
Proceedings of the 1st Workshop on Information Extraction from Scientific Publications, pages 32–42
Nov 20, 2022. ©2022 Association for Computational Linguistics

32

Linking a Hypothesis Network From the Domain of Invasion Biology to a
Corpus of Scientific Abstracts: The INAS Dataset

Marc Brinner
Bielefeld University

marc.brinner@uni-bielefeld.de

Sina Zarrieß
Bielefeld University

sina.zarriess@uni-bielefeld.de

Tina Heger
Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin

t.heger@tum.de

Abstract

We investigate the problem of identifying the
major hypothesis that is addressed in a scien-
tific paper. To this end, we present a dataset
from the domain of invasion biology that or-
ganizes a set of 954 papers into a network of
fine-grained domain-specific categories of hy-
potheses. We carry out experiments on classify-
ing abstracts according to these categories and
present a pilot study on annotating hypothesis
statements within the text. We find that hypoth-
esis statements in our dataset are complex, var-
ied and more or less explicit, and, importantly,
spread over the whole abstract. Experiments
with BERT-based classifiers show that these
models are able to classify complex hypothe-
sis statements to some extent, without being
trained on sentence-level text span annotations.

1 Introduction

In many disciplines of science, researchers need to
develop specific hypotheses that make it possible
to confront general scientific claims with empirical
evidence (Lloyd, 1987). For instance, studies in
invasion biology, a sub-discipline of biodiversity
research, investigate why certain species can es-
tablish in new ecosystems and typically formulate
hypotheses specific to the species or the forms of
invasion success they address (see Figure 2). It is
essential for a researcher to be aware of the exist-
ing hypotheses in these fields, but, to date, struc-
tured information on claims and hypotheses inves-
tigated in a field is often hardly available. In some
cases, though, valuable resources and overviews
are compiled manually by domain experts as, for
instance, Jeschke and Heger (2018)’s hierarchical
network of hypotheses synthesizing research in the
field of invasion biology. In this paper, we pro-
pose to leverage this resource as a new dataset for

domain-specific information extraction from scien-
tific publications and explore the potential of state-
of-the-art off-the-shelf NLP models for automatic
hypothesis identification.

Extracting domain-specific information on hy-
potheses from scientific publications is still a con-
siderable challenge for state-of-the-art approaches
in NLP and IE. Research on IE for the biodiver-
sity domain provides many annotated datasets and
models with domain-specific labeling schemes for
named entities and relations – e.g., species, loca-
tions and habitats (Nguyen et al., 2019) – but does
not account for more complex entities like claims,
research questions or hypotheses. Work on argu-
mentation mining for scientific texts (Fisas et al.,
2016; Lauscher et al., 2018) annotate argumenta-
tive spans of texts, including claims, but do not
link them to domain-specific knowledge. However,
the lack of domain-specific categories is a major
gap in existing search repositories for biodiversity
researchers, as shown by (Löffler et al., 2021).

In this work, we perform initial studies on the
automatic extraction of information on hypotheses
investigated in scientific publications. We compile
a corpus of scientific abstracts, based on metadata
in Jeschke and Heger (2018)’s hypothesis network
for invasion biology. We release the resulting INAS
dataset that links 954 scientific papers (with ab-
stracts and titles) to nodes in a hypothesis network.
Similar to datasets in relation extraction (Mintz
et al., 2009), the INAS dataset is weakly labeled,
as the hypotheses are linked to the abstract as a
whole, and not annotated in terms of text spans. We
present a pilot analysis on hypothesis statements
within the texts and find that they are complex, var-
ied and spread over the whole abstract, challenging
existing labeling schemes in IE. We carry out ex-
periments on labeling abstracts with BERT-based
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classifiers and show that these models are able to
detect fine-grained hypothesis categories to some
extent, without being trained on text span annota-
tions. This shows that domain-specific resources on
hypotheses provide a valuable starting point for this
complex IE task, and points to some challenges for
future research on automatic hypothesis extraction.

2 Related Work

Our work combines ideas from named entity recog-
nition (NER) and relation extraction (RE), which
typically targets domain-specific tagging schemes,
with ideas of domain-general mining of claims,
which aims at discovering complex statements of
claims in text. We will briefly discuss related work
from these areas in the following.

