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Abstract
This paper explores cross-lingual transfer
learning in natural language understand-
ing (NLU), with the focus on bootstrap-
ping Arabic from high-resource English
and French languages for domain classifi-
cation, intent classification, and named en-
tity recognition tasks. We adopt a BERT-
based architecture and pretrain three mod-
els using open-source Wikipedia data and
large-scale commercial datasets: monolin-
gual:Arabic, bilingual:Arabic-English, and
trilingual:Arabic-English-French models. Ad-
ditionally, we use off-the-shelf machine trans-
lator to translate internal data from source
English language to the target Arabic lan-
guage, in an effort to enhance transfer learn-
ing through translation. We conduct experi-
ments that finetune the three models for NLU
tasks and evaluate them on a large inter-
nal dataset. Despite the morphological, or-
thographical, and grammatical differences be-
tween Arabic and the source languages, trans-
fer learning performance gains from source
languages and through machine translation are
achieved on a real-world Arabic test dataset in
both a zero-shot setting and in a setting when
the models are further finetuned on labeled
data from the target language.

1 Introduction

The fast growing interest in conversational AI-
based voice assistants has increased the importance
of finding ways to efficiently and rapidly expand
these services to multiple new languages. One of
the core components of virtual assistants is Natural
Language Understanding (NLU), which is usually
composed of three main tasks: domain classifica-
tion (DC), intent classification (IC), and named
entity recognition (NER). NLU tasks are respon-
sible for classifying the domain and intent from
the user’s utterance and identifying and extracting
entities from their requests through slot-filling.

∗Work done during the author’s tenure at Amazon.

Training an NLU model to support a new lan-
guage requires a large amount of labeled utterances,
which is costly and time-inefficient, particularly
for low-resource languages. In recent years, a
lot of success was shown through cross-lingual
knowledge transfer on various NLU tasks for zero-
shot transfer and few-shot transfer (Johnson et al.,
2019; Ponti et al., 2021; Wang et al., 2021; Pires
et al., 2019; Muller et al., 2021). This is made
possible with the availability of multilingual pre-
trained language models such as mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020).
However, cross-lingual transfer was shown to be
more effective among similar languages (e.g., En-
glish to French) as opposed to distant languages
(e.g., English to Arabic), especially for languages
that differ in their script (Muller et al., 2021; Con-
neau et al., 2020; Johnson et al., 2019; Wu and
Dredze, 2019). Efforts to reduce the distance be-
tween source and target languages include translit-
eration/romanization to Latin script (Muller et al.,
2021; Johnson et al., 2019), and machine trans-
lation (Wang et al., 2021; Ponti et al., 2021). Al-
though romanization was shown to be beneficial for
languages that are not included in pretraining, it de-
graded performance on languages that are included
in these large multilingual models like Arabic and
Japanese (Muller et al., 2021). Driven by some of
the shortcomings of pretrained multilingual mod-
els, several monolingual models have been trained
and released in the past couple of years for multiple
languages like Arabic (Antoun et al., 2020; Abdul-
Mageed et al., 2021; Inoue et al., 2021), German
(de Vries et al., 2019), and French (Martin et al.,
2020). Whether multi-lingual or monolingual mod-
els are adopted, task-specific labeled data is still
required for finetuning.

In this paper, we experiment with cross-lingual
transfer from English and French, two high-
resource languages with rich NLU labeled datasets
for bootstrapping NLU model for the low-resource
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Arabic language, specifically for virtual assistant
(VA) systems. To this end, we train three BERT
models on a mix of open-source data and machine
translated user inquiries: a monolingual - Arabic
only, a bilingual Arabic-English and a trilingual
Arabic - English - French models. Particulars of
Arabic language such as orthographic inconsisten-
cies in diacritized script and inflectional affixation
are mitigated by preprocessing the data before train-
ing. We distill each of the BERT models to a
smaller student model that better fit memory and
latency requirements of commercial VA systems.
We present experimental results on internally gath-
ered real-world Arabic dataset that illustrate cross-
lingual transfer through NLU knowledge transfer
and machine translation (MT). Gains from trans-
fer learning (TL) are achieved on the target Arabic
dataset in both DC and joint IC-NER tasks in a
zero-shot setting, few-shot setting, and in a setting
with non-production Arabic labeled data included
in finetuning.

2 Related Work

Cross-lingual transfer for low-resource lan-
guage: There is a large body of research that
shows successful cross-lingual transfer for a va-
riety of tasks in both zero-shot setting, when the
model is finetuned on data from the source lan-
guage only, and in a regular setting, when the model
is finetuned on the target language. (Johnson et al.,
2019) explores cross-lingual transfer from English
to Japanese, not only a morphologically dissimilar
language, but also fundamentally different on the
character and token level. Authors use a Bi-LSTM
based model with word and character embeddings
and finetune it for NER task. To increase the ben-
efit of transfer learning, the authors propose to ro-
manize Japanese characters to unify the character
embedding space between the target and source
languages.

The introduction of pretrained multilingual lan-
guage models like mBERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2020) has opened the
doors for wider exploration of cross-lingual trans-
fer learning (Wang et al., 2021; Libovickỳ et al.,
2019; Muller et al., 2021; Wu and Dredze, 2019).
(Muller et al., 2021) has shown that the reason why
some languages do not benefit from these massive
multilingual models is largely related to script dif-
ferences; particularly for languages that have not
been seen by mBERT. Experiments in (Muller et al.,

2021) show that transliteration to Latin script for
low-resource languages with different script does
improve performance for part-of-speech tagging,
dependency parsing, and NER tasks, however not
for languages that are included in mBERT like Ara-
bic and Japanese. Such findings are also echoed
in (Wu and Dredze, 2019). Another way to bring
distant languages closer is through machine trans-
lation. (Wang et al., 2021) introduces a step before
finetuning on IC-NER task by retraining pretrained
multilingual models (mBERT and XLM-R) for MT
task. Authors show that performance gain with the
proposed approach is larger between distant lan-
guages than that between similar languages. (Ponti
et al., 2021) proposes an integrated translation –
monolingual classifier system that exploits cross-
lingual transfer through setting the translation as a
latent variable between the target text and the labels
(a translate-test approach). Using reinforcement
learning, (Ponti et al., 2021) trains the integrated
translation-classifier system with classification ac-
curacy as the reward. This approach however, can
be only applied to DC and IC tasks where the whole
utterance is labeled with one class.

