long scholarly documents
such as ETDs. We take the Object Detection
approach for document parsing. We first in-
troduce a set of objects that are important el-
ements of an ETD, along with a new dataset
ETD-OD that consists of over 25K page im-
ages originating from 200 ETDs with bound-
ing boxes around each of the objects. We
also propose a framework that utilizes this
dataset for converting ETDs to XML, which
can further be used for ETD-related down-
stream tasks. Our code and pre-trained models
are available at: https://github.com/
Opening-ETDs/ETD-OD.

1 Introduction

Long scholarly documents like Electronic Theses
and Dissertations (ETDs) contain a vast amount
of information which can be of immense value to
the scholarly community. Millions of ETDs are
now publicly available on the web, and can serve
as a rich source of scholarly information. However,
relative to the large amount of information in such
documents, a significant portion remains untapped.

Part of the problem is that these documents are
often long and filled with highly specialized details.
This makes it difficult for many users to understand
the information contained in ETDs. In recent years,
advances have been been made in NLP-based tech-
niques such as question-answering and text sum-
marization, which might be incorporated to make

Figure 1: Illustration of the proposed framework. We
take a source document in PDF as the input, and gener-
ate a parsed version in a structured format like XML.

ETDs more accessible. However, a majority of
these documents exist as PDF files. While some
tools can work with these files, the results we have
observed have been poor; other tools require data in
a structured format such as XML. This leads to the
research question: Is there a way to identify, parse,
and extract the information from a PDF version
of an ETD so that it is more accessible to a wider
audience?

Many research challenges arise when transform-
ing ETDs from PDF to other formats. These schol-
arly documents do not have a standard layout. Dif-
ferent institutions have their own layouts and for-
mats, making rule-based parsing methods difficult
to apply. Moreover, the structure and organiza-
tion of elements present in documents varies by
domain and organization. For instance, documents
from domains such as mathematics often contain
equations, while documents from computer science
frequently contain algorithms. Hence, there is a
need to develop machine-learning based document-
parsing methods that can generalize to documents
with different layouts and across domains.

In recent years, with the advances in the field
of computer vision, several methods have been
proposed for extracting important elements from
documents. Some of these approaches perform doc-
ument layout analysis using object detection mod-
els (Girshick, 2015; Ren et al., 2015). However,
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many of these works and the associated datasets
are focused on a very narrow set of scholarly docu-
ment elements. For instance, TableBank (Li et al.,
2020a) only contains bounding boxes for tables,
while ScanBank (Kahu et al., 2021) focuses on fig-
ures (and some tables). More recently, there has
been research that primarily focuses on layout anal-
ysis of scholarly documents (Zhong et al., 2019;
Li et al., 2020b). However, most existing work in
the domain of scholarly document understanding
focuses on research papers, which differ in many
ways from longer documents like theses and disser-
tations. First, research papers tend to be shorter in
length and have a narrower scope. As such, many
elements such as chapters, committee, and univer-
sity that are important in an ETD cannot be found
in datasets derived from research papers. Moreover,
research papers significantly differ from ETDs in
their structure and format. For instance, many re-
search papers are in double-column format, while
ETDs typically have a single column, and have big-
ger font size and spacing. Consequently, existing
methods for document understanding for research
papers are not easily adapted to ETDs.

In this work, we propose ETD-OD, an object
detection based framework to parse long PDF doc-
uments such as ETDs. Our approach works on the
PDF version of an ETD by first identifying impor-
tant elements such as figures, tables, captions, para-
graphs, delimiters like chapter and section headers,
and metadata such as title, author name, etc. This is
done using object detection models such as Faster-
RCNN (Ren et al., 2015) or YOLOv7 (Wang et al.,
2022) on individual page images. For textual ele-
ments such as paragraphs and captions, the textual
content is further extracted using PDF-based tools
such as pymupdf, or optical character recognition
(OCR). Finally, we put together all these elements
in a structured XML format. We also introduce a
new object detection dataset that contains over 25K
page images originating from 200K ETDs, consist-
ing of elements that commonly occur in ETDs, that
can be important sources of information. An XML
schema to support parsing with such objects is also
introduced.

2 Related Work

2.1 Methods

Early works in the domain of document layout un-
derstanding used rule-based approaches (Lebour-
geois et al., 1992; Ha et al., 1995). Other ap-

proaches, e.g., GROBID (Lopez and et al., 2008–
2022) and CERMINE (Tkaczyk et al., 2015) de-
signed for parsing scientific documents primar-
ily focused on short documents such as research
papers, and use an ensemble of sequence label-
ing methods for document parsing. With the ad-
vent of deep-learning based object detection meth-
ods such as Fast-RCNN (Girshick, 2015), Faster-
RCNN (Ren et al., 2015), and YOLO (Redmon
and Farhadi, 2018; Wang et al., 2022), document
layout analysis based on object detection has been
proposed. LayoutParser (Shen et al., 2021) uses
object detection models that have been pre-trained
on different object detection datasets to support
layout understanding. However, since it primar-
ily uses research-paper based datasets, it doesn’t
perform well on ETDs. Moreover, the number of
object types it supports is very limited. More re-
cently, layout-based language models (Xu et al.,
2020, 2021; Huang et al., 2022) have been pro-
posed. This line of work uses a multimodal archi-
tecture, i.e., a combination of visual and textual
features, to pre-train the model on a large corpus of
unlabeled data consisting of document images and
their corresponding text. Although these models
can then be fine-tuned on other downstream tasks
such as object detection, they still require domain-
specific annotated data for fine-tuning. Recently, to
make the documents more accessible, services such
as SciA11y (Wang et al., 2021) have been devel-
oped. However, their scope is limited to research
papers, rather than long documents such as books
and ETDs.

2.2 Datasets

With the growing interest in using object detec-
tion based methods for document layout analysis,
several datasets have been introduced. Many of
these datasets focus on specific object types. For
instance, TableBank (Li et al., 2020a), ScanBank
(Kahu et al., 2021), and MFD (Anitei et al., 2021)
consist of tables, figures, and equations, respec-
tively. Several datasets that consist of a diverse set
of objects have also been introduced. HJDataset
(Shen et al., 2020) consists of historical Japanese
documents. PRImA (Antonacopoulos et al., 2009)
consists of document images from magazines and
research papers. PubLayNet (Zhong et al., 2019) is
based on PDF articles from PubMed Central. The
number of different objects, however, is limited in
these datasets. DocBank (Li et al., 2020b) is a large
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dataset that consists of a diverse set of objects from
research papers. But given the differences between
research papers and long documents such as ETDs,
models trained on DocBank do not generalize well
on ETDs.

3 ETD Elements

Historically, ETDs do not conform to a univer-
sally accepted format, since different colleges and
universities have their specific standards and re-
quirements for ETDs. In this section we discuss
the elements that are typically found in ETDs and
would be important to extract for further analysis
and downstream tasks. This list was curated after
extensive discussions with digital librarians and
researchers. We broadly categorize the different
elements of ETDs into the following categories.

3.1 Metadata

The metadata consists of elements that contain
unique identifiable information about an ETD, in-
cluding information found on the front page. Key
metadata elements are:
• Title: The main title of the document.
• Author: Name of the document author.
• Date: Date (or month/year) when the document

was published, or of the final research defense.
• University: University/institution of the author.
• Committee: Committee that approved the docu-

ment, e.g., the student’s graduate committee.
• Degree: Degree (e.g., Master of Science, Doctor

of Philosophy) being earned.

3.2 Abstract

The abstract is an important element of an ETD, as
it contains a summary of the work, typically about
a page long. Its elements include:
• Abstract Heading: Since some ETDs contain

multiple abstracts, such as a technical abstract
and general audience abstract, or an abstract in
English as well as the original language, extract-
ing the abstract heading makes it easier to seg-
ment, and could be helpful in categorizing the
abstract by audience type.

• Abstract Text: The actual text of the abstract.

3.3 List of Contents

The list of contents (also referred to as table of con-
tents) of an ETD determines where different com-
ponents are located based on their page numbers.
This helps with accurately mapping the chapters

and sections, as well as figures and tables, since
they are generally included in the list of contents.
This subcategory includes the following elements:
• List of Contents Heading: This helps identify

the specific type of list (e.g., list of chapters/sec-
tions, list of figures, list of tables).

• List of Contents Text: This is the actual list of
entries for this type of content.

3.4 Main Content
Chapters are one of the most important components
of an ETD, as they contain detailed information
about the research described in the document. This
subcategory consists of elements that can typically
be found in the chapters of an ETD.
• Chapter Title: The title of the chapter.
• Section: Quite often, chapters themselves can

be long. It may be desirable to have further de-
limiters such as sectional headers. Hence, we
include the section names which can be used for
further splitting of the document.

• Paragraph: The main textual content of the
ETD.

• Figure: This includes figures, charts, and other
visual illustrations included in the document.

• Figure Caption: The text caption that describes
the figure.

• Table: The table element category.
• Table Caption: The text caption that describes

the table.
• Equation: Mathematical equation/formula.
• Equation Number: Quite often, equations are

numbered, which can be helpful in linking them
to the list of equations that may be included in
the document.

• Algorithm: Algorithm description, e.g., as
pseudo-code.

• Footnote: We separate footnotes from regular
paragraphs, as they typically provide auxiliary
information which might be undesirable in many
downstream tasks, such as summary generation.

• Page Number: Page numbers, which could be
helpful in cross-referencing pages and the objects
contained therein, to the list of contents.

3.5 Bibliography
We also include bibliographic elements in the list
of objects. They are described below:
• Reference Heading: The header that indicates

start of the references list.
• Reference Text: The actual list of references

cited in the document.
123



In our dataset, we regard appendices as chapters,
since they contain many elements that are found
in the main chapters. They can however, be easily
differentiated from main chapters based on the title.

4 Dataset

4.1 Dataset Source

The ETD-OD dataset consists of 25K page images
from 200 theses and dissertations. These docu-
ments were downloaded from publicly accessible
institutional repositories, and were randomly sam-
pled with regards to degree, domain, and institution.
Since object detection requires images as the input
data, the documents were split into page images
using the pdf2image1 Python library. These im-
ages were then used for annotation.