2.1 Entity and Relation Extraction in
Scientific Texts

Extracting information on scientific studies from
publications is a well-known problem in IE (Augen-
stein et al., 2017; Gábor et al., 2018). Within this
area, biomedical text is one of the most widely and
deeply explored domains, cf. (Demner-Fushman
et al., 2022), with many datasets and tools that
tag, e.g., diseases (Doğan et al., 2014), drugs and
chemicals (Li et al., 2016), or drug-protein rela-
tions (Miranda et al., 2021) (among many others).
In the domain of biodiversity, NER datasets fo-
cus on tagging species (Gerner et al., 2010; Pafilis
et al., 2013), specific concepts like bacteria and
their locations (Deléger et al., 2016), or combina-
tions of species, habitats, locations (Nguyen et al.,
2019). Löffler et al. (2020) present the QEMP
benchmark, which further extends the types of en-
tities and links them to existing ontologies in biov-
diversity research. The INAS dataset follows a
similar direction, as our hypothesis tags are taken
from an existing network of hypotheses.

2.2 Mining Claims in Scientific Texts

In argument mining, different annotation schemes
for aspects of scientific arguments have been pro-
posed, such as argumentative zones (Teufel et al.,
1999, 2009), argumentation schemes (Green, 2015),
or argumentative components (Lauscher et al.,
2018). Due to the importance of claims in argumen-
tative structures, several studies focus specifically
on the detection of claims in a variety of domains
(Aharoni et al., 2014; Lippi and Torroni, 2015;
Daxenberger et al., 2017; Habernal and Gurevych,

2017), using binary schemes that mark individual
sentences or spans of texts as being claims or not.
Blake (2010) present a more detailed annotation
study for claims in scientific texts, distinguishing
between different types of claim formulations (e.g.,
explicit claim vs. implicit claim) and roles that
different parts of the claim fulfill. Accuosto et al.
(2021) annotate scientific abstracts from computa-
tional linguistics and biomedicine with a variety of
tags and relations related to argumentative struc-
ture, and Fergadis et al. (2021) annotate claims and
topics in scientific abstracts on sustainable develop-
ment, with both studies performing experiments on
automatic prediction of these annotations. None of
theses datasets, though, links annotations of claims
to domain-specific concepts.

3 The INAS Dataset

We now introduce the INAS dataset1, which is
based on an existing resource that organizes papers
from the field of invasion biology into a network of
hypotheses. In the following, we will describe this
network (Section 3.1), provide an overview of the
dataset we created from this resource (Section 3.2,
3.3), present a qualitative and preliminary quantita-
tive analysis of hypothesis statements (Section 3.4)
and discuss its intended use (Section 3.5).

3.1 Hi-Knowledge Network of Hypotheses

Invasion biology is concerned with researching the
human-induced spread of species outside of their
native ranges, caused by factors like global trans-
port and trade. For example, plants are imported as
exotic garden plants, and small insects, plant seeds,
and even reptiles and mammals are regularly trans-
ported as hitchhikers with traded goods around the
globe, sometimes leading to an establishment of
viable populations in the wild and spread to new
locations within the new range (Elton, 1958; Davis,
2009). One aim of invasion biology is to explain
why it is possible for these species to establish and
often even flourish in areas in which they did not
evolve. Over time, many major hypotheses have
been developed as potential explanations for this
phenomenon. For example, the "enemy release
hypothesis" states that the absence of a species’
natural enemies in the exotic range can be a cause
of invasion success. Other major hypotheses are
more concerned with the conditions under which

1https://github.com/
inas-argumentation/inas-abstracts

https://github.com/inas-argumentation/inas-abstracts
https://github.com/inas-argumentation/inas-abstracts
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an introduced, non-native species will be able to
establish amongst the native species as, e.g., the
"biotic resistance hypothesis" stating that an ecosys-
tem with high biodiversity is more resistant against
non-native species than an ecosystem with lower
biodiversity.

