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Abstract

Automatic translation of one natural language
to another is a popular task of natural language
processing. Although the deep learning-based
technique known as neural machine translation
(NMT) is a widely accepted machine transla-
tion approach, it needs an adequate amount
of training data, which is a challenging issue
for low-resource pair translation. Moreover,
the multimodal concept utilizes text and visual
features to improve low-resource pair transla-
tion. WAT2022 (Workshop on Asian Transla-
tion 2022) organizes (hosted by the COLING
2022) English to Bengali multimodal transla-
tion task where we have participated as a team
named CNLP-NITS-PP in two tracks: 1) text-
only and 2) multimodal translation. Herein, we
have proposed a transliteration-based phrase
pairs augmentation approach which shows im-
provement in the multimodal translation task
and achieved benchmark results on Bengali Vi-
sual Genome 1.0 dataset. We have attained the
best results on the challenge and evaluation test
set for English to Bengali multimodal trans-
lation with BLEU scores of 28.70, 43.90 and
RIBES scores of 0.688931, 0.780669, respec-
tively.

1 Introduction

In recent years, multimodel approaches have shown
remarkable contributions in various NLP applica-
tions such as machine translation, caption gen-
eration, etc. Especially in machine translation,
multiple input modalities, like text, image, or au-
dio/speech, integrate with NMT, known as multi-
modal NMT (MNMT), attempts to improve low-
resource pair translation by merging visual features
in addition to textual features (Shah et al., 2016).
The attention-based encoder-decoder architecture
of NMT handles various issues of long-term depen-
dency and variable-length phrases via sequence-
to-sequence learning and attains a state-of-the-art
technique of machine translation (MT) (Bahdanau

et al., 2015; Luong et al., 2015). Also, NMT
shows remarkable performance for low-resource
Indian languages (Pathak and Pakray, 2018; Pathak
et al., 2018; Laskar et al., 2019a,b, 2020a, 2021b,
2022b). Further, to handle the data scarcity prob-
lem, the authors (Sen et al., 2020) augmenting
phrase pairs and the source language transliteration-
based (Laskar et al., 2022a) approach to enhance
text-only based for low-resource pair translation.
This paper aims to investigate English to Bengali
multimodal translation task in WAT2022 with a pro-
posed transliteration-based phrase pairs augmenta-
tion approach.

The rest of the paper is organized as follows:
Section 2 presents the review of related works. The
system description is briefly discussed in Section
3. Section 4 reports the results and Section 5 con-
cludes the paper with future scope.

2 Related Work

In the literature survey, there is minimal existing
work, particularly on the English to Bengali mul-
timodal translation task (Parida et al., 2021). In
(Parida et al., 2021), they used Bengali Visual
Genome 1.0 (Sen et al., 2022b) adopted ViTA
(Gupta et al., 2021) approach where they extracted
object tags from the image and utilized mBART
model (Liu et al., 2020) for encoding English sen-
tences with the object tags and decoding to generate
the Bengali translation. The obtained BLEU scores
were 43.5 and 26.8 on the evaluation and challenge
test sets, respectively. Moreover, the related exist-
ing works are available on English to Hindi mul-
timodal translation task (Dutta Chowdhury et al.,
2018; Sanayai Meetei et al., 2019; Laskar et al.,
2019c, 2020b, 2021a). The authors (Laskar et al.,
2020b, 2021a) used Hindi Visual Genome 1.1 and
adopts RNN-based MNMT model (Calixto and
Liu, 2017; Calixto et al., 2017) with advantages
pre-trained word embeddings on monolingual cor-
pus, achieved BLEU scores of 39.28, 39.46 on
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challenge and evaluation test set respectively. This
work investigates transliteration-based phrase pairs
augmentation to improve the multimodal transla-
tion task of English to Bengali.

3 System Description

We have carried out four operations: transliteration-
based phrase pairs augmentation, data preprocess-
ing, model training, and testing. The OpenNMT-py
(Klein et al., 2017) tool is utilized to build multi-
modal and text-only models separately.

3.1 Dataset Description

The dataset namely, Bengali Visual Genome 1.01

(Sen et al., 2022b,a) is used in this task, which is
provided by WAT2022 organizer (Nakazawa et al.,
2022). In this dataset, the duplicates (text and im-
age) are present in the train set, which have im-
age ID numbers 2328549, 2391240, and 2385507.
Therefore, we have removed those duplicates, and
thus train set contains 28,927 images and the same
number of corresponding English-Bengali paral-
lel sentences. The validation and test (evaluation
and challenge) set contains 998, 1,595, and 1,400
images and parallel text data.

3.2 Transliteration-based Phrase Pairs
Augmentation

In this phase, firstly, we have expanded the training
amount of data via augmentation of phrase pairs to
the train set. To improve low-resource pair transla-
tion, (Sen et al., 2020) utilized SMT-based phrase
pairs to increase training data via augmentation
strategy. We have also followed same (Sen et al.,
2020) and utilized Giza++ (Och and Ney, 2003)
to extract phrase pairs(Laskar et al., 2021a) from
the English-Bengali parallel train set. Before aug-
mentation to the parallel train set, duplicates and
blank lines are removed. The statistics of extracted
phrase pairs are shown in Table 1.

