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Abstract
We present a publicly available corpus with de-
tailed annotations describing the core elements
of clinical trials: Participants, Intervention,
Control, and Outcomes. The corpus consists
of 1011 abstracts of breast cancer randomized
controlled trials extracted from the PubMed
database. The corpus improves previous cor-
pora by providing detailed annotations for out-
comes to identify numeric texts that report the
number of participants that experience specific
outcomes. The corpus will be helpful for the
development of systems for automatic extrac-
tion of data from randomized controlled trial
literature to support evidence-based medicine.
Additionally, we demonstrate the feasibility of
the corpus by using two strong baselines for
named entity recognition task. Most of the enti-
ties achieve F1 scores greater than 0.80 demon-
strating the quality of the dataset.

1 Introduction

Evidence-based medicine (EBM) is an approach
where doctors and health care professionals use
the best available research evidence to guide them
in making clinical decision about the care of pa-
tients (Sackett, 1997). Meta-analyses are one of
the essential tools in EBM because they provide
the highest form of medical evidence (Cook et al.,
1997). A meta-analysis is a statistical technique
that combines results of different research stud-
ies to determine the effectiveness of a treatment.
Despite their importance, meta-analyses are labor-
intensive and time-consuming as they involve man-
ually reading hundreds of unstructured research ar-
ticles and extracting data from them (Jonnalagadda
et al., 2015). The number of research articles is
increasing rapidly making it difficult/impossible
for researchers to keep up. For instance, a recent
study showed that more than 50,000 research arti-
cles related to COVID-19 have been published and
more articles are being published every day (Wang
and Lo, 2021).

Machine learning and natural language process-
ing (NLP) techniques to automate data extraction
from biomedical literature and speed up dissemi-
nation of biomedical evidence have been widely
studied. Although automatic (or semi-automatic)
approaches for extracting data from research arti-
cles have been proposed, they are still not ready for
practical use (Marshall and Wallace, 2019). This
is because data extraction requires high accuracy,
which may be difficult for automated systems to
achieve. The scarcity of publicly available corpora,
which are usually expensive to create, is one barrier
to the development of high-performance systems.

This paper presents a publicly available1 corpus
annotated with the core components of clinical tri-
als, i.e., Participants, Intervention, Control, and
Outcomes (PICO). We annotate in detail numeric
texts especially those that identify the number of
participants having certain outcomes. The anno-
tation of the numeric texts is important for sta-
tistical analysis to determine the overall effect of
an intervention. Currently, the corpus consists of
1011 research abstracts extracted from the PubMed
database. The abstracts are of randomized con-
trolled trials (RCTs) related to breast cancer, which
is one of the leading causes of deaths in the world2.
We focus on RCTs as they are considered the gold
standard for clinical research methods.

2 Related work

Although there are some corpora with PICO ele-
ments annotated in abstracts and full-text articles,
most of the corpora are not publicly available. Kir-
itchenko et al. (2010) developed a dataset contain-
ing 182 full-text articles. They annotated 21 entities
including treatment dosage, frequency, funding or-
ganization, grant number, and so on. Summerscales
et al. (2011) created a corpus consisting of 263
abstracts and annotated the treatment groups, out-

1https://github.com/sociocom/PICO-Corpus
2https://www.who.int/news-room/factsheets/detail/cancer
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comes, group sizes, and outcome numbers. Their
work is close to our study as they attempted to
identify outcome numbers and group sizes for the
purpose of calculating summary statistics. The an-
notations are however less extensive and the corpus
is not publicly available.

Since constructing large corpora is expensive,
Wallace et al. (2016) employed a distant supervi-
sion approach to create a large corpora consisting
of full-text articles. They also manually annotated
133 articles for evaluation. Although distant super-
vision is a cheap way to construct large datasets,
the dataset’s quality might be low.

Most of these previous datasets are not publicly
available. Nye et al. (2018) developed the EBM-
NLP corpus, which is one of the largest publicly
available corpora. Their annotation was done by
crowd-sourcing through Amazon Mechanical Turk
and a small part (200 abstracts) was done by med-
ical professionals. The corpus consists of about
5000 abstracts of RCTs mostly related to cardiovas-
cular diseases, cancer, and autism. They however
do not annotate numeric texts that identify the num-
ber of participants who had certain outcomes.

3 Corpus annotation

3.1 Dataset collection
The corpus in this study consists of abstracts ex-
tracted from PubMed3. PubMed is a free search
engine that provides access to the MEDLINE
database4 that indexes abstracts for biomedical and
life sciences articles. We extracted research ab-
stracts related to breast cancer whose study type
is RCT, and are not meta-analysis or systematic-
reviews. This was achieved by using keywords
such as “breast cancer,” “randomized controlled,”
“randomised controlled,” “meta-analysis,” and “sys-
tematic review.”

