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Abstract

We build a system that leverages adapters, a
light weight and efficient method for leveraging
large language models to perform the task Em-
pathy and Distress prediction tasks for WASSA
2022. In our experiments, we find that stacking
our empathy and distress adapters on a pre-
trained emotion classification adapter performs
best compared to full fine-tuning approaches
and emotion feature concatenation. We make
our experimental code publicly available.1

1 Introduction

Empathy is an important interpersonal function
in communication settings from conversations be-
tween friends and family, to educational, medi-
cal, or other goal-oriented dialogues. In natural
language processing research, automatic empathy
recognition and generation are explored for moti-
vations such as improved experiences with open-
domain dialogue agents (Rashkin et al., 2019; Ma-
jumder et al., 2020; Lin et al., 2020), analyzing
supportive interactions in online forums (Zhou and
Jurgens, 2020; Sharma et al., 2020; Lahnala et al.,
2021), and for the development of educational
and evaluative tools for counselor training (Gib-
son et al., 2015; Pérez-Rosas et al., 2017; Zhong
et al., 2020) in addition to other educational do-
mains (Wambsganss et al., 2021). Yet empathy pre-
diction is a challenge for current language technolo-
gies due to resource availability and difficulty defin-
ing a gold standard for the complex phenomenon.

The lack of proper resources for empathy mod-
eling limits the ability of the NLP community to
more widely explore it. Many studies, for instance,
are on sensitive data that cannot be made public.
There are some datasets that are publicly available
that are built on social media platforms, or through
specific data collection tasks, however, these are

1https://github.com/caisa-lab/
wassa-empathy-adapters

few and far between, and each have limitations
due to inherent challenges in the collection and
annotation process.

A general challenge with studying empathy is
how to define the concept concretely enough to
obtain consistent and relevant gold standard anno-
tations, as there are many highly varied definitions
in psychology research (Cuff et al., 2016). Further-
more, empathy datasets in NLP are almost always
annotated by others rather than the person having
an empathetic experience (Buechel et al., 2018) or
the person on the receiving end. Such annotations
thus indicate particular aspects of language iden-
tified by a removed observer, rather than provide
insight into the effect that particular empathetic
experiences have on language.

Toward this issue, Buechel et al. (2018) devel-
oped the EMPATHETICREACTIONS dataset, which
contains empathic concern and personal distress
ratings based on self-evaluations of individuals’
own empathetic experiences at the time of writing
the text. These reactions are short essays in which
the author describes their feelings as they would to
a friend after reading an article meant to evoke em-
pathy. This data may then enable analysis into the
way the empathetic experiences impact or relate to
produced language. The EMPATHETICREACTIONS

dataset is used for predicting empathy and distress
in the WASSA 2022 Shared Task, enabling a large
group of people to research empathy prediction on
a standard and public set of data.

In this paper, we present our experiments for
empathy and distress prediction as part of WASSA
2022. We explore adapters for the task since it
is more efficient than full fine-tuning, which so
far has not been explored for empathy prediction.
Following work on domain transfer, we also build
a system leveraging additional empathy data, as the
amount of empathy data is still sparse.
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2 Background

The ability to recognize empathy in text is impor-
tant for advancing language technologies from dia-
logue agents to computational social science tools.
As such, there is a growing body of research on
automatic empathy recognition. Many studies con-
cern highly sensitive and important scenarios such
as counseling and medical dialogues (Sharma et al.,
2020) or are crisis-related (Zhang et al., 2020) but
such resources are protected and cannot be made
public. However, there are a number of recently
proposed empathy datasets available to the public,
which are consolidated by means such as collect-
ing and labeling social media (Sharma et al., 2020;
Zhou and Jurgens, 2020), or through collection
tasks (Rashkin et al., 2019; Buechel et al., 2018).

Annotating empathy involves a host of chal-
lenges. Most datasets are annotated by someone
who did not take part in the writing or conversa-
tion, requiring them to interpret how the author felt,
rather than acquiring this information from the au-
thors directly. Also, there are various definitions of
empathy across fields. Generally, NLP has consid-
ered emotional empathy, despite the prevalence of
other components of empathy in psychology (Cuff
et al., 2016). There have been valuable efforts to
build resources for empathy identification, each
operating upon different perspectives of empathy.

Sharma et al. (2020)’s EPITOME dataset, con-
tains support-seeker and responder post pairs from
Reddit and has multi-faceted empathy labels on
the responder posts. The responder posts are an-
notated with the degree of three different aspects
of empathy (interpretations, emotional reactions,
and explorations), 0 for absent, 1 for weak, and 2
for strong. As this scheme contains distinct labels
for both emotional and cognitive aspects of empa-
thy, this dataset is a valuable resource for pursuing
empathetic modeling beyond emotional aspects.