NLU models for Arabic: Non-deterministic
NLU models for Arabic have not been exten-
sively explored until recently; largely due to a
lack of rich labeled datasets for the various NLU
tasks. (Soliman et al., 2017) proposed Arabic
specific word2vec embeddings. (Al-Smadi et al.,
2020) utilized pretrained Multilingual Universal
Sentence Encoder (MUSE) embedding and trained
a bidirectional-gated recurrent neural network with
a mix of average and max pooling layer for Ara-
bic NER task using the WikiFANEGold dataset
(Alotaibi and Lee, 2014) which classifies entities
into eight classes only (person, location, organiza-
tion, geopolitical, etc.).

Although mBERT includes Arabic, cross-lingual
transfer did not show performance gains for Arabic
as it did on Indo-European languages (Muller et al.,
2021; Wu and Dredze, 2019). Motivated by the
monolingual BERT models, (Antoun et al., 2020)
trained AraBERT, a monolingual BERT-based lan-
guage representation model for Arabic language
on data that includes Arabic Wikipedia dumps, in
addition to two publicly available large Arabic cor-
pora: 5M (El-Khair, 2016) and 3.5M (Zeroual et al.,
2019) articles, both extracted from Arabic news
sources. Authors in (Antoun et al., 2020) also in-
troduced a preprocessing step on the data prior
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to using it for pre-training BERT, which used off-
the-shelf Arabic Farasa tokenizer (Abdelali et al.,
2016) for subword unit segmentation. Building on
AraBERT, ArBERT (Abdul-Mageed et al., 2021)
and CAMeLBERT (Inoue et al., 2021) have added
additional Arabic datasets to pretraining a mono-
lingual BERT that cover more topics and dialects.
Because of the lack of rich labeled Arabic dataset,
the NER task in (Helwe et al., 2020; Inoue et al.,
2021; Abdul-Mageed et al., 2021) is limited to clas-
sifying nouns into three main classes only (person,
location, organization)1, a much simpler NER task
than that needed to power a virtual assistant system,
where user requests can span hundreds of entity la-
bels.

In this paper, we propose a multilingual NLU
model for Arabic language, targeted for commer-
cial virtual assistant system. We explore cross-
lingual transfer through MT and task-specific learn-
ing transfer from rich source languages (English
and French) to Arabic. Despite the languages not
being closely related, we show that multilingual
models outperforms the monolingual model on
large-scale Arabic traffic for both DC and IC-NER
tasks. To our knowledge, this is the first Arabic
model trained and evaluated for such complex NLU
tasks required for virtual assistants which involves
classifying 18 domains, 333 intents, and 268 entity
labels.

3 Arabic NLU

3.1 Challenges in Arabic

Arabic differs from English and French morpholog-
ically, orthographically, and grammatically. Some
of the differences can hinder cross-lingual transfer
learning. These differences include:

• Script: Arabic script has opposite writing direc-
tion and does not use the Latin alphabet, instead
it is written from right to left using the distinct
Abjad writing system;

• Inflectional morphology: Unlike English, in-
flections in Arabic can be suffixes or prefixes
(Shamsan and Attayib, 2015), and Arabic inflec-
tions have far more person, number, and gender
distinctions than that in English;

1The popular ANERcorp dataset (Benajiba and Paolo,
2008) has a total of 9 labels: the 3 main classes in addition to
Other and IOB tagging.

• Diacritics: Some short vowels are included on
Arabic text as diacritics, which are optional writ-
ten symbols.

These are only a few of the differences that
can complicate transfer learning to Arabic from
resource-rich languages, usually Indo-European
like English, Spanish, and French. The language
complexity is further inflated in dialectal Arabic,
due to the lack of writing standards resulting in
orthographic inconsistencies (Kwaik et al., 2018).
Modern standard Arabic (MSA) is only used for
writing and is spoken mostly in official settings like
news broadcasts and government announcements.
In households, the common location for virtual as-
sistants, dialectal Arabic is more likely to be used.
Furthermore, to globalization and historical rea-
sons, some of dialectal Arabic’s loan-words and
phrases come from other languages, particularly
English and French2.

Arabic has templatic and concatenative morphol-
ogy where verbs and nouns are derived from 3,000
roots (El-Kishky et al., 2019) by applying templates
to the roots to generate stems and then adding pre-
fixes and suffixes. In Arabic, inflectional affixation
is very common; the definite article (“the”), prepo-
sitions (“to”, “in”, “for”), conjunctions (“and”,
“then”), and pronouns ("you", "my", "our", etc.)
are represented as affixes on words they modify.
This poses a challenge for NER. For example, in
the utterance "order two boxes of apples", the quan-
tity to be ordered can be inferred from token "two".
In Arabic, however, the quantity "two" would be a
suffix to token "box", "hA 	®�JË @ 	áÓ 	á�
�̄ðY	J� ú
æ. Ê£@"
(literal: "order boxTwo of apples"). Table 1 shows
a few examples that illustrate the challenges of
inflectional affixation in Arabic. In an effort to ad-
dress this, we add a rule-based normalization step
that splits affixes; however, we limit this to affixes
that make a functional difference to the meaning
(e.g., pronouns and quantity) as opposed to non-
functional ones, e.g., definite article, and preposi-
tions.