Many empirical studies in invasion biology aim
to test such major hypotheses. In order to do this,
researchers have to decide on a specific study sys-
tem (i.e., focal organisms and habitat) and a re-
search method (e.g., observational survey, lab ex-
periment), and they often also have to choose which
specific aspect of the hypothesis they address. In
the case of the enemy release hypothesis, one group
of empirical studies tests whether invasive species
actually are released from their enemies and a sec-
ond group studies whether invaders show enhanced
performance if they are released from enemies.
Each of these groups can be further subdivided
into studies focusing on specialist enemies (i.e.,
species only preying on specific other species) or
generalist enemies (i.e., enemies without specific
preferences, e.g., slugs). All these decisions pro-
gressively instantiate more general concepts from
the main hypothesis until a concrete, testable sub-
hypothesis is reached.

Jeschke and Heger (2018) identified these spe-
cific instantiations of the main hypotheses as well
as the underlying decision process and organized
them in a hierarchical hypothesis network based
on the Hierarchy-of-Hypotheses (HoH) approach
(Jeschke et al., 2012; Heger et al., 2013, 2021).
Therefore, each node in the hierarchy represents a
hypothesis at a certain level of abstraction while
links to nodes on higher/lower levels connect each
hypothesis to its more abstract or more specific
versions, respectively. The underlying decision
process of replacing abstract components of hy-
potheses by more specific instantiations thereby
induces a tree structure, meaning that each node
can have several child nodes but at most one parent
node.

In (Jeschke and Heger, 2018), ten out of the
12 main hypotheses were depicted as such hierar-
chies of hypotheses, and a large literature survey
was conducted to quantify the level of empirical
support for each of them. In this process, a list
of papers for each main hypothesis was collected,
with each paper being annotated with the necessary
information to correctly place it in the hierarchy,
so that a group of empirical studies that address the

Figure 1: The sub-hypothesis structure for the enemy
release hypothesis, one of the ten main hypotheses.

specific hypothesis can be linked to each node in
the hierarchy. A visualization of the hierarchical
hypothesis network, as well as the underlying data,
are available2 (see Figure 1).

3.2 Dataset for Hypothesis Detection

The basis for the INAS dataset is a collection of
Excel files (one for each main hypothesis) contain-
ing paper titles from the field of invasion biology
in combination with further information about each
paper. Since this data is not easily accessible for
automatic processing, we extracted the paper titles
as well as the information needed to determine the
placement of the papers in the hierarchical hypoth-
esis network from the Excel files and subsequently
used a web scraper to obtain the corresponding ab-
stracts. This was possible for 954 samples, leading
to the final dataset of 954 paper titles, abstracts,
and hierarchical hypothesis labels. The dataset also
includes written statements of all hypotheses from
the hypothesis network to provide the option of in-
troducing general information about the hypotheses
in different prediction settings.

Since the basis for this dataset are scientific pa-
per titles and abstracts it is not possible to publish
all texts from this dataset due to copyright. Instead,
we release the paper titles with corresponding DOIs
and links to the websites the papers are published
on to allow for easy automated scraping of the nec-
essary data.

Figure 2 shows two example abstracts, one of
which is linked to the enemy release hypothesis
(Figure 2a) while the second abstract is linked to
two hypotheses in the network (Figure 2b).

2https://hi-knowledge.org/
invasion-biology/

https://hi-knowledge.org/invasion-biology/
https://hi-knowledge.org/invasion-biology/
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Title: Influence of insects and fungal pathogens on individual and population parameters of Cirsium arvense in its native and
introduced ranges