4.2 Annotation

We use Roboflow2 for annotating the page images
in our dataset. The annotation was done by a group
of 6 undergraduate students (Zhu et al., 2022), each
of whom was a computer science student from
junior year or above. Each data sample was further
validated for correctness by two graduate students.

4.3 Dataset Statistics

Table 1 shows the detailed statistics for different ob-
ject categories in our dataset. The dataset consists
of ∼25K page images and ∼100K bounding boxes
spanning across different object categories. Owing
to the variation in the frequency of occurrence of
various object categories in documents, some cat-
egories have many more samples as compared to
others. Elements such as paragraphs can be found
on most pages, and hence, it is the dominant cate-
gory in our dataset. 80% of the images and their
corresponding objects were used for training, while
the remaining 20% were used as the validation set.

5 Proposed Framework

We now introduce the proposed framework for
transforming long PDF documents into structured
XML format. The architecture of our framework
is illustrated in Figure 2. The different modules
shown can broadly be divided into the following
three categories.

1https://pypi.org/project/pdf2image/
2https://roboflow.com/

Category # Instances

Title 439
Author 404
Date 338
University 309
Committee 282
Degree 279
Abstract Heading 169
Abstract Text 183
List of Contents Heading 512
List of Contents Text 1059
Chapter Title 2211
Section 9337
Paragraph 30359
Figure 6359
Figure Caption 5722
Table 2654
Table Caption 2213
Equation 5092
Equation Number 3051
Algorithm 96
Footnote 5722
Page Number 24543
Reference Heading 313
Reference Text 2088

Total Objects 99859
Total Images 25073

Table 1: Distribution of different object categories in
our dataset. Note: Some of the documents were ac-
companied with front matter (metadata) pages that are
sometimes generated by the digital libraries. We include
annotations for such documents as well, and hence, the
number of metadata elements does not exactly match
the number of documents.

5.1 Data and Preprocessing
Since our framework is primarily built for parsing
long scholarly documents, it takes the PDF version
of the document as input. The input file is con-
verted to individual page images (.jpg format) using
Python-based PDF libraries such as pdf2image.
Next, the page images are individually fed to the
Element Extraction module for further processing.

5.2 Element Extraction using Object
Detection

This module forms the backbone of our system. It
takes the individual page images as input, and uses
an object detection model such as Faster-RCNN or
YOLO for object detection. These models are first
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Figure 2: Architecture of the proposed PDF to XML parsing framework.

pre-trained on the dataset described in Section 4.
The specific details about training object detection
models are included in later sections of this paper.
While using the object detection models as a part
of this module, only inference is performed, and
no updates are made to the model parameters. The
output of object detection will be a list of elements,
where each element contains information about the
bounding boxes such as the coordinates, along with
the category labels. This process is repeated for all
of the pages in the document, and finally, a list of
pages accompanied by their respective elements is
populated.

In some instances, the object detected by the
model is classified as one belonging to a different,
yet similar category. In such cases, we use certain
post-processing rules to correct the predictions. For
example, abstract heading being mis-classified as
chapter heading is one of the common errors, since
both of these elements are often found in bigger
font size at the beginning of a page. This can,
however, be corrected by enforcing a constraint
such as: a chapter heading in the first 10 pages with
matching keyword “abstract" will be the abstract
heading. We use a set of such rules for different
object types to correct mis-classifications before

the objects are sent to the XML module.

5.3 Structuring Objects into XML

After extracting all of the elements for all of the
pages in the document, we generate the XML rep-
resentation of the document. We regard the objects
as broadly belonging to two types. The first type in-
cludes image-based objects such as figures, tables,
algorithms, and equations, that need to be stored
on the file system as an image. We regard tables as
image-based objects even though they might con-
tain text, since further extraction of information in
structured format from tables is beyond the scope
of this work. The second type of object includes
text-based elements such as paragraphs, titles, etc.,
which need further processing to be converted to
plain text. We regard all object categories exclud-
ing the image-based ones as textual elements.

For converting text-based objects to plain text,
we use off-the-shelf tools and libraries. Some PDF
documents are born-digital, where the text can
be easily extracted using Python libraries such as
pymupdf3 based on page ID and bounding box
coordinates. For scanned documents we use op-

3https://pymupdf.readthedocs.io/en/
latest/
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tical character recognition (OCR) tools such as
pytesseract4.

<etd>
<front>
<title>Document Title</title>
<author>Author Name</author>
<university>University</university>
<degree>Degree Type</degree>
<committee>Committee</committee>
<date>Date or Month/Year</date>
<abs_heading>Abstract</abs_heading>
<abs_text>In this..</abs_text>
<loc_heading>Table of..</loc_heading>
<loc_text>1. Intro ...</loc_text>

</front>
<body>
<chapter>
<title>Chapter-1..</title>
<page_no>1</page_no>
<sections>
<section>
<name>1.1..</name>
<paragraphs>
<para>In this...</para>
<para>Next, we...</para>

</paragraphs>
<figures>
<figure>
<path>fig_001.png</path>
<caption>Fig.1...</caption>

</figure>
</figures>
<tables>
<table>
<path>tab_001.png</path>
<caption>Table.1.. </caption>

</table>
</tables>
<equations>
<equation>
<path>eqn_001.png</path>
<eq_no>1</eq_no>

</equation>
</equations>
<algorithms>
<algorithm>
<path>alg_001.png</path>

</algorithm>
</algorithms>
<footnotes>
<footnote>...</footnote>

</footnotes>
</section>

</sections>
</chapter>

</body>
<back>
<ref_heading>Ref..</ref_heading>
<ref_text>..</ref_text>

</back>
</etd>

Schema 1: XML Schema for Representing ETDs in
Structured Format.

For image-based elements, we include the rel-
ative path of the image that is cropped based on
the coordinates. Figures and tables are mapped to
their respective captions based on proximity. For
any figure/table element, the caption object closest
to them based on Euclidean distance w.r.t. bound-
ing box coordinates is assumed to be the caption.
A similar method is followed to map equations
with their equation numbers, with an added con-
straint that the y-coordinate of the center of the

4https://pypi.org/project/pytesseract/

equation number should fall between min and max
y-coordinates of the equation object. Finally, all
the element values are put into the XML file un-
der their corresponding tags. The detailed XML
schema is shown in Schema 1.

6 Object Detection Training

We use the ETD-OD dataset introduced in this pa-
per for training object detection models for our
framework. The models currently supported are:
• Faster-RCNN (Ren et al., 2015): Faster-RCNN

is an object detection model that has two stages.
A region proposal network generates regions of
interest, which are fed to another network for
final detection. We use the version of Faster-
RCNN that uses ResNeXt-101 (Xie et al., 2017)
as the backbone model.

• Faster-RCNN pre-trained on DocBank (Li
et al., 2020b): Faster-RCNN (with ResNeXt-
101 backbone) pre-trained on DocBank (from
the DocBank model zoo) is fine-tuned on ETD-
OD. Although DocBank does not include all of
the elements found in ETDs, we hypothesize that
the scholarly nature of documents used in pre-
training should help improve the performance
over the vanilla version of the model.

• YOLOv5 (Jocher et al., 2022): YOLO is a family
of single stage object detection models that per-
form the processes of localization and detection
using a single end-to-end network. This improves
the speed without any significant drop in perfor-
mance. These models have shown impressive
performance on various datasets.

• YOLOv7 (Wang et al., 2022): This is the most
recent version of YOLO, which has been shown
to outperform many object detection models.
Both of the Faster-RCNN models were trained

on our dataset for 60K iterations with an inference
score threshold of 0.7. The models were based on
the implementation included in the open-source
detectron2 (Wu et al., 2019) framework. For the
DocBank-pretrained version of the model, we used
the original set of weights and configurations open-
sourced by the authors. Both of the versions of
YOLO were based on the open-source implementa-
tions, and were trained for 150 epochs.

7 Experiments

In this section, we discuss the results obtained in
the experimental analysis of our work.
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7.1 Evaluation Metrics

For the quantitative evaluation of object detection
models, the commonly used metrics are average
precision (AP) and mean average precision (mAP).
AP is defined as the area under the precision-recall
curve for a specific class. mAP is the average of AP
values for all object classes. Both of these metrics
have different versions based on the overlap thresh-
old (also referred to as Intersection over Union
or IoU) used for comparing the predicted object
against ground truth. For example, in mAP@0.5,
all of the objects with an intersection of 50% or
more with the ground truth will be regarded as cor-
rect predictions. Another commonly used version
of mAP is mAP@0.5-0.95, which is the average
mAP over different thresholds, from 0.5 to 0.95
with step 0.05.

7.2 Analysis of Various Object Detection
Models trained on ETD-OD

Model mAP@0.5 mAP@0.5-0.95

Faster-RCNN 39.1 19.6
Faster-RCNN* 76.2 44.0
YOLOv5 83.4 52.1
YOLOv7 85.3 52.7

Table 2: mAP comparison for object detection mod-
els on ETD-OD. Faster-RCNN* represents the model
pre-trained on DocBank and fine-tuned on ETD-OD.
Underlined values indicate best performing models.

Table 2 shows performance of different object de-
tection models on the validation set of our dataset.
The following observations can be made from the
mAP values shown:
• Pre-training on scholarly documents improves

model performance: The basic version of
Faster-RCNN without any pre-training on schol-
arly documents has the lowest performance
among all the models. The same model, after
pre-training on DocBank, and then fine-tuned on
the ETD dataset, gives much better performance.
Since DocBank also consists of scholarly docu-
ments, albeit of different type, the pre-training
process exposes the model to a diverse dataset,
which eventually results in better generalization
and predictive performance.

• YOLO outperforms Faster-RCNN on ETD
dataset: YOLO models belong to the class of
single stage detectors, which are designed with

an emphasis on speed. YOLO typically performs
worse than Faster-RCNN in scenarios where the
objects are smaller or multiple objects are close
to each other. However, in case of documents,
most objects are typically of large size and have
minimal overlap with each other due to white
spaces and line breaks around objects (such as
between a header and paragraph). Hence, it out-
performs Faster-RCNN on the ETD dataset.