Zhou and Jurgens (2020) introduced a dataset
post-response pairs from Reddit where the post con-
tains an expression of distress and the response is a
condolence. While the final dataset contained one
empathy score, the annotation process was strictly
guided by a multi-faceted definition of empathy,
the appraisal theory (Lamm et al., 2007; Wondra
and Ellsworth, 2015). Under this definition, the
degree of empathy is how closely the responder’s
appraisal of another person’s situation matches the
person’s appraisal of their own situation.

Rashkin et al. (2019)’s EMPATHETICDIA-

LOGUES dataset contains conversations grounded
in one of 32 emotions. During data collection,
participants were instructed to converse with each
other. Dialogues contain emotion labels but not
empathy labels. Welivita and Pu (2020) further
annotated empathetic intents in this dataset.

Buechel et al. (2018) built the EMPATHETICRE-
ACTIONS dataset based on Batson’s Empathic Con-
cern – Personal Distress Scale (Batson et al., 1987).
Under this view, there are two aspects of empa-
thetic reactions, the level a personal distress experi-
enced by the reactor (“suffering with something”)
and the level of empathy (“feeling for someone”)
while maintaining self-other separation. Here, em-
pathy involves emotional feelings such as compas-
sion, warmth, and tenderness, whereas distress in-
volves those such as worry, alarm, and grief.

These datasets may differ stylistically due to
their different domains. Having this diversity is
valuable so that we can study how empathetic com-
munication may vary across contexts. However,
as the volume of data across these datasets is still
limited, it is important to understand if they can be
leveraged together despite their differences.

3 Task and Dataset

This paper describes our system submitted for
Track 1 of the WASSA 2022 task which concerns
empathy and distress prediction in Buechel et al.
(2018)’s dataset of empathic reactions to news sto-
ries. Empathetic reactions are captured in essays
written by people who were asked to read an article
that involves a harmful situation a write a response.
Participants were asked to rate their empathy af-
ter reading an article before writing their response.
These ratings were self-measured using Batson’s
Empathic Concern - Personal Distress Scale (Bat-
son et al., 1987), which contains multiple items that
were averaged in order to obtain the gold ratings
for empathy and distress.

The task of Track 1 of WASSA 2022 was to
predict the numerical values for empathy and dis-
tress on a continuous scale for the essays. Systems
were evaluated by Pearson’s r correlation between
the predictions and the actual values in a test set.
WASSA provided an extension of the dataset to
include the original news articles, demographics
(age, gender, ethnicity, income, education level)
and personality information. The extension also
included emotion labels obtained using pretrained
emotion detection models.
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4 System Description

Adapters offer a lightweight tuning strategy alterna-
tive to full fine-tuning (Houlsby et al., 2019). With
adapter-tuning, new initialized layers are inserted
at each layer of the original pretrained network,
and the new weights are fine-tuned while the origi-
nal network’s weights remain fixed. Adapters have
been shown to effectively perform at near state-of-
the-art levels while drastically improving efficiency
(Houlsby et al., 2019; Pfeiffer et al., 2020b, 2021).

As reported by the WASSA 2021 task (Tafreshi
et al., 2021), the most robust systems for empa-
thy and distress modeling involved fine-tuning of
transformer models such as RoBERTA (Liu et al.,
2019) and ELECTRA (Clark et al., 2020). In
our experiments, we attempt an adapter tuning ap-
proach (Houlsby et al., 2019) motivated by their
efficiency, and compare to full fine-tuning.

Furthermore, we experiment with leveraging
a different empathy dataset, EPITOME (Sharma
et al., 2020). This dataset contains support-seeker
and responder posts on Reddit (as described in § 2).

Full fine-tuning. For our full fine-tuning
approaches, we fine-tune RoBERTa using
roberta-base from the HuggingFace library
(Wolf et al., 2020) for separate models predicting
the essay’s empathy and distress scores. Our most
basic model ROBERTA is trained only on the
essay text.

The second model EMOROBERTA is fine-tuned
with emotional features, by leveraging the sentence-
level emotion tags provided for the shared task,
particularly the labels from the transformer model.
For each essay, we concatenate each sentence’s
emotion tag to the sentence. We define these emo-
tion tags as special tokens when tokenizing the text
(e.g., [sadness]). We also include a separator token
between each sentence after the emotion tag. To
obtain these labels for the test dataset, we trained
an adapter for roberta-base to predict these labels.
This classifier attained 83.9, 83.8, and 80.2 for ac-
curacy, weighted F1, and macro F1 respectively on
the dev dataset.

For our final full fine-tuning approach EPITO-
MEFT we leverage the EPITOME dataset (Sharma
et al., 2020) to obtain implicit empathy features
from this other domain and labeling scheme. We
fine-tune roberta-base to predict the level of empa-
thy in the emotional reactions, explorations, and in-
terpretations defined in their labeling scheme. The
model we submitted for the test set was trained on

the aspects consecutively.