Abstract: Introduced weeds are hypothesized to be invasive in their exotic ranges due to release from natural enemies . Cir-
sium arvense (Californian, Canada, or creeping thistle) is a weed of Eurasian origin that was inadvertently introduced to
New Zealand (NZ), where it is presently one of the worst invasive weeds. We tested the ’ enemy release hypothesis ’ ( ERH )
by establishing natural enemy exclusion plots in both the native (Europe) and introduced (NZ) ranges of C. arvense. We
followed the development and fate of individually labelled shoots and recorded recruitment of new shoots into the population
over two years. Natural enemy exclusion had minimal impact on shoot height and relative growth rate in either range. How-
ever, natural enemies did have a significant effect on shoot population growth and development in the native range , supporting
the ERH . In year one, exclusion of insect herbivores increased mean population growth by 2.1-3.6 shoots m(-2), and in
year two exclusion of pathogens increased mean population growth by 2.7-4.1 shoots m(-2). Exclusion of insect herbivores
in the native range also increased the probability of shoots developing from the budding to the reproductive growth stage by
4.0x in the first year, and 13.4x in the second year; but exclusion of pathogens had no effect on shoot development in ei-
ther year. In accordance with the ERH , exclusion of insect herbivores and pathogens did not benefit shoot development or
population growth in the introduced range . In either range, we found no evidence for an additive benefit of dual exclusion
of insects and pathogens , and in no case was there an interaction between insect and pathogen exclusion. This study further
demonstrates the value of conducting manipulative experiments in the native and introduced ranges of an invasive plant to
elucidate invasion mechanisms.

(a) Paper title and abstract from (Cripps et al., 2011), linked to the enemy release hypothesis.

Title: Herbivory by an introduced Asian weevil negatively affects population growth of an invasive Brazilian shrub in Florida

Abstract: The enemy release hypothesis ( ERH ) is often cited to explain why some plants successfully invade natural
communities while others do not. This hypothesis maintains that plant populations are regulated by coevolved enemies in their
native range but are relieved of this pressure where their enemies have not been co-introduced . Some studies have shown that
invasive plants sustain lower levels of herbivore damage when compared to native species , but how damage affects fitness and
population dynamics remains unclear. We used a system of co-occurring native and invasive Eugenia congeners in south Florida
(USA) to experimentally test the ERH , addressing deficiencies in our understanding of the role of natural enemies in plant
invasion at the population level. Insecticide was used to experimentally exclude insect herbivores from invasive Eugenia uniflora
and its native co-occurring congeners in the field for two years. Herbivore damage, plant growth, survival, and population
growth rates for the three species were then compared for control and insecticide-treated plants. Our results contradict the
ERH , indicating that E. uniflora sustains more herbivore damage than its native congeners and that this damage negatively
impacts stem height, survival, and population growth. In addition, most damage to E. uniflora, a native of Brazil, is carried out
by Myllocerus undatus, a recently introduced weevil from Sri Lanka, and M. undatus attacks a significantly greater proportion
of E. uniflora leaves than those of its native congeners . This interaction is particularly interesting because M. undatus and E.
uniflora share no coevolutionary history, having arisen on two separate continents and come into contact on a third. Our study is
the first to document negative population-level effects for an invasive plant as a result of the introduction of a novel herbivore .
Such inhibitory interactions are likely to become more prevalent as suites of previously noninteracting species continue to
accumulate and new communities assemble worldwide.

(b) Paper title and abstract from (Bohl Stricker and Stiling, 2012), linked to the invasional meltdown hypothesis (underlined
annotations) and the enemy release hypothesis (non-underlined annotations).

Figure 2: Two abstracts from the INAS dataset, annotated with explicit (green) and implicit (blue) hypothesis
statements, and hypothesis names (red). The first example is classified correctly by all trained classifiers (Section
4). In the second example, the enemy release hypothesis is always classified correctly again, while the invasional
meltdown hypothesis is only recognized by one out of ten trained classifiers (BioBERT base).

3.3 Dataset Analysis

Scientific abstracts are usually short and concise,
which is also the case in the INAS dataset: On
average, an abstract from the dataset consists of
10.26 sentences, with only 3.1% of samples sur-
passing the usual limit of 510 tokens for BERT
models if the concatenation of paper title and ab-
stract are tokenized using a standard BERT tok-
enizer. The class distribution among the ten main
hypotheses is uneven, mirroring the true distribu-
tion of papers addressing the different hypotheses

in the literature: The most dominant class contains
about 21.8% of the samples (Invasional meltdown
hypothesis) while about 1.8% of samples are as-
signed the most infrequent class (Island suscepti-
bility hypothesis). This uneven distribution is even
more pronounced among the sub-hypotheses, with
some being assigned only a single sample while
the most frequent hypothesis on the lowest level
is addressed by 6.8% of papers. Importantly, ev-
ery paper can address multiple (sub-)hypotheses
(5.5% of samples address two main hypotheses)
and can also be only assigned to hypotheses that
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are not on the lowest level in the hierarchy if non
of the hypotheses on the next lower level matches
the research conducted in it.