7.3 Analysis of Detection Performance on
Different Object Categories

Category AP@0.5 Category AP@0.5

Title 92.5 Paragraph 97.4
Author 89.5 Figure 98.4
Date 68.3 Fig. Caption 95.4
University 91.1 Table 94.7
Committee 96.5 Tab. Caption 89.8
Degree 68.3 Equation 72.6
Abs. Heading 94.2 Eqn. Number 55.0
Abs. Text 86.7 Algorithm 66.6
LOC Heading 75.5 Footnote 98.9
LOC Text 99.3 Page Number 51.3
Chapter Title 88.8 Ref. Heading 80.7
Section 90.9 Ref. Text 99.3

Table 3: AP@0.5 values for different object categories
for YOLOv7 (Abs. = Abstract, LOC = List of Contents).

In Table 3, we show the performance of the best
performing model (YOLOv7) on various object
categories in our dataset. The lower performance
of certain categories can generally be attributed to
two reasons:
• Limited Number of Training Samples: Ele-

ments such as degree, date, and algorithm have
very few instances in our dataset. As such, the
performance on these classes is lower.

• Smaller Object Sizes: Elements such as page
number and equation number tend to be of
smaller size as compared to other elements.
Since object detection models tend to struggle
with localization of smaller objects, performance
of such classes is impacted.

7.4 Comparison against Other Layout
Detection Datasets

To evaluate how the performance of similar mod-
els varies across different datasets from the docu-
ment layout analysis domain on layout analysis of
ETDs, we compare the per class AP values for ob-
ject categories supported by the DocBank dataset.
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Categories DocBank
only

ETD-OD
only

DocBank
ETD-OD

Abstract 2.29 0.0 67.42
Author 5.8 19.27 73.27
Caption 42.72 55.04 / 18.27 97.46 / 89.03
Date 0.0 0.0 76.28
Equation 8.13 62.28 76.19
Figure 72.44 78.21 95.01
Footer 69.38 85.03 97.64
List NA NA NA
Paragraph 5.01 80.64 94.34
Reference 2.94 75.43 97.92
Section 19.88 66.99 77.63
Table 33.25 49.04 89.7
Title 1.1 11.3 73.85

Table 4: AP@0.5 values for categories supported
by DocBank using Faster-RCNN trained on different
datasets and evaluated on validation set of ETD-OD.
For Caption, we list the Figure Caption / Table Caption
values for models trained on ETD-OD.

These results are shown in Table 4. The DocBank
only is the version of Faster-RCNN pre-trained on
DocBank, that was evaluated on the ETD dataset
without any fine-tuning. The ETD only model
has been trained only on the ETD dataset without
pre-training on any other scholarly dataset. The
DocBank ETD-OD was pre-trained on DocBank
and then fine-tuned on ETD-OD.

We can see that both of the models that were
trained on the ETD dataset perform better than the
model that was just trained on the DocBank dataset.
This may be due to the fact that DocBank consists
of images of research papers, which have different

layouts as compared to long documents such as
ETDs. On the other hand, since research papers
do tend to have some similarities with ETDs, pre-
training on DocBank followed by fine-tuning on
ETD-OD gives the best results among all three.

7.5 Qualitative Analysis

In Fig. 3, we show example outputs generated
by the best performing versions of Faster-RCNN
(pre-trained on DocBank, fine-tuned on ETD-OD)
and YOLO (v7) models. Faster-RCNN fails to
detect many of the metadata elements, which is
also reflected by its low mAP values. YOLOv7 is
able to detect most of the elements on the page,
with the exception of page number. We conclude
that YOLOv7 is the best performing model on the
ETD dataset.

8 Conclusion and Future Work

In this work, we presented a new dataset and a
framework for parsing long scholarly documents
such as ETDs from PDF to structured formats such
as XML. We also presented a schema to represent
ETDs in XML format, along with extensive ex-
perimental evaluation of multiple state-of-the-art
models on the newly introduced ETD-OD dataset.
In the future, we plan to extend this work to other
types of documents, such as old archival documents
which typically contain a great amount of noise,
and make further improvements to the performance
of minority categories.

(a) Original Image (b) Faster-RCNN (DocBank, ETD-OD) (c) YOLOv7

Figure 3: Examples of outputs generated by the Faster-RCNN and YOLOv7 models.
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Abstract

The increased interest in time-domain astron-
omy over the last decades has resulted in a
substantial increase in observation report publi-
cation leading to a saturation of how astrophysi-
cists read, analyze and classify information.
Due to the short life span of the detected astro-
nomical events, information related to the char-
acterization of new phenomena has to be com-
municated and analyzed very rapidly to allow
other observatories to react and conduct their
follow-up observations. This paper introduces
TDAC: a Time-Domain Astrophysics Corpus.
TDAC is the first corpus based on astrophysical
observation reports. We also present the NLP
experiments we made for named entity recog-
nition based on annotations we made and anno-
tations from the WIESP DEAL shared task.

1 Introduction

Time-domain astrophysics consists in observing
and studying transient cosmic phenomena, i.e. un-
predictable, short-lived, and the most violent phe-
nomena occurring in the Universe, such as super-
novae explosions or gamma-ray bursts (GRBs),
which are highly energetic explosions lasting from
milliseconds to a few hours or days only (Neronov,
2019). The short life span of these events requires a
rapid sharing, analysis and synthesis of the informa-
tion disseminated in observation reports. However,
the increased interest in time-domain astronomy
has led to a significant increase in observation re-
ports, leading to a saturation of how astrophysicists
analyze and classify information in observation re-
ports. As the current manual reading and analyzing
of available information is approaching saturation,
new ways of handling information are necessary.

One of the most promising approaches is to build
Natural Language Processing (NLP) methods that
tackle the challenges of extracting and summariz-
ing information on observation reports by detect-
ing, for example, named entities. Named Entity

Recognition (NER) can identify and extract infor-
mation about an astrophysical object, such as the
date of detection, its coordinates in the Universe,
and numerous information, such as intensity and
magnitude, to let astrophysicists know if they can
trigger a follow-up observation. To train and evalu-
ate an NER system, a corpus must first be created
and annotated.

This paper presents TDAC: a Time-Domain As-
trophysics Corpus for NLP, based on observation
reports. To our knowledge, no existing resources
and studies so far are based on time-domain as-
trophysics observation reports, and therefore there
are no studies characterising the discourse used in
astrophysics. Our objective is twofold: The first
objective of our study, with the creation of this
corpus, is to highlight differences between astro-
physics corpora. What are their properties, and
are they all the same? We provide some elements
characterizing and revealing the specificity of the
formulations used in astrophysics by conducting a
corpus analysis (Section 4). Secondly, we started
building an NER system for the domain. Section 5
presents our annotations and the first NER experi-
ments we conducted on a sub-corpus of TDAC (75
documents). The annotated section of TDAC is the
first annotated and publicly available1 corpus based
on observation reports for named entity recognition
in time-domain astrophysics.

2 Research and Language Resources in
Astrophysics

The vast majority of the limited research performed
so far in NLP for astrophysics studies papers from
the Astrophysics Data System (ADS2). The ADS
is a database for researchers in astronomy with
more than 15 million records covering publications
in astronomy, astrophysics, and general physics.

1https://github.com/AtillaKaanAlkan/
TDAC

2https://ui.adsabs.harvard.edu/
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Abstracts and full text of astronomy paper publi-
cations are indexed and searchable through ADS,
making it a rich exploitable platform for creating
NLP resources.

2.1 The Astronomy Bootstrapping Corpus
The Astronomy Bootstrapping Corpus (ABC)
(Becker et al., 2005; Hachey et al., 2005) is
one of the unique existing annotated corpora
for astrophysical Named Entity Recognition
(NER). ABC consists of 209 abstracts of astro-
nomical papers extracted from the ADS. The
built corpus aimed to explore an active learning
approach to reduce annotation costs for a NER
task by defining four astrophysical named en-
tities: instrument_name, source_name,
source_type and spectral_feature,
with respectively 136, 111, 499 and 321 instances.
To our knowledge, the corpus is not available.

2.2 The Astro Corpus
Murphy et al. (2006) built a larger corpus than the
ABC for named entities detection by downloading
all the astronomical journal articles and conference
papers (52 658 documents) from the astrophysics
section (astro-ph) of arXiv. The annotated corpus
consists of 7840 sentences (approximately 200 000
words) with an average of 26.1 tokens per sen-
tence. There are 43 astrophysical named entities,
including celestial objects, telescope names and
categories related to astrophysical sources’ proper-
ties. To our knowledge, this corpus is not available
either.

2.3 The DEAL Shared Task Corpus
The Detecting Entities in the Astrophysics Litera-
ture (DEAL) shared task3 consists of developping
a system that identifies named entities in the as-
trophysics literature (Grezes et al., 2022). The or-
ganisers provided a baseline NER system using
astroBERT (Grèzes et al., 2021), a deep contextual
language model pre-trained on 395 499 publica-
tions (3 819 322 591 tokens, 16GB on disk) from
the ADS database. The astroBERT model is not
available yet, but preliminary results (F1-score of
0.902 on an NER task) are exposed in the above-
cited paper. The DEAL corpus comprises full-
text fragments and acknowledgements sections ex-
tracted from ADS papers for the shared task. The
corpus was split into train, development and test

3https://ui.adsabs.harvard.edu/WIESP/
2022/SharedTasks

sets, with 1753, 1366 and 2505 documents, respec-
tively. During the shared task, only the labels for
the training set were provided. We participated in
the shared task and had access to the entire anno-
tated collection4 (train+development+test) at the
end of the shared task. It is, therefore, the only
annotated corpus we have for comparison with our
TDAC corpus. We provide more detailed statistics
on the DEAL corpus in the rest of the paper.