Although diacritics are used to disambiguate
meaning, especially in the absence of context, we
have decided to strip diacritics 3 from open-source
data due to the following three reasons:

2Although TL from French and English can particularly
help dialectal Arabic due to natural code-switching, the spe-
cific impact on code-switching is out of scope of this paper.

3With the exception of Shadda diacritic.
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• We conducted a study on internally localized and
diacritized data that showed that diacritics in fact
harm NLU model performance more than they
help disambiguate words, and this is mainly due
to inconsistencies in the use of diacritics when
transcribing data. Details are in Appendix: A.2;

• Relying on diacritized text for NLU will further
limit the available resources for Arabic, as most
open-source datasets (e.g., Wikipedia) are not
diacritized; and

• The use of DNN-based language models such as
BERT heavily relies on context for predictions,
which can help disambiguate words without the
need for diacritics, similar to how Arabic speak-
ers would use the surrounding context to infer
the meanings of words.

would you turn it off? call my mum play a song in the room

? AîD
J 	®¢��

@ ú
×


AK. ú
Î���@

�é 	̄Q 	ªËAK. �éJ
 	J 	«

@ ú
Î

	ª ��
wouldYouTurnOffIt call mumMy play song InTheRoom

Table 1: Examples of inflectional affixation in Arabic.
On the right, a 5-token English utterance can be written
with a single token in Arabic, pronouns (“it“, “my“) are
attached as a suffix, and the definite article (“the”) and
preposition (“in”) can be attached as prefixes.

3.2 Data
For training BERT models, we use two main
sources of unlabeled data: internal data from a
commercial VA system4 and external open-source
data from Wikipedia. For the latter, we collect
Wikipedia dumps for Arabic (ar), English (en), and
French (fr) and extract their content using WikiEx-
tractor package (Attardi, 2015). For ar-Wikipedia
data, in addition to the preprocessing described
in the previous section, we split sentences based
on full stop, along with semicolon and comma if
the sentence length is greater than 25 tokens, be-
cause commas are commonly used in Arabic as
a sentence delimiter, and the full stop is used at
the end of a paragraph. The extracted Wikipedia
data accounts for≈ 6.3M, 98.5M, 34.2M sentences
for ar, en, and fr, respectively, as listed in Table 2.
Wikipedia and other open-source data are different
from the nature of user inquiries to virtual assis-
tants. We have found this to be particularly true
for Arabic Wikipedia data, which overwhelmingly

4Details about the commercial virtual assistant system and
the internal data are omitted to maintain authors anonymity.

covers political and historical vocabulary and top-
ics. To overcome this bias, we have opted to mix
the data with commercial dataset from an NLU sys-
tem. We use the rich and resource-heavy English
and French data, accounting for 36.2M and 14.6M,
respectively, and corresponding to users requests,
i.e., unannotated utterance text. All user utterances
have been de-identified and anonymized. We used
AWS translate to translate English user requests
into Arabic, and obtained an unannotated Arabic
MT dataset of equal size to the English dataset (≈
3.2M). For pretraining, we split the data randomly
into 85:15 train:validation sets, and to balance the
data across languages for the multilingual models,
we follow (Conneau and Lample, 2019) and we
sample sentences according to a multinomial dis-
tribution with probabilities qi =

√
pi/(

∑N
j
√
pj),

pi = ni/
∑N

j nj in which N is the total number of
languages in the model and niis the total number
of utterances in language i. For finetuning, we
use annotated NLU data from a commercial VA
system, representing user inquiries in English and
French, two mature and high-resource languages.
We sample equally 418,477 utterances from the two
languages for finetuning the pretrained bilingual
and trilingual models for DC and IC-NER tasks.
In a zero-shot setting, only English and French la-
beled datasets are used in finetuning the models.
Note that the bilingual model is pretrained on unla-
beled Arabic and English datasets, it is finetuned
only on labeled English data in a zero-shot setting.
For comparison, we finetune a second set of models
that we refer to as pre-production (pre-prod) mod-
els with an additional 369,485 annotated Arabic
utterances added during finetuning. This dataset
(forth row in Table3) is collected using Mechanical
Turk (mTurk). We use the mTurk data to train a
third set of few-shot models, by sampling only 10
utterances per intent and using that in training.We
also explore transfer learning for NLU task through
translation; we translate labeled English traffic us-
ing AWS Translate into Arabic. In order to enhance
the quality of the MT dataset, we post-process the
translated utterances automatically to reproject la-
bels and recombine affix when split incorrectly,
e.g.,

• input: <CallType> call </CallType> <Contact-
Name>Ali</ContactName>

• MT: <CallType>�K. ÈA���B @</CallType>

<ContactName>ú
Î«</ContactName>
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Figure 1: Schematic of monolingual and multilingual BERT training and distillation for Arabic NLU tasks: (a)
BERT pretraining and distillation on unlabeled data; (b) Task-specific pretraining DistillBERT for NLU task on
labeled data from resource rich source languages, English and French; (c) Finetuning on mix of Arabic, English,
and French labeled data in addition to MT Arabic data.