3.4 Hypothesis Statements
Since the hypothesis labels for the INAS dataset
were created based on the full-text papers, it is
unclear whether the titles and abstracts contain
enough information to correctly identify every hy-
pothesis that the corresponding papers address. Ad-
ditionally, different ways of conveying hypothe-
sis information can be more challenging to recog-
nize, with domain knowledge being required reg-
ularly. Both these factors potentially affect the
performance of automatic hypothesis identification
models (compare Section 4), so that gaining in-
sight into the typical ways that hypothesis infor-
mation is stated in these abstracts is a mandatory
basis for many analyses. To this end, together
with a domain expert from invasion biology, we
carried out a qualitative analysis of hypothesis
statements and formulations within abstracts in the
INAS dataset. We observe that hypothesis state-
ments are extremely varied, ranging from explicit
statements of hypothesis names in the case of some
of the most well-known hypotheses to implicit hy-
pothesis statements through, e.g., descriptions of
experiments. In this initial analysis, we identified
the following types of hypothesis statements:

Hypothesis name Explicit mentions of the hy-
potheses by their name (see text spans marked
in red in Figure 2a). Some hypotheses are
named after the main concepts they represent
(e.g., biotic resistance hypothesis), a mention
of these concepts provides almost the same
information as an explicit hypothesis name
and is therefore also annotated.

Explicit hypothesis statement Sentences stating
the general hypothesis addressed in the paper,
but without naming it (see green text span in
Figure 2b).

Hypothesis fragment Spans of text that contain
important parts of the hypothesis that is ad-
dressed in the paper but that do not belong to
a complete hypothesis statement.

Implicit hypothesis statement Spans of text that
reveal the hypothesis that is addressed in the
paper without actually formulating it (e.g., de-
scriptions of experiments, see blue text spans
in Figure 2a and 2b).

Tag Type Title Abstract Both
Name .10/0.10 .30/0.64 .34/0.74
Statement 0/0 .42/0.58 .42/0.58
Fragment .24/0.30 .56/1.08 .60/1.38
Implicit .28/0.28 .80/1.86 .80/2.14
All .62/0.68 .96/4.16 .96/4.84

Table 1: Distribution of the different tags in our subset
of 50 annotated samples, broken down into presence
of the tags in the titles, abstracts, or both (titles and
abstracts combined). The statistics provided are the
fraction of texts containing the specific tag at least once
as well as the average number of annotated spans of the
tag per text.

These different types of hypothesis statements
we observed correspond to different types of tasks
addressed in existing work on IE. While hypothe-
sis names would be covered by NER schemes and
systems (though existing NER schemes in biodi-
versity do not include them), explicit hypothesis
statements are more similar to claims annotated in
argument mining (Fergadis et al., 2021). Implicit
claims are not well covered by both approaches, ex-
cept in Blake (2010)’s study on claim formulations.
Interestingly, the qualitative examples in Figure
2 suggest that implicit hypothesis statements are
the most frequent, an observation that will be sup-
ported by data analyses that follow.

We conduct a pilot study to evaluate the presence
of different types of hypothesis statements in scien-
tific titles and abstracts from the field of invasion
biology. To do this, we asked an expert annotator
who was familiar with (Jeschke and Heger, 2018)’s
hypothesis network to annotate a set of 50 titles
and abstracts from the test set of the INAS dataset
on span-level with the statement types introduced
in Section 3.4. The set of annotated samples al-
lows us insight into several interesting properties
of the distribution of information about hypotheses
in the dataset: Even though every paper addresses
at least one hypothesis from the network, only 42%
of titles and abstracts contain an actual hypothesis
statement, while 34% state the name of the hypoth-
esis. Accounting for the overlap in these groups,
only 56% of samples provide concrete information
about the hypothesis that the paper addresses in
the title or abstract. Instead, authors often rely on
hypothesis fragments (60% of samples) or implicit
hypothesis statements (80% of samples) to make
clear which hypothesis is addressed in their work.
A detailed breakdown of the distribution of hypoth-
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Figure 3: Empirical probability density function of the
positionings of hypothesis statements (blue), hypoth-
esis names (red), hypothesis fragments (orange), and
implicit hypothesis statements (green) in the abstracts,
created using a kernel density estimator using a Gaus-
sian kernel (bandwidth=0.1).