2.4 Other Studies
Information Retrieval and Recommendation
System Kerzendorf (2019) downloaded astro-
physics papers from the arXiv Bulk Data Access to
build a corpus (201.997 articles). Their study aims
to develop a robust text-based similarity tool to
recommend articles given a reference input paper.
Mukund et al. (2018) built and deployed another
information retrieval and recommendation system,
"Hey LIGO", an open access NLP-based web ap-
plication for LIGO and VIRGO observatories (both
aiming to detect gravitational waves). Documents
used are extracted from the open source logbook
data from both observatories. Therefore, to our
knowledge, this is the only study not based on as-
trophysics papers. Data have been recorded since
2010, and the logbook consists of 83.911 entries,
and an automatic check for new data entries is peri-
odically done to update the models regularly.

Anaphora Resolution Kim and Webber (2006)
used astrophysics articles from the Monthly No-
tices of the Royal Astronomical Society (MNRAS)
to constitute a small corpus (it consists of more than
a hundred articles) for anaphora resolution. To con-
clude this literature review, most NLP resources
for astrophysics are mainly created and exploited
using scientific papers. This paper presents TDAC,
the first annotated corpus based on observation re-
ports for named entity recognition in time-domain
astrophysics.

3 Material for the TDAC Corpus

3.1 The resource platforms used
Reports are written and published on mainly three
platforms by an extensive network of professional
observers worldwide (astronomical observatories
and satellites) and are accessible in open source to
the entire research community. In this study, we

4Data are accessible for participants only. We do not know
how organisers will make the collection publicly available so
far.
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use these platforms to have a good coverage of the
domain.

The Gamma-Ray Burst Coordinates Network
The GCN5 platform is dedicated mainly to
the gamma-ray bursts astrophysicists community,
where observers report their observations and anal-
ysis of GRBs in the form of "GCN Circulars"
(Barthelmy et al., 1995).

The Astronomer’s Telegram This system is
a communication channel6 that allows instanta-
neously sharing and reporting information to the
astrophysicists’ community in the form of as-
tronomer’s telegrams or "ATel" (Rutledge, 1998).
Observers report discoveries regarding a large va-
riety of astronomical sources with no restrictions
on the type of discoveries (black holes, blazars,
neutron stars etc.).

The Transient Name Server The TNS7 is
mainly a dedicated platform for the astronomers’
community interested in confirmed supernovae can-
didates. Astrophysicists report their observations
in the form of "AstroNotes" (Gal-Yam, 2021).

3.2 Collecting the raw corpus

An archive with the complete set of published GCN
circulars in text files is available on the GCN web-
site. Thus, to collect raw data and build up our
corpus, we downloaded it. However, unlike GCN
circulars, there is no direct way to bulk download
all past ATel and AstroNotes. Therefore, we set up
a Python script using the BeautifulSoup package
to perform an automated extraction of the HTML
code of all reports published from 1997 to 2021
and parsed the content into a text file. Figure 1
shows the evolution of reports published annually.

The increase in published reports is due to the
number of observations monitored by various ob-
servers, particularly with the launch of the Swift
telescope in 2004, leading to a significant increase
in GCN circulars regarding GRB detection. How-
ever, we note a slight decrease in the number of
ATel telegrams since 2015. A migration of publi-
cations to the TNS platform could be the reason
for the decrease in the number of ATel published
per year. Another explanation for this decrease

5https://gcn.gsfc.nasa.gov/gcn3_
archive.html

6https://astronomerstelegram.org/
7https://www.wis-tns.org/astronotes/

Figure 1: Number of published reports from 1997 to
2021 (GCN circulars in blue, ATel in red, AstroNotes in
green)

could be that the types of objects processed in the
telegrams have been less observed in recent years.

4 Corpus Analysis

4.1 Statistics
As descibed in Table 1, within the TDAC corpus,
AstroNotes are the least numerous, as the platform
is more recent than GCN and ATel platforms. It
explains the significant difference in the total num-
ber of tokens for each type of document. However,
although AstroNotes are less numerous, they have
the highest lexical diversity. GCN circulars and
ATels seem to be quite similar in terms of vocabu-
lary richness. We notice that the DEAL corpus has
the least lexical diversity. Perhaps the documents in
this corpus are all from the same theme, or all deal
with the same types of astrophysical phenomena.
Among observation reports, GCN circulars are the
longest.

Corpus # Doc # Tokens Lex. Len.
ATel 15 108 3 250 292 0.068 260
GCN 31 964 7 283 252 0.065 319
AstroNotes 741 165 303 0.076 277
DEAL 5624 1815237 0.057 322

Table 1: Astrophysics corpus statistics comparison
(number of focuments, number of tokens, lexical di-
versity, and average length)

4.2 Most Frequent Word N-grams
Before counting the most frequent unigrams and
bigrams characterising the observation reports, we
proceeded to some text preprocessing8. Results in

8We removed stopwords, normalised all digits/numerical
values, and lemmatised each word.
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TDAC Unigrams Bigrams
ATel num_val, source, observation, atel,

spectrum, flux, telescope, image, x-ray,
transient

atel link, dec num_val, apj num_val, ref-
erence image, num_val mcrab, unfiltered
magnitude, host galaxy, autodetection system,
redshift num_val

GCN num_val, grb, gcn, observation, re-
port, burst, team, kev, swift

grb num_val, gcn num_val, num_val
gmt, num_val kev, light curve, upper limit,
fermi gbm, swift-xrt team, grb observation,
photon index

AstroNotes transient, atlas, survey, object, related,
report, telescope, observation, clas-
sification, search, supernova, system,
galaxy

related files, num_val mpc, grant num_val,
near earth, transient name, iau transient,
num_val arcsec, queens university, zwicky
transient, follow-up observation

Table 2: Most frequent unigrams and bigrams in the TDAC corpus

Table 2 show that more digits and numerical val-
ues (num_val token) exist in the GCNs and ATels
compared to the AstroNotes. We note and identify
different astronomical facilities and objects accord-
ing to the report’s type, such as swift and fermi
telescopes in the GCNs, or even atlas and zwicky
transient facility in the AstroNotes. We note dif-
ferent energy ranges and measurement units (kev,
mcrab, arcsec), or different wavelengths (x-ray) de-
pending on the type of report. Astrophysicists we
are collaborating with confirmed our conclusion:
in astrophysics, each community uses dedicated
platforms according to the discoveries that interest
them. Finally, the main thing we notice when an-
alyzing the bigrams is the strong interconnection
inside ATel and GCN circulars. Indeed, there are
many explicit references between the observation
reports (gcn num_val and atel link) regarding
detected events. Since the information concerning
an astrophysical event is disseminated across sev-
eral linked documents, it is essential to gather all
the documents and aggregate them by the event.

4.3 Syntactic Analysis

Campbell and Johnson (2001) showed the useful-
ness of the Pointwise Mutual Information (PMI)
and the chi-square χ2 distance to compare syntac-
tic complexity between corpora. Thus, we decided
to compute these two metrics to characterise the
discourse used in astrophysics. We computed the
positive PMI (see equation 1) on parts-of-speech
(POS) bigrams between two corpora: our TDAC
corpus composed of observation reports and the

DEAL challenge corpus.

PMI(x, y) = log2

(
P (xy)

P (x) ∗ P (y)

)
(1)

The mutual information allows highlighting the
proximity between two corpora. We also compared
the frequency of occurrence of single POS and POS
bigrams between corpora using the χ2 metric (see
equation 2).

χ2 =
∑(

Observed− Expected

Expected

)2

(2)

We used SciSpacy (Neumann et al., 2019) for POS
tagging after conducting performance tests9 of POS
labelling, and obtaining better performance than
NLTK, TreeTagger, Spacy and Genia tools.

4.3.1 Pointwise Mutual Information of POS
We divided each corpus into ten sections of the
same size in order to ensure stability of results. We
only considered the positive mutual information
and then set the negative values to zero. Table 3
reports the average postitive PMI for POS bigrams.

These results seem to point to a less complicated
syntactic structure in the DEAL corpus compared
to the TDAC one. Indeed, the average PMI value of
the DEAL corpus is slightly higher than the average
PMI score of the TDAC corpus. When looking
inside the TDAC corpus, we notice that compared
to ATels et GCNs, the occurrence of POS bigrams

9To compare tagging performances, we manually anno-
tated 20 documents from the TDAC corpus and compared
performances on POS tagging of 5 different tools to determine
the appropriate one for astrophysics texts.
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Corpus # token/section Avg PMI
TDAC 1 500 000 0.469 (0.028)
– ATel 450 000 0.554 (0.050)
– GCN 960 000 0.524 (0.009)
– AstroNotes 21 000 0.961 (0.044)
DEAL 210 000 0.622 (0.026)

Table 3: Average Positive PMI for POS bigrams (stan-
dard deviation of mean in parentheses)

in AstroNotes seems more dependent than those in
ATels and GCNs, as seen by the higher score in the
positive PMI. The syntactic structure seems to be
less complicated in AstroNotes.

4.3.2 Frequency Distributions of POS
We computed the chi-square metric to calculate the
distances between each corpora. The chi-square
distances for single and POS bigrams comparisons
are reported in Table 4. POS and POS bigrams

Corpus χ2 POS χ2 POS bigram
ATel-GCN 1 075 610.83 1 234 413.99
ATel-AstroNotes 1 594 932.63 1 597 152.56
GCN-AstroNotes 4 017 655.62 4 012 353.21

TDAC-DEAL 3 986 047.13 4 053 795.68

Table 4: χ2 distance comparison for single POS and
POS bigram frequencies.

distributions are relatively different between the
TDAC and DEAL corpus, which explains these
large χ2 values between the two corpora. Within
the TDAC corpus, we can see a high distance be-
tween GCN circulars and the AstroNotes, whereas
it is less marked between the ATel and AstroNotes.
These first results regarding syntactic analysis show
a diversity between the corpora used, but further
analysis is needed to qualify these differences.

5 Named Entity Recognition

5.1 Astrophysical Named Entities
We used the same categories defined in the DEAL
shared task. This annotation guide comprises 31
named entities and covers the entities of interest,
such as astronomical facilities, celestial objects,
coordinates, formulae or observational techniques
contained in observation reports. Detailed tags list
is presented in Table 8 in Appendix. Figure 2 shows
the normalised distribution of annotated named en-
tities on the TDAC and DEAL corpora for compar-
ison purposes.