• postprocessed: <CallType>ÈA���B @</CallType>

<ContactName>ú
ÎªK.</ContactName>

• input: Call </UserTrigger>my</UserTrigger> <Number-
Type>Phone</NumberType>

• MT: É���@</UserTrigger>

<NumberType>ù

	®�KAîE.</NumberType></NumberType>

• postprocessed: É���@</NumberType>
	�KAîE.<NumberType> <UserTrigger>ø
 </UserTrigger>

We finetune another set of models for each of the
zero-shot, few-shot, and pre-prod setting by adding
a total of 417,895 utterances sampled from the MT
labeled data during finetuning5. Having the MT la-
beled dataset enables the evaluation of the monolin-
gual model in a zero-shot setting by finetuning only
on the MT dataset. All models are tested on the
same Arabic dataset consisting of a total 864,127
Arabic utterances annotated from real-world VA
commercial system. This test dataset spans 18 do-
mains, 333 intents, and 268 entity labels6

3.3 Model Training
3.3.1 Pretraining
We pretrain three BERT models, monolingual
(Mono), bilingual (Bi) and trilingual (Tri), models
using open-source Wikipedia data and unlabeled
inquires to a commercial VA system together with
the corresponding MT ones. We use BERTbase

5During finetuning, all data is mixed, with no particular
order.

6Our evaluation data contains only 32.86% of the tokens
labeled as Other. The combined training data in Table3 covers
all 18 domains and a total of 235 intents out of which 225
intents are in the testset, and the remaining uncovered test
intents are part of the tail 0.64% of the testsets.

setting (Devlin et al., 2019) with 12 encoder lay-
ers, 768 hidden dimensions, 3072 hidden size, and
12 attention heads, and pretrain for a Masked Lan-
guage Model (MLM) task for 40 epochs with 15%
of tokens masked. We adopt Byte Pair Encoding
(BPE) for subword tokenization of BERT pretrain-
ing in an effort to deal with inflectional affixation
in Arabic. We use FastBPE (Sennrich et al., 2016;
et al., 2015) for BPE extraction, learning 30K, 80K,
90K codes7 from Wikipedia data for the monolin-
gual, bilingual, and trilingual models, respectively.
For run-time efficiency and inference speed, we fur-
ther distill each model to a smaller student model
during pretraining. The student model architecture
is composed of 4 layers, 768 hidden dimensions,
1200 hidden size, and 12 attention head. This ar-
chitecture, DistillBERT, is a slightly bigger model
than TinyBERT (Jiao et al., 2020) but is 3x smaller
and 4.7x faster than the original BERT. For knowl-
edge distillation we use the same dataset used for
training the teacher model and adopt logit match-
ing method between teacher and student from (Hin-
ton et al., 2015), where the student is trained to
minimize two losses during training; the standard
cross-entropy loss and the cross-entropy loss be-
tween the teacher and the student. We use the same
datasets and BPE codes for distillation on the same
MLM task. The pretraining step is illustrated in
Figure 1(a).

7The reason we vary BPE code number across the three
models is to account for the additional vocabulary from the
added languages. Otherwise, either the smaller monolingual
model will suffer from codes not generalizing to new vocabu-
lary, or the larger trilingual model will suffer from codes being
too granular.
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Table 2: Unlabeled data for extracting BPE codes and
BERT model pretraining and distillation.

Data source Language Size
(sentence)

Wikipedia Arabic (ar) 6,377,443
Wikipedia English (en) 98,524,407
Wikipedia French (fr) 34,248,312
VA system English (en) 36,288,990
VA system French (fr) 14,609,950
VA system Machine-translated 36,288,980

Arabic (ar-MT)

3.3.2 Task-specific Pretraining
Before the final-finetuning on NLU tasks, we lever-
age the rich English and French labeled data for
a pre-finetuning step, in which we pretrain the
encoders for the bilingual and trilingual models
specifically on NLU tasks.In this task-specific pre-
training, illustrated in Figure 1(b), we do not in-
clude any labeled data for the target language, Ara-
bic, as we are testing how much of the NLU learn-
ing can be transferred from the source languages.
Consequently, this step is excluded from the mono-
lingual model.

Table 3: Labeled data for finetuning and evaluating
NLU models for DC and IC-NER tasks. Only the first
three datasets are used for the zero-shot experiments,
the forth dataset is used for the few-shot experiment,
the fifth dataset is added for finetuning the pre-prod
models, and the last dataset is only used for evaluation.

Dataset Language Size (utterance)
Train Test

en traffic en 418,477 0
fr traffic fr 418,477 0
ar-MT dataset ar-MT 417,895 0
ar mTurk few shot ar 2,547 0
ar mTurk data ar 369,485 0
ar traffic ar 0 864,127

3.3.3 Finetuning
In the final step, the three pretrained DistillBERT
models are finetuned for NLU tasks on labeled
internal data listed in Table 3 and illustrated in Fig-
ure 1(c). For each of the three models, we train
three sets of models: zero-shot, few-shot, and pre-
prod models. The only difference is the inclusion
of the mTurk labeled data from the target Arabic
language for the latter two experiments. In the few-
shot setting we sample 10 utterances randomly per
intent while maintaining a minimum of 40 utter-

Figure 2: Schematics of the finetuning step for DC and
IC-NER tasks.

ances per domain. For each of these set of experi-
ments, we also train a model with and without MT
data, as a result we have a total of 17 models. We
select the monolingual model with few-shots to be
our baseline, and compare it to the bilingual and
trilingual models8.

• BASELINE: a monolingual DistillBERT model
distilled from BERTbase model pretrained on
Arabic unlabeled data

• Bilingual: a DistillBERT model distilled from
BERTbase model pretrained on mix of unlabeled
Arabic and English with task-specific pretraining
on NLU labeled data from high-resource English
language

• Trilingual: a DistillBERT model distilled from
BERTbase model pretrained on mix of unla-
beled Arabic, English, and French with task-
specific pretraining on NLU labeled data from
high-resource languages: English and French

The IC-NER model is trained for a joint-task
objective with two-layer MLP for the IC task and
two-layer MLP plus a CRF layer for the NER task
as illustrated in Figure 2. For the DC task, we
have the same DistillBERT architecture with the
exception of the final two MLP layers for one-vs-all
classification task.