3.2 Annotation process
The research abstracts were manually annotated.
The annotator was asked to read and label text
spans that identify the PICO elements, i.e., Par-
ticipants (P), Interventions (I), Control (C), and
Outcomes (O). For each PICO category, we devel-
oped sub-categories to capture detailed information
within each category. The PICO label hierarchy is
shown in Figure 2. In total we annotated 26 sub-
categories (entities) which are described below.

3https://pubmed.ncbi.nlm.nih.gov/
4https://www.nlm.nih.gov/medline/medline_overview.html

• Participants: we annotate text snippets that
describe the characteristics of the participants
in a study. We annotate eight entities that in-
clude the total number of participants in the
study, the number of participants in the inter-
vention group, the number of participants in
the control group, condition, eligibility, age,
ethnicity, and location. Although breast can-
cer is the main condition, some studies focus
on treating conditions associated with breast
cancer such as hair loss, bone loss, depression,
and pain.

• Intervention and Control: we annotate text
snippets that mention the specific intervention

Tag Number of
Sub-category count abstracts
Participants (P)
total-participants 1094 847
intervention-participants 887 674
control-participants 784 647
age 231 210
eligibility 925 864
ethinicity 101 83
condition 327 321
location 186 168
Intervention &
Control (IC)
intervention 1067 1011
control 979 949
Outcomes (O)
outcome 5053 978
outcome-measure 1081 413
iv-bin-abs 556 288
cv-bin-abs 465 258
iv-bin-percent 1376 561
cv-bin-percent 1148 520
iv-cont-mean 366 154
cv-cont-mean 327 154
iv-cont-median 270 140
cv-cont-median 247 133
iv-cont-sd 129 69
cv-cont-sd 124 67
iv-cont-q1 4 3
cv-cont-q1 4 3
iv-cont-q3 4 3
cv-cont-q3 4 3

Table 1: Corpus statistics: The frequency of each entity
(sub-category) and the number of abstracts in which
each entity is found.
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Figure 1: An abstract with PICO elements annotated

and control used in the study. There are only
two entities in this category.

• Outcomes: we annotate the outcome mea-
sures (primary and secondary end-points) and
outcomes that were measured. We also aim to
capture detailed information for the outcomes
especially the numeric texts that identify the
number of participants who experienced a par-
ticular outcome. In meta-analysis statistical
analysis, these numeric texts are important for
calculating summary statistics to ascertain the
effectiveness of the intervention.

In the annotation, we mainly consider two types
of outcomes, i.e, binary outcomes and continuous
outcomes. Binary outcomes take two values such
as the treatment was successful or failed, or sur-
vival (alive or dead). Continuous outcomes are not
as straightforward as binary outcomes. Continuous
outcomes such as pain are measured on a numerical
scale (for instance, pain scores on a scale of 0 and
10). Continuous outcomes are usually measured at
different time points (such as at baseline and at fol-
lowup) and the results reported as mean, standard
deviation, median, or quartiles.

We created labels to capture the various types
of numeric texts in the intervention and control
groups. We use “iv,” “cv,” “bin,” and “cont” to
represent intervention group, control group, binary
outcome, and continuous outcome, respectively. In
addition, binary outcomes numeric texts tend to
be absolute values or percentage values. We use
“abs” and “percent” to label absolute and percent-
age values respectively. Further, for the continuous
outcomes, we also designed labels to capture the

different types of numeric texts. We use “mean,”
“sd,” “median,” “q1,” and “q3” to represent mean,
standard deviation, median, first quartile, and third
quartile respectively. In total, we have 16 entities
for the outcomes. Figure 1 shows an example of an
annotated abstract.

Binary outcome example:

• <iv-bin-abs>Four</iv-bin-abs> patients
in the intervention group and <cv-bin-
abs>two</cv-bin-abs> in the control
group were <outcome>lost to follow-
up</outcome>.

Continuous outcome example:

• <outcome>Depression scores</outcome> at
follow-up were significantly lower in the exer-
cise group (M = <iv-cont-mean>4.78</iv-
cont-mean>, SD = <iv-cont-sd>3.56</iv-
cont-sd> ) compared to the control group
(M= <cv-cont-mean>6.91</cv-cont-mean>,
SD =<cv-cont-sd>5.86</cv-cont-sd> ).