Figure 2: Normalised distribution of named entities in
the TDAC (orange) and DEAL (blue) corpus.

Classes’ distribution within the two corpora
is not similar. Indeed, in the TDAC corpus,
the most frequent categories e.g. Formula,
CelestialObject, Observatory, or
CelestialRegion. These are particular
categories in the astrophysics domain. Most of
these specific classes are less present in the DEAL
corpus, in which we find mainly the classes of
types: Citation, Organization, Grant or
Person, which seems to be more generic named
entity categories.

5.2 Annotation Procedure

The reports used to build the TDAC corpus for
NER were randomly selected from the extracted
observation reports and annotated in two stages.
First, we used one of the models fine-tuned for the
DEAL shared task to perform an automatic pre-
annotation of 75 observation reports, followed by
a manual correction stage by a PhD student with a
background in astrophysics. The evaluation of the
quality of the pre-annotation using the fine-tuned
model corresponds to experiment 1 presented in
the rest of this article (see Table 5). During the
manual correction phase of the 75 documents, a
double annotation was carried out on 30 documents
(i.e. 7584 double annotated tokens) between the
PhD student and a senior in NLP. The average time
spent per document is about 4.5 minutes for the
PhD student and 5.7 min for the NLP expert. This
double annotation allowed us to calculate an inter-
annotator agreement (IAA) using recall, precision,
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and F1 score; metrics considered adapted for com-
puting IAA in several studies (Grouin et al., 2011).
After a first double annotation of the 30 documents
between the two annotators, we obtained an over-
all F1 score of 0.7839. After a second pass, we
reached an F1 score of 0.8490, high enough for the
PhD student to continue annotating the remaining
documents alone.

5.3 Experiments

The Baseline Model We used one of the models
fine-tuned as part of the DEAL shared task to per-
form an automatic pre-annotation of the TDAC cor-
pus. It corresponds to the PyTorch HuggingFace’s
scibert_scivocab_cased version of SciB-
ERT model (Beltagy et al., 2019). It has been fine-
tuned on the DEAL corpus that we split into train
and development sets. The training set consists
of 1653 annotated documents (542 550 tokens),
and the development set comprises 100 documents
(30 582 tokens). For the shared task, the model has
been tested on 1366 documents (447 366 tokens).
Fine-tuning was performed on 11 epochs, with a
learning rate α = 2.10−5 and a training batch size
of 4. One epoch took approximately 170 seconds.
More information is provided in the corresponding
system description paper (Alkan et al., 2022).

Experiment 1: Testing directly on TDAC This
first experiment evaluates the baseline model fine-
tuned on the DEAL corpus directly to the TDAC
corpus and analyzes whether performances stay
maintained when applying to another type of cor-
pus of the same specialised domain. Thus, we
evaluate the model on the 75 annotated documents.

Experiment 2: Continue Model’s Fine-Tuning
using TDAC We will continue the model’s fine-
tuning on 9 additional epochs in this second ex-
periment using the TDAC corpus. We split the
TDAC corpus into training and test sets (approxi-
mately 80%-20%), i.e. 59 documents for training
(18 ATels, 21 GCNs and 20 AstroNotes) which rep-
resents a total of 15 374 tokens and 16 documents
for evaluation (7 ATels, 4 GCNs, and 4 AstroNotes)
which represents a total of 3638 tokens. Since the
corpus size is still small, one epoch lasts about 6
seconds when fine-tuning on TDAC.

Experiment 3: Fine-Tuning a New Model
From Scratch on TDAC For this third exper-
iment, we fine-tuned from scratch on TDAC the
scibert_scivocab_cased with same hyper-

parameters configuration than the baseline model,
i.e. (epoch = 20, α = 2.10−5, batch = 4). We
used the same training and test sets as experiment 2.

5.4 Results

For evaluation we used both the CoNLL-2000
shared task seqeval10 F1-Score at the entity level
and scikit-learn’s Matthews correlation coefficient
(MCC11) method at the token level.

Experiment 1 For comparison purposes, we also
reminded the performances of the system trained
and tested on the DEAL corpus as part of the shared
task. The performances of the NER system on the
TDAC corpus (75 documents) are given in Table 5.

Corpus P R F1 MCC
DEAL 0.7752 0.8284 0.8009 0.9025

TDAC 0.4993 0.7043 0.5843 0.7760

– ATel 0.5809 0.7325 0.6480 0.8213
– GCN 0.5236 0.7230 0.6074 0.7653
– AstroNotes 0.3952 0.6421 0.4893 0.7474

Table 5: Performance of the baseline NER system fine-
tuned on DEAL (as part of the shared task) and tested
on our TDAC corpus (with details by type of document).
Metrics used are Precision (P), Recall (R), F1-score and
MCC.

Experiment 2 Table 6 shows the performance
of the baseline NER system we fine-tuned on 9
additional epochs.

Corpus P R F1 MCC
TDAC 0.720 0.796 0.756 0.855

– ATel 0.667 0.703 0.684 0.854
– GCN 0.745 0.822 0.781 0.842
– AstroNotes 0.874 0.891 0.882 0.943

Table 6: Performance of the baseline NER system after
fine-tuning on 9 additional epochs using our TDAC
corpus (with details by type of document). Metrics used
are Precision (P), Recall (R), F1-score and MCC.

Experiment 3 Table 7 shows the performance
of the NER system we built and fine-tuned from
scratch on the TDAC corpus.

10https://github.com/chakki-works/
seqeval

11https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
matthews_corrcoef.html
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Corpus P R F1 MCC
TDAC 0.693 0.777 0.733 0.814

– ATel 0.672 0.733 0.701 0.846
– GCN 0.728 0.793 0.759 0.796
– AstroNotes 0.684 0.792 0.734 0.877

Table 7: Performance of a NER system after fine-tuning
from scratch on 20 epochs using our TDAC corpus (with
details by type of document). Metrics used are Precision
(P), Recall (R), F1-score and MCC.

6 Discussion and Outlook

Experiment 1 is not comparable to experiments 2
and 3 because the test sample size is not the same.
However, it allows us to first appreciate the base-
line model’s robustness by testing it on our TDAC
corpus. When tested on the TDAC corpus, we no-
ticed a considerable drop in performance (a loss of
0.2166 on the F1 score globally). The results may
appear low or moderate. This could be explained by
a strict evaluation (identical label and border). With
experiments 2 and 3, we notice relatively similar
results. Overall, the model fine-tuned from scratch
performs slightly worse than the baseline model
for which we continued the fine-tuning over nine
additional epochs. Experiment 3 shows that the sys-
tem performs better on the ATels when fine-tuning
from scratch. These preliminary results on this first
small annotated corpus nevertheless show that the
DEAL corpus is a good starting point for building
an entity detection system and can be adapted to
other types of documents in the astrophysical do-
main. However, it is necessary to analyze whether
this behaviour is confirmed on a larger scale.

While the first annotations have been made by
a PhD student with a background in astrophysics
in order to make a proof-of-concept, we are now
experiencing new annotations made by two senior
experts, one in astrophysics, the other in NLP.

Joining the two corpora (DEAL+TDAC) would
be complementary because of the distribution
of classes in the two corpora (Figure 2). We
observe that certain classes of entities are
more present in the TDAC corpus than in
DEAL (e.g. Formula, CelestialObject,
Observatory, or CelestialRegion). The
TDAC corpus thus makes it possible to fill the lack
of specific classes and vice versa. Therefore, join-
ing these two corpora would thus allow for building
a more efficient system for a more significant num-
ber of classes.

7 Conclusion

In this paper, we presented the TDAC corpus, com-
posed of astrophysics textual content from three
sources (ATel, GCN circulars, and AstroNotes).
Our corpus has been manually annoted in named
entity, based on the annotation schema used in the
DEAL corpus. We also presented the experiments
we made in order to make it easier the manual an-
notation process, using a SciBERT-based model
fine-tuned on the WIESP 2022 NLP Challenge.
We observed that a model trained on the DEAL
corpus is not sufficient since it obtained moderate
results, while a quite light fine-tuning (9 additional
epochs) on our TDAC corpus allows us to improve
the performances of our NER system.

In the future, we plan to enrich the corpus
with morpho-syntactic annotations and relations
between named entities. We estimate this corpus
would be a useful resource for NLP applications in
astrophysics.

Once the information extraction system we are
developing is considered reliable enough, we aim
to deploy them in Astro-COLIBRI, a real-time plat-
form that evaluates alerts sent by observers regard-
ing transient sources (Reichherzer et al., 2021).
The deployment of our NLP models in Astro-
COLIBRI will allow both professional and amateur
astronomers to access the most relevant informa-
tion disseminated through GCN circulars, ATels
and AstroNotes instantaneously.
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Category Definition Example
Person A named person or their initials Andrea M. Ghez, Ghez A.
Organization A named organization that is not an

observatory.
NASA, University of Toledo

Location A named location on Earth. Canada
Observatory A, often similarly located, group of

telescopes.
Keck Observatory, Fermi

Telescope A "bucket" to catch light. Hubble Space Telescope, Discovery
Channel Telescope

Instrument A device, often, but not always,
placed on a telescope, to make a mea-
surement.

Infrared Array Camera, NIRCam

Survey An organized search of the sky of-
ten dedicated to large scale science
projects.

2MASS, SDSS

Mission A spacecraft that is not a telescope
or observatory that carries multiple
instruments

WIND

CelestialObject A named object in the sky ONC, Andromeda galaxy
CelestialRegion A defined region projected onto the

sky, or celestial coordinates.
GOODS field, l=2, b=15

CelestialObjectRegion Named area on/in a celestial body. Inner galaxy
Wavelength Portion of the electromagnetic spec-

trum
656.46 nm, H-alpha

ObservationalTechniques Methods/technqiues for observation Spectroscopic, helioseismic
Model Mathematical/Physical model Gaussian, Keplerian
Software Software, IT tool NuSTAR, healpy, numpy
ComputingFacility Server, cluster for computation Supercomputer, GPU
Dataset Astronomical catalogues 3FGL catalog
Database A curated set of data Simbad database
Archive A curated collection of the literature

or data.
NASA ADS, MAST

Identifier A unique identifier for data, images,
etc.