esis information in the titles and abstracts is given
by Table 1, also including the average number of
annotated spans of a certain tag in the dataset. The
averages of 1.38 hypothesis fragments and 2.14 im-
plicit hypothesis statements per text as well as the
average of 4.84 annotated spans of all classes per
text here clearly indicate that the information about
the hypothesis addressed in a paper can be seldom
found in a single sentence: Instead, information
from different parts of the text needs to be used for
correct identification of the hypothesis.

Additional interesting patterns arise if we ana-
lyze the likelihood of specific tags being located at
different positions in the abstract. To do this, we
define the position of an annotated span as the av-
erage token index of all tokens in the span divided
by the total number of tokens in the text, result-
ing in positions in the range [0, 1]. We can then
plot the empirical probability density function (cre-
ated using a kernel density estimator) for each tag,
as is done in Figure 3. While hypothesis names
and hypothesis fragments have a rather uniform
probability of appearing at any position in the text,
hypothesis statements are made mainly at the be-
ginning, while implicit hypothesis statements are
more likely to be made later in the abstract. The
reasons for this are that abstracts regularly begin
with an explicit description of the hypothesis while
ending with details about experiments and observa-
tions, which often fall in the category of implicit
hypothesis statements.

3.5 Discussion
Current datasets labelling claims in scientific texts
mostly focus on a precise span-level annotation
instead of providing detailed semantic labels (see

Model F1(S) F1(M)
Naive Bayes .702 -
BERT base .665 (±.047) .659 (±.051)
BERT large .670 (±.045) .674 (±.032)
BioBERT base .758 (±.025) .751 (±.033)
BioBERT large .734 (±.020) .731 (±.065)
PubMedBERT base .758 (±.027) .757 (±.026)

Table 2: Classification F1 scores for all models tested
in our study. F1(S) denotes the F1 scores in the single
label classification setting while F1(M) refers to the
multi-label classification setting.

Section 2). While studies addressing also the se-
mantic content of claims exist, the claims often
address a variety of very distinct topics that can of-
ten be easily differentiated by non-experts as, e.g.,
claims addressing residency vs. claims addressing
foreign policy in DebateNet-mig15 (Lapesa et al.,
2020). This stands in stark contrast to the INAS
dataset, where all of the hypotheses in the hier-
archy address the same phenomenon of invasive
species being successful in a new domain, which al-
ready is a rather narrow subfield of general biology.
Therefore, even with respect to the highest level
of the hierarchy, the correct identification of the
hypothesis addressed in an abstract is a very chal-
lenging problem that requires expert knowledge,
with many lower levels in the hierarchy represent-
ing even more subtle differences that are harder to
distinguish. We argue that researchers in the sci-
entific domain will benefit most from tools differ-
entiating on such a precise level because subtle se-
mantic information about the hypothesis addressed
in a paper can be of high importance in judging
the relation between scientific studies or the rele-
vance with respect to a search query. Therefore,
the INAS dataset adds a new and important facet
to the general landscape of datasets on IE for scien-
tific text. At the same time, the fine-graininess of
the hypothesis network combined with the varied
nature of hypothesis formulations in abstracts (Sec-
tion 3.4) creates challenges for fully supervised
labeling of the dataset. A complete annotation of
hypothesis statements linked to the network would
require experts familiar with the domain as well as
linguistic aspects of annotation (which is very un-
realistic). For this reason, we now explore whether
“weak” abstract-level hypothesis labels in the cur-
rent dataset provide useful information for state-of-
the-art NLP models.
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4 Hypothesis Identification as Abstract
Classification

In this Section, we report baseline experiments on
modeling the automatic identification of hypothe-
ses in the INAS dataset.