4 Results and Discussion

We measure the performance of our models for
DC and IC-NER tasks in terms of domain clas-
sification error rate (DCER) and semantic error

8Because the pretraining objective is targeted for MLM
task, a different objective than the target NLU tasks, we do
not have a monolingual zero-shot model, and therefore use the
monolingual few-shot model as our baseline.

230



Table 4: Results relative to baseline (% change) for Monolingual (Mono) Bilingual (Bi) and Trilingual (Tri) models
on IC-NER and DC tasks evaluated on 864,127 Arabic utterances. Average performance is across domains. Bold
values indicate best performance for each setting (zero/few-shot/pre-prod).

Zero-shot Few-shot Pre-prod
∆%SemER Mono Bi Tri Mono Bi Tri Mono Bi Tri

Overall w/o MT - 0.29 -7.50 0 -15.06 -20.76 -49.32 -55.24 -52.49
with MT -10.64 -12.49 -19.20 -14.24 -20.47 -23.21 -56.60 -57.85 -57.31

Average w/o MT - 4.09 -6.16 0 -13.28 -22.55 -41.46 -44.49 -44.68
with MT -6.30 -11.80 -17.88 -8.69 -18.51 -24.03 -47.42 -46.48 -47.76

∆%DCER
Overall w/o MT - -8.89 -22.65 0 -27.33 -30.21 -53.61 -61.59 -59.48

with MT -12.93 -18.12 -21.53 -14.73 -28.03 -29.25 -58.99 -62.92 -61.63
Average w/o MT - -2.48 -24.15 0 -23.50 -32.70 -47.53 -53.44 -51.71

with MT -13.32 -18.90 -24.31 -15.62 -30.08 -33.20 -51.33 -53.88 -53.91

rate (SemER), respectively. DCER is calculated
by #domain errors

#total utterances . The semantic error measures
how many mistakes are done in entity recognition
and slot filling, and is calculated by SemER =
D+I+S
C+D+S (Su et al., 2018), where D=deletion,
I=insertion, S=substitution and C=correct-slots. An
IC error is counted as a substitution. All models
are evaluated on the same testset and performance
is reported as a percentage difference (%∆) to the
baseline few-shot monolingual model.

Table 4, shows the zero-shot and the few-shot
performance for the three models with and without
MT Arabic data added to finetuning. The multi-
lingual models outperform the baseline monolin-
gual model with the exception of slight 0.29% in
SemER in Bi zero-shot model. In the few-shot
models, NLU models benefit from a reduction of
15.06% SemER from English alone, and an addi-
tional 5.7% reduction from French data with re-
spect to baseline. Table 4, to the right, compares
the overall performance of pre-prod models. The
impact of cross-lingual transfer learning does not
fade even when development Arabic labeled data
is added to the model, both multilingual models
still outperform the monolingual one. However,
adding the mTurk data to finetuning overshadows
the impact of French data and the Bi model slightly
outperfroms the Tri model. Notice for pre-prod
models the benefit of cross-lingual transfer reduces
significantly with the addition of MT data. Table 4
demonstrates the transfer learning through trans-
lation. By simply using an off-the-shelf machine
translator, we can boost the NLU performance on a
low-resource target language by 12.79% and 11.7%
for the bilingual and the trilingual models, respec-
tively. Adding few-shots and full MTurk data re-
duces the benefit of MT data to 2-4.8% and 2.7-

5.4% for the Bi and Tri models, respectively. For
the sake of comparison, we repeat the Bi and Tri ex-
periments on a distilled version of mBERT: distilm-
BERT (Sanh et al., 2019) (details in Appendix A.3).
Results in Table A.2 illustrate the importance of
utilizing unlabeled utterances from VA system in
pretraining, particularly in early stages of bootstrap-
ping NLU model for a new language, where our
model achieves up to 25.1 SemER improvement
over distilmBERT in zero-shot setting. Neverthe-
less, similar TL gains are obtained on distilmBERT
with the Tri model outperforming the monolingual
model in all settings.

In addition to the overall, i.e., where all ut-
terances have equal contribution to performance
(micro-average), Table 4 also reports the average
performance per domain, where each domain has
equal weight despite its size (macro-average). Con-
sidering the average performance and the overall
performance, the best performing model in terms
of SemER is the trilingual model finetuned on a
mix of labeled English, French and Arabic MT data
in all zero-shot, and few-shot setting. Although the
Bi model beats the Tri model overall in pre-prod
setting, the Tri model is still better on average per
domain. This suggests that the trilingual model is
improving performance for the smaller domains
on the target Arabic language. In fact, the Tri
model outperforms on average all other models
in zero-shot, few-shot, and pre-prod setting. For
the latter model setting, we further investigated
whether adding English/French data hurt specific
domains. We looked at top large domains that
did not benefit from adding English and French in
Table A.4: AlarmsAndNotifications, SmartHome,
and CallingAndCommunication domains with per-
formance reduction of 2.94%, 0.53% and 9.93%.
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CallingAndCommunication domain consistently
under performed in the Tri model when compared
to the Mono model, in all zero-shot, few-shot, and
pre-prod models. In these domains, there were is-
sues related to language differences. For example,
the top failing utterances in SmartHome were re-
quests to turn off/on appliances. In Arabic turn
off/on is a single token (ø
 Q

�
º�/ú
Î

�	ª ��/ú

æJ
 	�


@/ù


�	®£),

while in English it is two tokens. Similarly, utter-
ances in the CallingAndCommunication domain
are related to finishing the call, in English that
would be “hang up”, but in Arabic it is again a sin-
gle token (ú
Î

	®�̄ 
@/ú
æî 	E


@/ø
 Q

�
º�/ù
 ª¢�̄ @). This causes

imbalance in carrier phrases and a change in the
distribution of label sequence for these domains,
e.g., compare the two label sequence in the two
languages: “turn|Action on|Action light|Device”
with “ú
Î

�	ª ��|Action �èZA 	�B @|Device”. This can be

mitigated by down-sampling English data for these
domains, which is left for future experimentation.
Overall, even without MT data, the multilingual
pre-prod models beat the monolingual model 14
out of 18 domains on the DC task and in 13 out
of 18 domains for IC-NER task, clearly showing
the effect of cross-lingual transfer of NLU learning
from rich English and French source languages to
the low-resource Arabic language, despite being
linguistically very different.