ALMA 123.12345

Citation A reference to previous work in the
literature.

Allen et al. 2012

Collaboration Name of collaboration Fermi LAT Collaboration
Event A conference, workshop or other

event that often brings scientests to-
gether.

Protostars and Planets VI

Grant An allocation of money and/or time
for a research project.

grant No. 12345, ADAP grant 12345

Fellowship A grant focused towards students
and/or early career researchers.

Hubble Fellowship

Formula Mathematical formula or equations. F = Gm1m2/r2, z = 2.3
Tag A HTML tag. <bold>
TextGarbage Incorrect text, often multiple punctu-

ation marks with no inner text.
„,

EntityOfFutureInterest A general catch all for things that
may be worth thinking about in the
future.

Earth-like, Solar-like

URL A link to a website. https : //www.astropy.org/

Table 8: Classification of the named entities in the annotation guideline. The HuggingFace repository containing
the annotated data and the annotation guide is only accessible to participants of the shared task. Thus, we have
reproduced the same list of named entities with their definition.
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Abstract

Reproducibility is an important feature of sci-
ence; experiments are retested, and analyses are
repeated. Trust in the findings increases when
consistent results are achieved. Despite the im-
portance of reproducibility, significant work is
often involved in these efforts, and some pub-
lished findings may not be reproducible due to
oversights or errors. In this paper, we exam-
ine a myriad of features in scholarly articles
published in computer science conferences and
journals and test how they correlate with re-
producibility. We collected data from three
different sources that labeled publications as
either reproducible or irreproducible and em-
ployed statistical significance tests to identify
features of those publications that hold clues
about reproducibility. We found the readabil-
ity of the scholarly article and accessibility of
the software artifacts through hyperlinks to be
strong signals noticeable amongst reproducible
scholarly articles.

1 Introduction

Transparency in the scientific process accelerates
scientific discovery and strengthens public opin-
ions on scientifically driven matters. Reproducibil-
ity plays a crucial role in aiding this transparency,
and it is encouraging to have a consensus in the sci-
entific community to address the problem of repro-
ducibility in science. Policymakers, government
entities, open source communities, peer-reviewed
journals, conferences, and the academic commu-
nity at large have a shared responsibility to promote
reproducible research. Effective dissemination of
science cannot happen without trust and integrity
in the scientific process. Practically, reproducible
science has a first-hand impact in notable places
such as research labs, classrooms, industries, and
academia. Lack of reproducible research could re-
strict attaining a deeper understanding of the orig-
inal researcher’s thought process and, therefore,

severely impact people involved in the communi-
ties mentioned earlier.

The concept of reproducibility is intricate and
stratified with different but complementary issues.
Before we attempt to understand how to approach
the problem of reproducibility, we must first pro-
vide some definition of what we mean by this
term in this context. Studies such as (Gundersen
and Kjensmo, 2018; Cohen et al., 2018; Barba,
2018) highlight how the definition of reproducibil-
ity varies across different studies and disciplines
and how differing definitions can result in confu-
sion. For that reason, the flexible definition pre-
sented in Gundersen and Kjensmo (2018) is ap-
pealing: “the ability of an independent research
team to produce the same results using the same
method based on the documentation made by the
original research team.” Collective efforts from
various players of the research community such as
publishers, conference organizers, and journals in
promoting good practices for ensuring reproducibil-
ity in the experimentation process is refreshing, but
there is still a lack of agreement on what exactly
constitutes a “good practice” which is a concern.

In this study, we attempt to understand the rela-
tionship between the structure of science (Thelwall,
2019) and the concept of reproducibility by using
statistical significance tests. In doing so, our em-
phasis is to examine epistemic opacity (Newman,
2015) of linguistic features and structural features
concerning reproducibility. We achieve this by run-
ning numerous hypothesis tests and identifying the
significant factors affecting the reproducibility of
scholarly articles. Our goal is to utilize statistical
tests to pick signals that could help identify articles
requiring more (or less) effort to reproduce.

2 Related Work

Reproducibility is an important concept that affects
large communities in general (Mede et al., 2020;
Hutson, 2018). The breadth of literature on re-
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producibility spanning different disciplines (Open
Science Collaboration, 2012; Prinz et al., 2011; Be-
gley and Ellis, 2012; Peers et al., 2012) has broadly
focused on either performing large meta-analyses
that reproduce a large set of scholarly articles or
qualitative studies that encourage researchers to
adopt a certain methodology.

Our study falls in line with the studies that at-
tempts to quantify the factors important for repro-
ducibility, e.g. (Raff, 2019). Identifying such im-
portant factors would also be helpful in building
machine learning models that can estimate the de-
gree of reproducibility in scholarly articles(Yang
et al., 2020).

3 Data

While scientific publications often follow similar
structures, there is significant freedom in how ideas
are communicated and expressed. This lack of
rigidity allows authors to weave stories around
fundamental ideas, and the absorption of partic-
ular ideas can sometimes be related to how they
are presented. We are interested in whether the
structure of a publication reveals anything about its
potential for (ir-)reproducibility. To examine this,
we compiled a collection of scholarly articles that
have been evaluated as either reproducible or irre-
producible from three different sources. For each
article, we gathered comprehensive metadata and
extracted structural and linguistic features. These
collections of articles include:

• Brown University: Collberg et al. (Collberg
et al., 2015) conducted a meta-analysis that in-
volved steps in reproducing scholarly articles
published in ACM computer science confer-
ences and journals. They found that nearly
50 percent of the examined scholarly articles
required extra effort to reproduce the articles.
Computer scientists at Brown University led
an effort named “Examining Reproducibil-
ity in Computer Science" to crowdsource a
reexamination of this study (Krishnamurthi,
2015). They performed a meta-analysis of
the original study and offered new insights.
The data collected provides significant detail
about the effort involved in reproducing the
studies in the original publications. The cur-
rent repository provides results for 207 papers;
142 are classified as reproducible and 65 as
non-reproducible.

• Retraction Watch Database (Retrac-
tionDB): The Retraction Watch Database
stores information about scholarly articles
that are retracted from conferences and
journals (Oransky and Marcus, 2010). It
also logs information about the subject/area
to which the scholarly article belongs, the
country where the article is published, the
name of the publisher, the journal name,
and most importantly, the reason why the
article was retracted. We used this database
to find all the scholarly articles in the field
of computer science that were retracted
under reasons surrounding results not being
reproducible, and 34 papers fit these criteria.

• Badged ACM Papers: The Association for
Computing Machinery (ACM) has introduced
badges as a way to signal when publications
have been successfully reproduced. We began
with 176 articles that were badged as having
results reproduced. Of these, 90 were badged
as having Reusable Artifacts, and 70 of those
had a Functional Artifact badge. We were
able to obtain 64 of the papers that had “Re-
sults Reproduced” badges and received both
a Reusable Artifact and a Functional Artifact
badge.

From each of the three sources, we used the
available metadata to locate each article. In some
cases, we searched by article and authors’ names
to obtain a DOI or, in some cases, a URL for an
article. If we were unable to unambiguously de-
termine this information, the article was dropped
from the dataset. Using the DOI, we were able
to obtain further metadata and the full text of the
article, usually in PDF format. After filling out the
metadata and obtaining the full text, we had 305
papers in total; 206 were classified as reproducible,
and 99 were classified as non-reproducible. Data
and code will be made available as supplementary
information upon publishing.

4 Methodology

4.1 Feature Engineering

The motivation for considering the below features
stems from the shared intuitions highlighted in
(Gundersen et al., 2018; Gundersen, 2020; Raff,
2019) along with checklists from popular publish-
ing venues such as NeurIPS, ICML, etc.
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Table 1: List of Structural Features and respective Point
Biserial Correlations against target variable

Feature p-value
Presence of Introduction
Section

0.0808

Presence of Methodology
Section

0.3112

Presence of Results Section 0.7006
Number of Pages 0.1630
Number of Images 0.3571
Number of Tables 0.7187
Number of Algorithms 0.0654
Number of Hyperlinks 0.0028
Number of Equations 0.4212

1. Structural features: Quantitative and quali-
tative information pertaining to the structure
of the scholarly article. This includes infor-
mation about the existence of particular sec-
tions as well as counts of the tables, figures,
or algorithms in a given scholarly article. We
developed python modules to parse the PDF
of the scholarly article in order to extract this
information. The features along with respec-
tive Point Biserial correlations are mentioned
in Table 1.

2. Linguistic features: Linguistic indicators
quantifying different metrics based on the lan-
guage used in the scholarly article to differ-
entiate the writing styles of various authors.
These indicators include Word count, Average
word length, Average sentence length, Fre-
quency of words greater than average word
length, Syllable count, and Yule’s I measure
of lexical diversity (Yule, 2014). These fea-
tures are general to computational linguis-
tics and are easily understandable. Addition-
ally, we considered metrics such as Complex
words, which refer to the number of polysylla-
ble words in a given text. This feature was
extracted using the python textblob library.
Mean Readability was measured by obtain-
ing the mean of readability metrics such as
Flesch Reading Ease Level, SMOG Index,
Coleman-Liau index, Automated Readabil-
ity Index, Dale-Chall Readability Score, Lin-
sear Write Formula, and Gunning FOG. We
obtained the values from textstat, a python
package, to obtain the readability metrics. We
also collected the Sentiment score for the full

text of a given scholarly article and attached
a sentiment label (positive = 1, negative = 0)
for the respective articles. A similar process
was used to obtain the sentiment label for the
title of the article.

Table 2: List of Linguistic Features and respective Point
Biserial Correlations against target variable

Feature p-value
Word count 0.5357
Average word length 0.2379
Frequency of words greater
than average word length

0.9804

Complex words 0.8394
Syllable count 0.7467
Yule’s I measure of lexical
diversity

0.1102

Mean Readability 0.0000
Article’s sentiment 0.5659
Title’s sentiment 0.7335

We gathered this information by implement-
ing python programs that used the python li-
braries such as spaCy and NLTK to build the
methods for calculating the metrics. All of
these linguistic measures were based on the
full text of the scholarly article. The features
along with respective Point Biserial correla-
tions, are mentioned in Table. 2.