4.1 Experimental Set-up

We frame hypothesis detection as a classification
problem where the input is the concatenation of
title and abstract of a paper and the output is a
label of the major hypotheses that are addressed
in the corresponding paper, with major hypotheses
meaning the ten hypotheses on the highest level of
the hierarchical hypothesis network.

We test different models that allow us to gain in-
sight into different properties of the dataset: On the
one hand, we test the performance of a naive Bayes
classifier working on unigrams after removing stop
words and highly frequent/infrequent words, allow-
ing us to explore how much simple word frequency
statistics already reveal about the hypothesis that
is addressed in a paper. On the other hand, we test
more complex neural classifiers in the form of stan-
dard BERT classifiers (Devlin et al., 2019) (base
and large) as well as BERT classifiers trained on
texts from a domain that presumably more closely
resembles the domain of invasion biology abstracts:
BioBERT models (Lee et al., 2019) (base and large)
and the PubMedBERT model (Gu et al., 2022)
(base), all trained on scientific abstracts and full-
text papers from the biomedical domain. The train-
ing is done on a training set comprising 75% of the
samples from the dataset, evaluation and testing
are done on subsets containing 10% and 15% of
the samples, respectively.

Due to the fact that a single paper can address
multiple hypotheses, the classification is a multi-
label classification problem. The naive Bayes clas-
sifier is only applicable to single-label classifica-
tion, though, so we train it by inserting the samples
with multiple labels repeatedly into the training set,
once with each label. We proceed in the same way
for the test and validation splits, meaning that the
classifier will not be able to achieve perfect accu-
racy. To be able to compare the results, we test
the BERT models in the same single-label setting
(using a softmax classification layer). Addition-
ally, we test the BERT classifiers in the multi-label
setting by predicting an individual probability for
each class. In this case, we still force the classifier
to predict at least one positive label for each sample

since this lead to increased performance. For all
BERT classifiers, we reduce the effect of variance
during training on our results by training ten classi-
fiers for each model type and classification setting
and report the average macro F1 score as well as
the standard deviation.

4.2 Results

Table 2 displays the classification results in terms
of the macro F1 score for both the single-label and
the multi-label classification setting.

Notably, the naive Bayes classifier performs rea-
sonably well and even outperforms the standard
BERT classifiers, indicating that simple word fre-
quency statistics provide significant information
about the correct label. An analysis of the naive
Bayes classifier weights revealed that hypothesis-
specific concepts, as well as parts of the hypothe-
sis names, were strong indicators for the specific
classes, but also some species and country names
that mostly appear in the context of specific hy-
potheses were used as a basis for the classification.
The advantage of the naive Bayes classifier com-
pared to the BERT classifiers might originate in the
fact that many domain-specific terms might be un-
known to the BERT models and the small training
set might not be enough to fully learn these new
concepts.

The classifiers based on variants of BERT that
are adapted to texts from the biomedical domain
consistently outperformed the naive Bayes classi-
fier, which is consistent with earlier results that
show that in-domain fine-tuning generally leads to
improved performance (Gururangan et al., 2020).
Notably, especially the smaller BERTbase models
show better performance as well as reduced vari-
ance, making them the best performing models in
our study. We also observe that the ability to do
multi-label predictions generally does not yield an
improvement, which can be explained by the small
number of cases where multi-label prediction is
necessary.

Even though the BioBERT and PubMedBERT
models show increased performance compared to
the naive Bayes classifier, the difference appears
to be moderate considering the large difference
in complexity. All BERT models should be able
to process the same word frequency information
as the naive Bayes classifier, meaning that their
ability to combine the information from different
words and sentences is only responsible for a 7%
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performance increase. We believe that this indi-
cates that the BERT classifiers are not able to un-
derstand the full semantic content of hypothesis
statements, especially if they are only made implic-
itly. Instead, the increase in performance might
simply be caused by the classifier’s ability to detect
slightly more complex patterns than unigrams (e.g.,
n-grams) and by its ability to nonlinearly combine
the information about the presence of these still
simple patterns.