Adapter-tuning. For our implementation we lever-
age AdapterHub (Pfeiffer et al., 2020a) which
is a simple framework built on HuggingFace
transformers. For our approach we train
Tasks Adapters for a RoBERTa model to predict
the empathy and distress scores for an essay.

EPITOMEFUSION: First we fine-tune three sepa-
rate adapters to classify the degree of each of the
three aspects of empathy in the EPITOME dataset.
Then, we combine these adapters using Adapter-
Fusion composition (Pfeiffer et al., 2021). This
setup allows for combining the knowledge of each
of the pre-trained adapters for the EPITOME tasks
in order to leverage them in the WASSA empathy
and distress prediction tasks. A classification head
for the WASSA tasks is added on top of the fusion
layer, and then trained.

EMOTIONSTACK: Following the procedure by
Poth et al. (2021) to identify a similar adapters
trained on a similar dataset, we identified a pre-
trained emotion adapter available on AdapterHub.2

This adapter was trained by Poth et al. (2021) on a
dataset of English tweets (Saravia et al., 2018) with
Ekman’s six basic emotion labels (Eckman, 1972);
the same emotion labels as in EMPATHETICREAC-
TIONS dataset. Using this adapter is an alternative
to using emotions explicitly labeled for the target
dataset.

To leverage the knowledge of this pretrained
adapter, we use the stacked composition setup pre-
sented by Pfeiffer et al. (2020b) (see Fig. 1 3), by
stacking our task adapter, i.e. empathy or distress
prediction, on the emotion adapter. The empathetic
reaction essays are first input into the emotion
adapter, and its output and residual are input to
the empathy task adapter. Thus, the empathy task
adapter is essentially obtaining predictions of Ek-
man’s six emotions for the essays. While training
the empathy adapter, the emotion adapter remains
frozen.

5 Results and Discussion

Results from our submissions to the post-evaluation
phase on the test dataset are presented in Table 1.
The EMOTIONSTACK outperformed all other mod-
els on the test dataset on both empathy and distress

2https://huggingface.co/AdapterHub/
roberta-base-pf-emotion

3https://docs.adapterhub.ml/adapter_
composition.html
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Figure 1: Stacked adapter composition.

Model Emp Dis Avg

EMOTIONSTACK 0.524 0.521 0.523
EPITOMEFUSION 0.472 0.496 0.484

ROBERTA 0.505 0.463 0.484
EMOROBERTA 0.478 0.493 0.486
EPITOMEFT 0.476 0.382 0.430

Table 1: Empathy and Distress prediction results on the
test dataset.

detection. On average, the results of EPITOME-
FUSION are comparable to the full fine-tuning ap-
proaches, namely ROBERTA and EMOROBERTA,
by slightly outperforming on distress detection and
underperforming on empathy prediction. EPITO-
MEFT performed worst on average due a particu-
larly low score on distress prediction.

While we only explored the EMP track’s tasks of
empathy and distress prediction, the performance
of the EMOTIONSTACK inspired us to submit pre-
dictions for the EMO track, predicting emotions.
We used the same model, only changing the la-
bel set-up from predicting one value to predicting
the six emotion categories–sadness, neutral, fear,
anger, disgust, and surprise. This approach ranked
highly with a macro F1-score of 0.604. A confu-
sion matrix for our classifier is shown in Figure 2.

The results of the adapter approach are excit-
ing as it allievates the heaviness of full fine tuning.
Adapters make it easy to leverage knowledge from
other tasks learned on other datasets. In partic-
ular, we observe positive effects from using the
pretrained emotion adapter on these tasks, which

Figure 2: Confusion matrix of emotion predictions on
dev dataset.

likely provides important emotional information
relevant to empathic concern and personal distress.

However, we see no improvement from using the
EPITOME data. Similarly, recent work found sep-
arate empathy types were found to have different
effects on toxicity reduction (Lahnala et al., 2022).
In preliminary experiments, we fine-tuned on only
one of these aspects at a time, as we were interested
in whether they have distinct effects and whether
one or a combination of them is particularly well
suited for our tasks. Further work is needed to
definitively understand the effect of EPITOME
and it’s aspects on empathy and distress detection
in the EMPATHETICREACTIONS. Given the spar-
sity of public empathy data, it is imperative for
future work to better understand how the existing
datasets can complement each other.

6 Conclusion

We presented our models for empathy and distress
prediction on the EMPATHETICREACTIONS dataset
for the WASSA 2022 shared task. We found that a
stacked adapter composition with the WASSA task
adapter stacked on a pre-trained emotion adapter
(EMOTIONSTACK) outperformed other methods.
This approach mitigates the costs of full fine-tuning
while achieving comparable results. Furthermore,
this method required no additional features beyond
the empathetic reaction text. We further discussed
challenges of researching empathy in natural lan-
guage processing. In future work, we could explore
incorporating the personal features provided for the
shared task. We plan to further explore the use of
different empathy datasets together for empathy
prediction.
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