Secondly, English source sentences are translit-
erated using indic-trans2 (Bhat et al., 2014)in to
Bengali script following (Laskar et al., 2022a).
The goal of the transliteration approach is to al-
low subword-level lexical sharing between source
and target sentences that will be shared during the
training process.

1https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3722

2https://github.com/libindic/
indic-trans

3.3 Data Preprocessing, Model Training, and
Testing

The image/visual features are independently ex-
tracted from the image data using pre-trained CNN-
VGG193 for train, validation, and test data. During
feature extraction, the coordinate or bounded box
region information (X, Y, width, height) of the im-
ages is considered, which is available in the Bengali
Visual Genome 1.0 (Sen et al., 2022b). Moreover,
we have augmented image features of extracted
phrase pairs. To select relevant images of the cor-
responding phrase pairs, we have searched each
phrase in the original parallel corpus (train set), if
it is found, then the corresponding image and its
coordinate information are considered. But there is
a problem if multiple sentences contain the same
phrase subset. To tackle this issue, a filtering step
solution is considered.

• First, for every phrase pair extracted from the
corpus, we found the matching English seg-
ments from the corpus which have the English
phrase of the En-Bn phrase pair as a sub-string
(filter-1).

• If the length of the resulting data frame, i.e.,
the number of matching English segments for
the English part of the phrase is 0, then the
phrase is skipped and considered invalid. If
the length is 1, since only one English segment
matches it, that segment is directly selected.

• On the other hand, if the length is more than
1, i.e., more than 1 English segments have the
English phrase as a sub-string, the resulting
English segments are again filtered (filter-2) to
check if the corresponding Bengali phrase of
the phrase pairs also has subset in the Bengali
segments.

– If after filter-2, the result is 0, i.e., there
are no matching Bengali segments that
have the Bengali phrase as a sub-string,
then from the filter-1 data-frame, i.e., the
final segment from matching English seg-
ments is randomly selected.

– If the number of matches after Bengali
segment matching is 1, then that single
segment is selected.

3https://github.com/iacercalixto/
MultimodalNMT

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3722
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3722
https://github.com/libindic/indic-trans
https://github.com/libindic/indic-trans
https://github.com/iacercalixto/MultimodalNMT
https://github.com/iacercalixto/MultimodalNMT
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Number of Phrase Pairs Tokens
En Bn

127,897 442,657 364,644

Table 1: Statistics of extracted phrase pairs.

– If the number of Bengali phrase matches
is more than 1, then a matching segment
is randomly selected with a seed value.

For tokenization and preprocessing of text data, the
OpenNMT-py toolkit is utilized. We have trained
separately for multimodal and text-only NMT us-
ing the OpenNMT-py toolkit. During multimodal
NMT training, the bidirectional RNN (BRNN) at
the encoder and doubly-attentive RNN at the de-
coder are used by following default settings of (Cal-
ixto and Liu, 2017; Calixto et al., 2017). We have
trained on a single GPU with early stopping cri-
teria i.e., the model training is halted if does not
converge on the validation set for more than 10
epochs. We have used a batch size of 32 during
the training process. The optimum trained models
of multimodal and text-only NMT are applied to
the evaluation and challenge test set. The primary
difference in the testing phase is that multimodal
NMT uses visual features of image test data. The
source English sentences of test data are translit-
erated and then applied to the trained model to
generate the predicted target Bengali sentences.

4 Result and Analysis

The WAT2022 shared task organizer (Nakazawa
et al., 2022) published the evaluation result4 of
the multimodal translation task for English to Ben-
gali, where our team achieves the first position in
multimodal submission for both challenge and eval-
uation test set. Herein, we have participated with
a team named CNLP-NITS-PP in the multimodal
and text-only submission tracks, where a total of
three teams participated. The automatic evalua-
tion metrics, BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) are used for evaluation of re-
sults. Table 2 presents the results of our system.
The quantitative results show that the multimodal
NMT outperforms text-only NMT due to the use
of visual and textual features. Furthermore, we
have attained benchmark results on the evaluation
and challenge test set, which is higher compared

4http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

to (Parida et al., 2021). It shows +0.40 and +1.9
increment in terms of BLEU score, which realized
that our approach i.e., transliteration-based phrase
pairs augmentation improves the translational per-
formance of multimodal NMT. Moreover, Figure
1 and 2 present best and worst outputs along with
transliteration of Bengali words and Google trans-
lation. In Figure 1, the predicted sentences for
both multimodal and text-only represent the same
contextual meaning. Here, the only difference is
that prachir (“wall") word in the case of the mul-
timodal predicted sentence whereas dewal word
in the case of the text-only predicted sentence and
Google translation. These two words represent the
same meaning corresponding to the reference sen-
tence. However, both multimodal and text-only
predicted wrong translations.

5 Conclusion and Future Work

In this work, we have proposed a transliteration-
based phrase pairs augmentation approach which
has been introduced in the WAT2022 multimodal
translation task of English to Bengali. The mul-
timodal NMT attains a higher score than the text-
only NMT model and other existing works. Further-
more, the designed multilingual-based approach
will be investigated to improve the translational
performance of low-resource multimodal NMT.
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