5 Conclusion

In this paper, we addressed the problem of boot-
strapping an NLU model for Arabic from two
high-resource Indo-European languages. We pre-
sented two multilingual BERT-based models, pre-
trained and distilled in-house, and compared them
to a monolingual Arabic baseline model to ex-
plore cross-lingual transfer learning. In an effort
to tackle the unique challenges in Arabic language,
we adopted a preprocessing step in which we de-
diacritize the text to reduce the variance and incon-
sistencies in the data for an already low-resource
language. We also split functional affixes and adopt
BPE encoding to deal with inflectional affixation
in Arabic. Furthermore, in order to reduce the dis-
tance between the target language and the source
languages we used off-the-shelf machine transla-
tor to pretrain and finetune the models, in addition
to large-scale open-source Wikipedia and internal
datasets. Transfer learning performance gains on
the target Arabic language showed a reduction of

up to 20.76% in semantic error rate for the IC-NER
task and 30.21% in classification error for the DC
task for the trilingual model in few-shot setting.
Similar cross-lingual learning gains were achieved
in a zero-shot setting and pre-prod setting with the
improvement gap between monolingual and multi-
lingual models narrowing as data from MT and the
Arabic target language is added to finetuning the
models.
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A Appendix

A.1 Limitations
The task-specific knowledge transfer proposed in
this paper is dependent on the availability of anno-
tated data in high-resource languages for the same
NLU tasks: domain/intent classification and NER.
That is, although the training data is not in the tar-
get language, it still covers the same domains and
majority of the intents in the test sets. The ability
of the model to generalize to new domains and in-
tents (out-of-domain) in the target language needs
further assessment and experimentation. The affix-
splitting and de-diacritization preprocessing step
proposed in this paper works only for languages
with templatic and concatenative morphology, like
Arabic and other Semitic languages (e.g., Hebrew).
Additionally, the transfer learning gains obtained
with machine translation can be limited by the qual-
ity of the adopted translator itself. The experiments
conducted in this paper uses only a single machine
translator for both pretraining and finetuning. Ex-
ploring different off-the-shelf machine translators
and the impact of the translation quality on NLU
tasks needs further experimentation and requires
large GPU resources, particularly for pretraining.

Table A.1: Average performance difference (∆) be-
tween models with and without diacritics in 5-fold ex-
periments on NLU tasks (+ve values in favor of model
without diacritics).

DC IC Slot Frame
∆ accuracy accuracy F1 accuracy
Avg. 0.07 0.38 0.97 2.91
fold1 2.59 1.45 1.34 3.44
fold2 -0.99 1.69 0.24 2.07
fold3 -0.92 0.46 0.86 3.37
fold4 -0.23 -0.31 0.23 1.46
fold5 -0.08 -1.38 2.17 4.21

A.2 Diacritics harm NLU model
In Arabic, short vowels are indicated on letters as
diacritics and are used to disambiguate the meaning

of the word. Full diacritization is used in classical
Arabic, but are often omitted from written texts in
MSA. As a result, Arabic has many homographs,
that can be distinguished from the context. We con-
ducted a limited-scope study to assess the impact
of diacritics on NLU model performance using a
set of 1,306 utterances fully diacritized and anno-
tated internally, the utterances cover 12 of the 18
domains used in this paper. We performed a 5-
fold cross-validation experiment on the 1,306 set
with and without diacritics. We created 5 folds
of train-test splits, stratified per domain. Then we
duplicate these sets and strip the diacritics. Finally
for each of these 10 sets we train a statistical NLU
model and evaluate its performance. In addition to
training 10 models corresponding to 5 folds of data
splits with and without diacritics, each fold was
trained and tested 5 times to average the variations
in stochastic model performance.

Table A.1 above represents performance aver-
aged across 25 runs for each of the models (with
and without diacritics). T-test on domain accuracy,
overall intent accuracy and slot F1 showed no sig-
nificant difference in the means. Overall frame
accuracy is slightly better in the model without
diacritics, with p=0.01 in two-sample two-tailed t-
Tests. To investigate the difference in performance,
we further looked at the tokens in the broken utter-
ances in the model with diacritics with respect to
the model without diacritics (i.e., utterances that
are correctly recognized in the model without di-
acritics but not in the model with diacritics). We
found that on average, the coverage percentage of
the tokens in the broken utterances by the train-
ing data reduced by 6.59% when adding diacritics.
This suggests that diacritics is adding noise through
annotation inconsistencies and increasing out-of-
vocabulary data, thus reducing model performance.

A.3 Comparison to open-source
distilmBERT (Sanh et al., 2019)

We repeat the multilingual experiments on distilm-
BERT (Sanh et al., 2019), a distilled version of
mBERT pretrained and distilled on concatenation
of Wikipedia data from 104 languages including
English, French, and our target language Arabic.
distilmBERT is slightly larger than our distilled
model with 6 layers, 768 dimension and 12 heads,
compared to our 4-layer distillBERT described in
Subsection3.3.1. Because distilmBERT is multilin-
gual, we only run the bilingual and trilingual ver-
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Table A.2: SemER and DCER performance of DistilmBERT (Sanh et al., 2019) relative to our monolingual base-
line (% change) for Bilingual (Bi) and Trilingual (Tri) on IC-NER and DC tasks evaluated on 864,127 Arabic
utterances. Average performance is across domains. Bold represents best performance within the same setting
(zero-shot/few-shot/pre-prod).