4.2 Point Biserial Correlation

A preliminary statistical analysis of the dependent
and independent variables could be performed us-
ing correlations. Since our target is a nominal
variable, we could not use Pearson correlation or
Spearman correlation as both of them presume the
target variable to be continuous. The point biserial
(Gupta, 1960) correlation matrix measures the cor-
relation between a dichotomous target variable and
continuous variables. The results in Table 1 and
Table 2 are values obtained by calculating the point
biserial correlation coefficient(s) and the associated
p-value(s).

4.3 Significance tests

The features mentioned in Tables 1 and 2 are a
combination of ordinal and nominal attributes. In
order to determine the significance of the features,
we had to employ different statistical significance
tests such as the Mann-Whitney U test (Mann and
Whitney, 1947) and Chi-squared test (Yates, 1934).
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5 Results

We computed correlations and performed statistical
significance tests on the combined data sources to
identify features that played a significant role in
indicating the reproducibility of scholarly articles.
The point biserial correlations as shown in Tables
1 and 2 suggested that only mean readability and
number of hyperlinks significantly correlate with
reproducibility.

The results of the Mann-Whitney U and Chi-
squared tests show that mean readability, number
of hyperlinks, number of algorithms, average
word length, and yule’s measure of lexical di-
versity to be statistically significant features that
align and signal scholarly work that is reproducible
with reasonable certainty. More significantly, the
readability of a scholarly article and accessibility
of software artifacts, either as code repositories,
psuedo-code, or algorithms, could be considered
strong indicators for reproducibility. It is impor-
tant to note that these signals do not quantify or
assure the reproducibility of a scholarly article but
rather help identify articles that require more (or
less) effort to reproduce.

Table 3: Mann-Whitney U Significance test for the nu-
merical features

Feature p-value
Yule’s I measure of lexical di-
versity

0.0131

Word count 0.6547
Average word length 0.0003
Frequency of words greater
than average word length

0.9171

Syllable count 0.3910
Complex words 0.9596
Mean Readability 0.0001
Number of Images 0.2039
Number of Tables 0.9586
Number of Algorithms 0.0283
Length of the paper 0.5039
Number of Hyperlinks 0.0011
Number of Equations 0.2148

Our findings were backed by results from statisti-
cal experiments such as Point Biserial Correlations,
Chi-squared test, and Mann-Whitney U test, and
p-values (p < 0.05) served as the basis for the sig-
nificance of our findings. You can obtain a copy
of the datasets, experiment setup, and additional

software artifacts from Github repository. 1.

Table 4: Chi-squared Significance test for the categori-
cal features

Feature p-value
Presence of Introduction Sec-
tion

0.1070

Presence of Methodology Sec-
tion

0.3728

Presence of Results Section 0.8617
Article Sentiment 0.6646
Title Sentiment 0.8495

6 Discussion

The structure of science involves a well-formed
process that begins with factual and valid data, con-
tinues through detailed descriptions of experimen-
tal procedures, and follows on to clearly presented
results. The scientific process has many tenets, but
these represent some. They have been promulgated
over the years to allow the scientific process to
flourish with checks and balances in the form of
peer reviews. Contextually, factors such as dis-
cipline, year, type of scientific study, etc., play a
major role in identifying the effort required to re-
produce articles. Therefore, the dataset we built is
an essential factor to consider while interpreting
our findings that the readability of the scholarly
article and accessibility of the software artifacts
through hyperlinks are significant features among
reproducible scholarly articles. Our motivation is
to discover additional latent variables that consider
these contextual factors while identifying the effort
required to reproduce articles.

7 Conclusions and Future Work

In this study, our pursuit of identifying features that
can signal reproducible science involved correla-
tions and significance tests. We found the readabil-
ity of the scholarly article and accessibility of the
software artifacts through hyperlinks to be signifi-
cant features among reproducible scholarly articles.
Our code repository with data and experiments will
be available post-publishing.

In the future, we plan on expanding the scope of
our study by 1) Gathering more Badged data from
ACM; 2) Testing the validity of our findings against
adversarial examples; and 3) Observing the effects

1https://github.com/reproducibilityproject/reproducibilitysignals
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of citing a reproducible article vs non-reproducible
ones.
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Abstract

Detecting Entities in the Astrophysics Litera-
ture (DEAL) is a proposed shared task in the
scope of the first Workshop on Information Ex-
traction from Scientific Publications (WIESP)
at AACL-IJCNLP 2022. It aims to propose
systems identifying astrophysical named enti-
ties. This article presents our system based on
a majority voting strategy of an ensemble com-
posed of 32 SciBERT models. The system we
propose is ranked second and outperforms the
baseline provided by the organisers by achiev-
ing an F1 score of 0.7993 and a Matthews Cor-
relation Coefficient (MCC) score of 0.8978 in
the testing phase.

1 Introduction

Astronomy and astrophysics consist of observing
and studying various cosmic phenomena such as
tidal disruption events, gamma-ray bursts, and
many other messengers such as neutrinos and gravi-
tational waves (Neronov, 2019; Abbott et al., 2016).
Missions and observations performed by astronom-
ical facilities worldwide significantly increase the
number of astrophysics papers. Most published
papers are freely available and accessible through
the Astrophysics Data System (ADS1), where re-
searchers can search and access more than 15
million records covering astronomy, astrophysics,
and general physics publications. However, some
domain keywords can be easily confused when
searching for articles in the literature. For instance,
"Planck" can refer to the person, the mission, the
constant, or several institutions. One approach for
this word sense disambiguation problem would be
automatically recognised entities. Named Entity
Recognition (NER) consists of recognising men-
tions of entities from text belonging to predefined
semantic types: person, location or organisation
(Yadav and Bethard, 2018). It is, therefore, an es-

1https://ui.adsabs.harvard.edu/

sential technique to extract relevant information
from unstructured human-written data.

Detecting Entities in the Astrophysics Literature
(DEAL) is a shared task that tackles the challenge
of developing a system that identifies named en-
tities in the astrophysics literature (Grezes et al.,
2022). The shared task was organised in two
stages: validation and test. Evaluation metrics
used were both the CoNLL-2000 shared task seqe-
val2 F1-Score at the entity level and scikit-learn’s
Matthews correlation coefficient (MCC3) method
at the token level. Organisers provided the NER
system’s baseline (see Table 3 in Appendix) using
astroBERT (Grèzes et al., 2021), a deep contextual
language model pre-trained on 395 499 publica-
tions (3 819 322 591 tokens, 16GB on disk) from
the ADS database. The model astroBERT is not
available yet, but preliminary results are exposed
in the companion paper.

As part of this shared task, we used and explored
an ensemble of contextual Pre-Trained Language
Models (PLTMs) for NER purposes.

The paper is organised as follows: Section 2
briefly presents existing methods and approaches
for named entity recognition in astrophysics and
other scientific domain. Section 3 provides infor-
mation about the corpus. Section 4 describes our
system as well as the experimental setup. Section 5
presents our results.

2 Strategies for Entities Detection

2.1 State-of-the-Art Methods

The use of neural networks constitutes the cur-
rent state-of-the-art in many tasks of NLP, includ-
ing NER. Indeed, for a few years, word embed-
dings and the combination of two algorithms: bi-

2https://github.com/chakki-works/
seqeval

3https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
matthews_corrcoef.html
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directional LSTM and Conditional Random Fields
(CRF), have been widely used for sequence tagging
(Huang et al., 2015). The use of PLTMs (Devlin
et al., 2019), and their domain-adapted version such
as SciBERT for scientific literature (Beltagy et al.,
2019), or BioBERT for the biomedical field (Lee
et al., 2019) give state-of-the-art results on NER
tasks. Some studies in the biomedical domain have
shown that combining multiple PLTMs instead of
a single prediction system help to increase perfor-
mances on NER (Schneider et al., 2022; Dang et al.,
2020).

2.2 What About Astrophysics?

Becker et al. (2005); Hachey et al. (2005) built
the Astronomy Bootstrapping Corpus (ABC) com-
posed of 209 abstracts of astronomical papers ex-
tracted from the ADS. This study explored an active
learning approach to detect relevant features and re-
duce annotation costs for NER using a conditional
Markov model tagger (Finkel et al., 2004).

Murphy et al. (2006) built a larger corpus than
the ABC for named entities. The annotated corpus
consists of 7840 sentences. Similarly, the study in-
vestigates the features improving the performances
of a NER system based on an adaptation of a Max-
imum Entropy tagger (Curran and Clark, 2003).

NER studies are limited in astrophysics, and the
explored approaches are feature-based only. Since
methods presented in the previous section (2.1)
have been successfully applied to other specific
domains, such as the biomedical one, we were con-
fident that their application to the astrophysics do-
main would be successful. That is why we explored
a method based on an ensemble of PLTMs for NER
purposes as part of this shared task.

3 The Corpus

The shared task corpus comprises full-text frag-
ments and acknowledgements sections extracted
from ADS papers. Three sets of corpus were ac-
cessible for participants4: training, development
and testing sets. Some statistics of the corpora are
provided in Table 1.

The annotation guide comprises 31 named en-
tities and covers the entities of interest, such as
astronomical facilities, celestial objects, coordi-
nates, formulae or observational techniques. De-
tailed tags list is presented in Table 5 (Appendix).

4Data are accessible for participants only. We do not know
how organisers will make the collection publicly available.

Corpus Docs Tokens
Train 1753 573 132

Validation 1366 447 366

Test 2505 794 739

Table 1: Corpus statistics.

For the shared task, only labels of the training
corpus were provided. Figure 1 shows entities’
distribution in the training corpus. The train-

Figure 1: Entities’ distribution in the training corpus. In
blue are full-text fragments, and in orange are acknowl-
edgements sections.

ing corpus comprises full-text fragments (blue)
and acknowledgements sections (orange) of ap-
proximately equal size. Most frequent categories
are Citation, Organization, Grant or
Person, but classes’ distribution within the type
of document (acknowledgments vs. full-text frag-
ments) is not similar.