4.3 Ablation Study

We use the domain expert annotations from 3.3
to evaluate which kinds of information are most
important for the neural network classifiers. To
test this, we perform an ablation study in which we
train a classifier (BioBERT base) on: (i) only the
title, (ii) the first two sentences from the abstract,
or (iii) the last two sentences from the abstract.

The evaluation of the ablated classifiers on the
test set yielded an F1 score of 0.61 for the titles
and an equal score of 0.53 for the first two and
for the last two sentences. Therefore, the title con-
tains on average more information that is useful for
the classification, which is to be expected since a
good title should clearly indicate the key aspects
of the underlying study while it is not necessary
that every sentence in the abstract has the same
density of information. The equal performance on
the first and the last sentences from the abstract is
more surprising since it implies that the different
types of information that are commonly found at
these positions (hypothesis statement vs. implicit
hypothesis statement) seem to be equally useful for
the classification.

An alternative explanation for this result is that
the human annotations do not generally correspond
to information that is used by the neural network
classifier. To explore this hypothesis, we divide the
50 annotated samples into 10 folds, in a way that,
beginning from fold one, each fold progressively
contains samples that contain more annotated spans
and thus contain more information about the hy-
potheses according to our annotation. We then mea-
sure the performance of BioBERT base on each of
these folds and plot the average number of anno-
tations in each fold against the micro F1 score the
model achieved on that fold (see Figure 4). To
better see the correlation, we also fit a kernel re-
gression model (Nadaraya, 1964; Watson, 1964) to
the data, resulting in a clearly visible positive cor-

0 2 4 6 8 10
0.4

0.6

0.8

1

Number of Annotated Spans

F1
Sc

or
e

Figure 4: Classification micro F1 score vs. number of
annotated spans for ten folds from the test set. The
data was split into ten folds so that, beginning from
fold one, each fold progressively contains samples with
more annotated spans. The dashed line indicates the F1
score on all 50 samples, the red line is fitted to the data
via a kernel regression model (Gaussian kernel with
bandwidth=2.5).

relation between the number of annotated spans in
a sample and the classification performance of the
neural classifier. This correlation is mainly caused
by two low-scoring batches that both have a low
number of annotated spans, which means that sam-
ples with few annotated spans have an increased
probability of being misclassified while the prob-
ability stays relatively constant for samples that
have at least four annotated spans. This indicates
that our annotations correspond to useful informa-
tion for the classification and therefore indicates
that the general annotation scheme that allows for a
distributed annotation of hypotheses is reasonable.

In combination with the fact that the distributed
annotations also correspond to the intuition of the
domain expert, our study shows that the annotation
of hypotheses and claims as single spans of text is
limited and can be insufficient for certain domains
like scientific texts. For this reason, our study shifts
the focus from the simple, binary classification of
sentences as claims to more fine-grained semantic
categories, and at the same time, shifts the focus
from detailed annotations of text spans to more
general abstract- or paragraph-level annotation of
hypotheses. We also note that the latter type of
annotation may be more intuitive and faster for
domain experts, which may not be trained linguistic
annotators familiar with the complexities in text
annotation.

5 Conclusion

In this work, we proposed and published the INAS
dataset and conducted initial analyses and exper-
iments on it. Our studies revealed interesting in-
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sights into the availability and distribution of in-
formation about the hypotheses in scientific paper
titles and abstracts from the field of invasion biol-
ogy. We believe that there is great potential for a
variety of different studies to be performed using
this dataset, some of which we plan on conducting
in future work. These include further classifica-
tion experiments like exploring the full hierarchical
classification problem, trying to improve classifi-
cation performance by conducting pretraining on
full-texts from the field of invasion biology, or test-
ing one-shot classification leveraging the written
hypothesis descriptions. Further, our annotation
experiment could enable studies on span-level hy-
pothesis detection, e.g. in a weakly-supervised
manner or in a one-shot classification setting. Fi-
nally, we also hypothesize that the introduction of
human-engineered knowledge (e.g., in the form of
ontologies) into, for example, the classification pro-
cess can help overcome the problem of a lack of
domain-knowledge of current language models.
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