Zero-shot Few-shot Pre-prod
∆% SemER Bi Tri Bi Tri Bi Tri

Overall w/o MT 19.8 17.6 3.3 -3.6 -52.1 -55.2
with MT -8.5 -11.3 -18.4 -20.5 -59.4 -59.9

Average w/o MT 34.8 22.1 -0.5 -10.8 -42.1 -44.2
with MT -11.9 -16.3 -20.9 -24.1 -50.0 -50.9

∆%Overall DCER
Overall w/o MT 59.7 41.8 10.8 3.4 -55.7 -55.4

with MT -8.3 -11.1 -17.4 -17.4 -61.2 -61.7
Average w/o MT 74.3 46.1 -9.0 -16.0 -48.5 -48.3

with MT -19.6 -24.6 -30.0 -32.8 -54.9 -55.2

sions of it, i.e., models finetuned on task-specific
annotated data from English, French, and/or MT
data. For each model, we finetune different ver-
sions of the model one with MT data and one with-
out (w/o) MT data in each of the settings: zero-
shot, few-shot, and pre-prod using the same data
described in Table3, resulting a total of 12 mod-
els. TableA.2 shows the performance of Bi and
Tri models using pretrained distilmBERT evalu-
ated on our internally gathered real-world Arabic
dataset. The reported SemER and DCER error rates
in are relative to our baseline model, so that the
values can be compared to our results reported in
Table 4. The zero-shot performance w/o MT shows
the power of pretraining our in-house models on
unlabeled data from a VA system combined with
Wikipedia data. Overall, our Tri model beats the
corresponding distilmBERT model by 25.1 SemER
reduction and 64.45 DCER reduction relative to
baseline. However, the gap in performance reduces
to 2.71 SemER point reduction in few-shot setting
to Tri distilmBERT slightly beating our model with
2.59 SemER in pre-prod setting. This could be
attributed to the larger model distilmBERT uses.
Nevertheless, a similar trend in the gains obtained
from transferring the NLU task-specific knowledge
and through MT from English and French in dis-
tilmBERT, this generalizes our conclusion that a
multilingual model, and particularly the Tri one,
outperforms a monolingual model for early stage
bootstrapping NLU model for Arabic as seen in
Zero-shot, Few-shot and Pre-prod setting.
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Table A.3: Zero- and few-shot performance relative (%∆) to baseline for DC and IC-NER tasks on Arabic.

∆SemER Zero-shot Few-shot
# Test Bi Tri Mono Bi Tri Bi Tri Mono Bi Tri

Domain Utterances + MT + MT + MT + MT + MT + MT
Overall 864127 0.29 -7.5 -10.64 -12.49 -19.2 -15.06 -20.76 -14.24 -20.47 -23.21
Average 48007 4.09 -6.16 -6.3 -11.8 -17.88 -13.28 -22.55 -8.69 -18.51 -24.03
Music 202589 -3.48 -19.67 -25.17 -16.91 -35.63 -15.8 -26.54 -28.3 -25.28 -32.25
Knowledge 137882 -79.26 -64.66 -48.69 -56.14 -53.56 -61.13 -47.94 -45.02 -55.02 -54.02
General 131709 42.24 35.17 18.08 16.18 12.14 -0.04 -8.5 20.11 0.66 -2.7
AlarmsAndNotifications 110817 64.82 57.91 27.87 13.99 19.95 5.44 -2.84 9.59 -2.84 -1.06
SmartHome 68787 14.58 -1.24 14.34 3.7 -6.69 2.7 -17.38 9.03 -5.7 -14.24
CallingAndCommunication 56787 4.66 6.72 -3.65 -5.22 -1.72 -6.04 2.07 -4.18 -10.36 -1.05
ToDos 42428 35.44 26.58 14.4 22.41 13.68 21.51 7.41 8.45 11.58 9.63
Weather 23422 -22.14 -15.67 -14.31 -13.4 -23.93 -33.79 -28.13 -10.24 -20.31 -23.62
Calendar 23157 -7.79 -27.53 -38.56 -36.95 -40.68 -22.35 -31.9 -45.92 -43.44 -45.93
Video 17285 -0.68 -12.74 -3.43 -21.46 -25.45 -24.2 -27.1 -6.05 -21.12 -27.0
AssistantGeneratedContent 16870 174.99 99.59 71.06 87.71 85.94 41.32 75.49 66.07 72.19 75.58
Apps 8887 -17.85 -47.81 24.54 7.35 -29.67 -12.66 -48.93 19.05 -33.62 -47.69
Books 8748 -7.76 -28.27 -27.99 -34.83 -30.8 -24.33 -36.41 -31.51 -33.24 -38.33
Help 7727 31.02 28.79 5.34 13.58 6.06 13.91 1.61 4.28 10.39 3.33
News 4448 -25.07 -25.07 -42.05 -44.85 -45.29 -27.98 -37.12 -43.79 -30.13 -49.08
Shopping 2121 12.82 1.09 -10.69 -17.54 -15.86 -9.44 -14.71 -8.95 -18.03 -18.89
MovieShowTimes 374 -39.31 -48.25 -42.18 -50.3 -49.83 -40.82 -56.11 -47.51 -44.51 -51.94
Sports 89 21.16 -21.16 -34.61 23.08 7.7 30.78 -25.01 -30.76 13.48 -28.83
∆DCER
Overall 864127 -8.89 -22.65 -12.92 -18.13 -21.52 -27.32 -30.21 -14.73 -28.04 -29.25
Average 48007 -2.48 -24.15 -13.32 -18.9 -24.31 -23.5 -32.7 -15.62 -30.08 -33.2
Music 202589 -0.07 -25.45 -28.71 4.3 -36.43 -39.98 -57.1 -60.82 -68.58 -67.29
Knowledge 137882 -82.25 -71.46 -54.14 -61.49 -58.45 -61.96 -59.44 -79.83 -78.99 -80.83
General 131709 67.37 39.34 -10.9 -23.51 15.14 -74.88 -82.13 -76.33 -76.81 -75.85
AlarmsAndNotifications 110817 266.49 229.82 193.52 139.7 201.5 11.9 18.81 37.92 10.89 21.11
SmartHome 68787 -11.36 -32.1 33.32 -14.94 -16.44 3.02 -3.31 -7.96 -4.75 -29.93
CallingAndCommunication 56787 26.82 26.5 48.31 37.22 28.65 -22.6 -62.32 12.77 -51.95 -61.02
ToDos 42428 157.05 57.58 46.96 77.85 59.61 -19.11 -25.62 32.78 -12.45 13.47
Weather 23422 0.54 -1.5 7.89 6.46 -13.89 10.9 -2.32 1.05 4.82 -1.83
Calendar 23157 -58.25 -84.35 -81.31 -67.32 -76.38 -27.47 -30.26 22.14 -21.85 -25.23
Video 17285 7.34 -17.83 -5.47 -19.97 -22.64 -62.12 -51.18 -50.89 -59.94 -58.97
AssistantGeneratedContent 16870 314.18 120.79 116.59 115.87 114.9 -0.02 -27.45 -34.02 -2.87 -35.15
Apps 8887 -31.77 -63.78 11.48 -14.4 -42.7 40.72 45.03 112.88 16.99 88.94
Books 8748 -19.04 -52.47 -62.12 -72.2 -65.31 77.01 100.26 109.78 113.02 108.13
Help 7727 22.6 21.17 5.12 9.18 3.79 -8.97 -8.97 0.11 -20.8 -12.13
News 4448 8.3 16.78 -6.95 -18.85 -23.74 6.67 -56.67 -56.67 -16.67 -56.67
Shopping 2121 24.14 9.78 0.11 -13.97 -9.99 33.23 22.08 34.89 29.25 31.19
MovieShowTimes 374 -67.63 -68.6 -71.5 -75.85 -69.57 -31.32 -27.03 -4.02 -16.72 -24.68
Sports 89 3.33 -56.67 -50.0 6.67 -26.67 -19.84 -29.11 10.73 -4.84 -16.08
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Table A.4: Pre-prod DCER and SemER performance relative (%∆) to baseline for DC and IC-NER tasks on
Arabic.