4 System Description

4.1 The SciBERT-cased Model
We did not apply text preprocessing to the original
tokens provided by the organisers. Since some
entities, such as astronomical facilities, organi-
sations, and people’s names, are proper names
and therefore written in the upper-case letter, we
decided to opt for the PyTorch HuggingFace’s
scibert_scivocab_cased version of SciB-
ERT model (Beltagy et al., 2019). We assumed that
preserving the type case would help the system dis-
tinguish these specific entities from standard terms.
A first experiment demonstrated our assumption :
the SciBERT’s cased version performed better than
the uncased by increasing the F1-score from 0.797
to 0.801 on the official validation set.
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4.2 Setup

Internal Training and Validation Data Since
we were limited to 15 daily submissions (and 100
in total) for the validation phase, we decided to
create our internal validation set by splitting the
original training set and conducting several exper-
iments. Thus, our internal training set consists of
1653 annotated documents (542 550 tokens), and
the internal development set comprises 100 docu-
ments (30 582 tokens).

Entities Filtering Among the defined categories,
two were difficult to interpret (TextGarbage
and EntityOfFutureInterest). Moreover,
their low distribution in the training corpus did
not make the system efficient in predicting these
classes. These two reasons led us to remove them
from the fine-tuning phase. Deleting these classes
did not impact the overall performance since the
evaluation metric was based on the micro F1-score.

Sliding Window for Long Sequences We used
BertTokenizerFast, one of BERT’s tokeniz-
ers. During the fine-tuning stage, Transformer-
based models segment original tokens into sub-
words (or word pieces), extending thus an original
sequence of N tokens into a sequence of length
N + nsubwords , where nsubwords is the num-
ber of sub-words generated by the tokenizer. This
extension can exceed the size of 512, the limit se-
quence length that a Transformer-based model can
handle. The standard way to deal with this is to
apply a sliding window across the input sequence,
where each window contains a passage of tokens
that fit in the model’s context.

4.3 Hyper-Parameters Tuning

When we started our experiments, we wanted to
know the optimal combination of hyper-parameters.
To do so, we proceeded to a grid search by vary-
ing two hyper-parameters: the learning rate α
([1.10−5, 2.10−5, 5.10−5]) and the training batch
size ([4, 8, 16]), representing a total of nine com-
binations. In order to ensure reliable results
regarding the impact of hyper-parameters, each
combination of hyper-parameters was used five
times with five different seeds randomly chosen
([0, 123, 762, 5000, 6822]). We fine-tuned all mod-
els on 15 epochs using our internal training corpus
and evaluated them on the internal validation set
at each epoch. On average, one epoch lasts ap-
proximately 170 seconds. The ranking of the nine

combinations is in Table 4 (appendix).

4.4 Ensemble Strategy

In our study, we wanted to test the influence of
an ensemble approach composed of several NER
classifiers. Therefore, we conducted experiments
comparing the performance of a single system to
an ensemble of multiple systems. We used the
different models fine-tuned during the grid search
to design our ensemble. We wonder two main
questions:

• Which different models should we use, and
how many models should be included in the
system?

• What method should we use to combine the
predictions of the different models in our en-
semble?

Regarding the first question, we first rank the
combinations of the models by performances ac-
cording to their hyper-parameters during the grid
search stage (Table 4, appendix). Then, we pro-
ceeded by adding models progressively to the en-
semble.

Regarding the second question, related studies
showed that there are mainly two approaches: the
first consists of a soft strategy, where each model
returns its predicted probabilities, and the class
label is obtained by applying the argmax function
to the sum of all probabilities (Schneider et al.,
2022). The second is a majority voting strategy
where the system selects the majority class of the
class labels predicted by each classifier (Dang et al.,
2020). We opted for the majority voting strategy.

5 Results on Official Sets

The official validation and test corpora results (Ta-
ble 2) show that an ensemble composed of classi-
fiers leads to a higher F1 score.

To determine the number of models to include in
our ensemble, we progressively formed an ensem-
ble consisting of the five models of the first perfor-
mant combination (C2), then added the five models
of the second performant combination (C5) and
so on. We notice that the performance decreases
beyond a certain number of models. Our ensemble
comprises the first six combinations that gave the
best results during the grid search. This represents
30 models (6 combinations ∗ 5 models / combi-
nation). A last submission in the validation phase
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Model 1

Combination n° 2

Seed: 0

Model 5

Combination n° 2

Seed: 6822

label label label label

Majority Voting

Final label

Model 2

Combination n° 2

Seed: 123

Model 4

Combination n° 2

Seed: 5000

Model 3

Combination n° 2

Seed: 762

label

Combinations

Combination n° 2

(batch, lr) = (4, 2.10⁻5)

training batch size = [4, 18, 16] 

learning rate = [1.10⁻5, 2.10⁻5, 5.10⁻5] 

epoch = 15 

Combination n° 8

(batch, lr) = (16, 2.10⁻5)

Top 6 combinations are considered

Model 31

Combination n° 2
epoch = 25

Seed: 0

Model 32

Combination n° 2
epoch = 35

Seed: 0

label label

Figure 2: Final architecture of our NER ensemble based on a majority voting strategy.

Ensemble Validation Test
P R F1 MCC s P R F1 MCC s

Single system 0.7751 0.8284 0.8009 0.9025 4 0.7990 0.7957 0.7973 0.8968 1∑6
i=1 Si 0.8140 0.8366 0.8251 0.9132 17 0.8008 0.7966 0.7988 0.8974 2∑6
i=1 Si + 2 models 0.8145 0.8383 0.8262 0.9140 24 0.8013 0.7972 0.7993 0.8978 4

Table 2: Results on official validation and test sets with the corresponding submission number (s) on the Codalab
platform. Metrics used are Precision (P), Recall (R), F1-score and MCC.

(s=24) showed us that adding two additional mod-
els from combination n°2 (fine-tuned on a few ad-
ditional epochs) increases the F1 score. Ultimately,
our ensemble consists of 32 models. Figure 2 illus-
trates our architecture.

6 Conclusion

This shared task aimed to tackle the challenge of
detecting entities in the astrophysics literature by
proposing a NER system. We exposed in this paper
our approach, which first consists of identifying the
different hyper-parameters combination giving the
highest F1-score. To do so, we proceeded to do a
grid search on our internal training and validation
sets. In the second stage, we built an ensemble of
classifiers based on the top 6 combinations iden-
tified during the grid search. Our submissions on
the official validation and test sets show that adopt-
ing a majority voting strategy of an ensemble of
SciBERT-based classifiers gives better results than
a single model approach. Finally, we ranked sec-

ond, achieving an F1 score of 0.7993 and an MCC
coefficient of 0.8978 using an ensemble of 32 SciB-
ERT models.
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A Appendix

Model P R F1 MCC
random 0.119 0.0274 0.0166 0.1089
BERT 0.4779 0.4697 0.4738 0.7405
SciBERT 0.5457 0.5741 0.5595 0.8016
astroBERT 0.5511 0.6080 0.5781 0.8104

Table 3: Baseline scores for the DEAL shared task.
Metrics used are Precision (P), Recall (R), F1-score and
MCC.

Rank Comb. Designation Hyp.-params.
1 C2 S1 (4, 2.105)
2 C5 S2 (8, 2.105)
3 C9 S3 (16, 5.105)
4 C6 S4 (5, 5.105)
5 C1 S5 (4, 1.105)
6 C8 S6 (16, 2.105)
7 C3 S7 (4, 5.105)
8 C4 S8 (8, 1.105)
9 C7 S9 (16, 1.105)

Table 4: Grid search: ranking of the combination
(Comb.) giving the best results. After having ranked the
different combinations, we denote by Si the set of five
models (having the same hyper-parameters) ranked in
position i
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Category Definition Example
Person A named person or their initials Andrea M. Ghez, Ghez A.
Organization A named organization that is not an

observatory.
NASA, University of Toledo

Location A named location on Earth. Canada
Observatory A, often similarly located, group of

telescopes.
Keck Observatory, Fermi

Telescope A "bucket" to catch light. Hubble Space Telescope, Discovery
Channel Telescope

Instrument A device, often, but not always,
placed on a telescope, to make a mea-
surement.

Infrared Array Camera, NIRCam

Survey An organized search of the sky of-
ten dedicated to large scale science
projects.

2MASS, SDSS

Mission A spacecraft that is not a telescope
or observatory that carries multiple
instruments

WIND

CelestialObject A named object in the sky ONC, Andromeda galaxy
CelestialRegion A defined region projected onto the

sky, or celestial coordinates.
GOODS field, l=2, b=15

CelestialObjectRegion Named area on/in a celestial body. Inner galaxy
Wavelength Portion of the electromagnetic spec-

trum
656.46 nm, H-alpha

ObservationalTechniques Methods/technqiues for observation Spectroscopic, helioseismic
Model Mathematical/Physical model Gaussian, Keplerian
Software Software, IT tool NuSTAR, healpy, numpy
ComputingFacility Server, cluster for computation Supercomputer, GPU
Dataset Astronomical catalogues 3FGL catalog
Database A curated set of data Simbad database
Archive A curated collection of the literature

or data.
NASA ADS, MAST

Identifier A unique identifier for data, images,
etc.

ALMA 123.12345

Citation A reference to previous work in the
literature.

Allen et al. 2012

Collaboration Name of collaboration Fermi LAT Collaboration
Event A conference, workshop or other

event that often brings scientests to-
gether.

Protostars and Planets VI

Grant An allocation of money and/or time
for a research project.

grant No. 12345, ADAP grant 12345

Fellowship A grant focused towards students
and/or early career researchers.

Hubble Fellowship

Formula Mathematical formula or equations. F = Gm1m2/r2, z = 2.3
Tag A HTML tag. <bold>
TextGarbage Incorrect text, often multiple punctu-

ation marks with no inner text.
„,

EntityOfFutureInterest A general catch all for things that
may be worth thinking about in the
future.

Earth-like, Solar-like

URL A link to a website. https : //www.astropy.org/

Table 5: Classification of the named entities in the annotation guideline. The HuggingFace repository containing
the annotated data and the annotation guide is only accessible to participants of the shared task. Thus, we have
reproduced the same list of named entities with their definition.
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