3.3 Corpus statistics
The corpus contains 1011 manually annotated ab-
stracts. The annotation was performed using BRAT,
an open-source web annotation tool (Stenetorp
et al., 2012). The abstracts were annotated by two
annotators. One of the annotators was hired from
an annotation company and has extensive experi-
ence annotating medical documents and the second
annotator is one of the authors. The first anno-
tator annotated all the abstracts while the second
annotator annotated 45% of the abstracts. The inter-
annotator agreement was calculated based on Co-
hen Kappa and achieved a score of 0.72. Annotator
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disagreements were mainly found in the outcome
and eligibility entities where the annotators had
challenges in determining the start and end spans.
How to minimize these disagreements during the
annotation process is an important future work. An-
notator disagreements for the other entities were
minimal since they could be identified by one or
two words and these disagreements are easy to re-
solve.

Currently the corpus has 17,739 entities and the
frequencies of the annotated entities are shown in
Table 1. The most frequent entity type is outcome,
which comprises about 28% of all the annotations.
Continuous outcomes quartile values (q1 and q3)
are the least frequent entity types. Table 1 also
shows the number of abstracts containing each of
the entities. The entities found in most abstracts
are intervention, outcome, and control which are in
100%, 97%, and 94% of the abstracts, respectively.
Most abstracts do not contain continuous outcomes
values (mean, median, sd, q1, q3) and ethnicity.

4 Baseline experiments

We evaluate the corpus using named entity recog-
nition (NER) task. This task is important for auto-
matic information extraction from RCT research
articles. Since deep learning language models have
gained a lot of attention in NLP tasks, we adopt
Bidirectional Encoder Representations from Trans-
formers (BERT)-based models. BERT-based mod-
els have achieved state-of-the-art results in NLP
tasks including NER (Devlin et al., 2018). These
models are usually pre-trained on huge amounts
of unlabeled data and can be fine-tuned to specific
tasks. They use the encoder structure of the trans-
former which is an attention mechanism that learns
contextual relations between words (or subwords).

We chose two pre-trained transformer-based
baseline models, BioBERT (Lee et al., 2020) and
LongFormer (Beltagy et al., 2020). BioBERT is
initialized with general domain corpora and further
trained on biomedical domain texts (PubMed ab-
stracts and PubMed Central articles). LongFormer
is pre-trained on general domain corpora including
books, wikipedia, news, stories.

The 1011 abstracts were randomly split into 80%
training data and 20% test data. As baseline ex-
periments, we followed the standard BERT prac-
tice of formulating NER task as a sequential tag-
ging task. Since neural networks provide different
results when initialized with different seeds, we

Bio- Long-
Sub-category BERT Former
total-participants 0.94 0.95
intervention-participants 0.85 0.85
control-participants 0.88 0.88
age 0.80 0.87
eligibility 0.74 0.88
ethinicity 0.88 0.79
condition 0.80 0.79
location 0.76 0.87
intervention 0.84 0.84
control 0.76 0.81
outcome 0.81 0.85
outcome-measure 0.84 0.90
iv-bin-abs 0.80 0.82
cv-bin-abs 0.82 0.82
iv-bin-percent 0.87 0.86
cv-bin-percent 0.88 0.85
iv-cont-mean 0.81 0.84
cv-cont-mean 0.86 0.86
iv-cont-median 0.75 0.69
cv-cont-median 0.79 0.73
iv-cont-sd 0.83 0.89
cv-cont-sd 0.82 0.89
iv-cont-q1 0 0
cv-cont-q1 0 0
iv-cont-q3 0 0
cv-cont-q3 0 0

Table 2: NER models results in terms of F1 score

trained the models with five different seeds and
averaged the results.

The performance of the models was evaluated
using F1 score. Table 2 shows the results of the
NER models. The models achieved satisfactory
performance and several sub-categories achieved
high F1 scores. Total-participants achieved the
highest F1 score of 0.95. Most of the sub-categories
achieved F1 scores greater than 0.80. The models
could not predict for sub-categories with the lowest
frequency (F1 score=0).

We performed an error analysis and identified
misclassified entities and boundary detection as
the common types of errors. In the case of mis-
classified entities errors, the models identified the
correct boundaries but assigned the wrong entities.
For example, iv-bin-abs was misclassified as cv-
bin-abs and vice-versa. Boundary detection errors
were common in the outcome and eligibility enti-
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ties, where the models identified longer or shorter
entities than those marked in the gold set.

5 Conclusion

We presented a publicly available corpus with de-
tailed annotation of the PICO elements. The cor-
pus contains 1011 abstracts related to breast can-
cer RCTs. The corpus provides detailed annota-
tion for outcomes especially numeric texts to iden-
tify the number of participants having certain out-
comes. This is important for statistical analysis
to determine the effectiveness of a treatment. The
corpus will facilitate NLP research on automatic
information extraction from biomedical literature
and contribute towards evidence-based medicine.
Since the corpus consists of breast cancer related
abstracts, one of the future works is to extend it to
include other diseases. The corpus is publicly avail-
able at https://github.com/sociocom/
PICO-Corpus.
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A Appendix

Figure 2: PICO label hierachy
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