∆SemER # Test Mono Bi Tri Monol Bi Tri
Domain Utterances + MT + MT + MT
Overall 864127 -49.32 -55.24 -52.49 -56.6 -57.85 -57.31
Average 48007 -41.46 -44.49 -44.68 -47.42 -46.48 -47.76
Music 202589 -46.72 -58.09 -51.21 -58.67 -60.5 -62.93
Knowledge 137882 -42.29 -55.68 -57.66 -52.81 -61.29 -59.64
General 131709 -50.01 -47.1 -55.04 -50.54 -46.71 -53.02
AlarmsAndNotifications 110817 -68.49 -66.66 -67.28 -69.93 -66.64 -66.99
SmartHome 68787 -54.05 -68.49 -56.93 -60.1 -69.29 -59.57
CallingAndCommunication 56787 -55.56 -45.78 -41.64 -56.86 -53.13 -46.93
ToDos 42428 -43.56 -41.27 -34.58 -52.05 -40.41 -39.96
Weather 23422 -58.86 -52.36 -56.84 -63.35 -45.63 -52.72
Calendar 23157 -57.59 -54.83 -60.57 -63.86 -62.73 -64.23
Video 17285 -15.78 -31.34 -31.09 -25.94 -33.63 -35.72
AssistantGeneratedContent 16870 -65.39 -63.49 -51.95 -55.44 -61.86 -43.44
Apps 8887 -64.95 -67.54 -72.14 -69.82 -67.88 -74.16
Books 8748 -10.65 -18.31 -16.92 -16.18 -21.07 -21.65
Help 7727 5.86 10.24 5.17 2.6 7.91 3.29
News 4448 -47.58 -51.96 -49.69 -49.77 -52.32 -54.26
Shopping 2121 -8.83 -21.15 -18.89 -18.28 -24.94 -27.57
MovieShowTimes 374 -57.75 -59.38 -63.89 -61.71 -60.0 -60.89
Sports 89 -19.23 -9.6 -21.16 -38.46 -9.6 -32.68
∆DCER
Overall 864127 -53.6 -61.58 -59.48 -58.99 -62.91 -61.62
Average 48007 -47.53 -53.44 -51.71 -51.33 -53.88 -53.91
Music 202589 -66.53 -70.47 -67.01 -69.06 -68.77 -73.53
Knowledge 137882 -48.61 -61.49 -62.96 -58.19 -65.64 -65.11
General 131709 -30.69 -27.65 -41.26 -34.41 -35.52 -42.22
AlarmsAndNotifications 110817 -71.58 -75.34 -66.29 -73.34 -77.13 -68.65
SmartHome 68787 -63.99 -80.65 -64.55 -70.78 -78.4 -64.69
CallingAndCommunication 56787 -64.15 -69.59 -52.2 -67.32 -68.56 -49.49
ToDos 42428 -17.45 -28.54 -26.88 -20.87 -20.15 -26.9
Weather 23422 -67.58 -64.27 -65.91 -70.16 -50.76 -57.58
Calendar 23157 -89.16 -88.84 -89.53 -89.58 -90.47 -91.34
Video 17285 -6.21 -18.02 -20.16 -8.84 -17.7 -22.75
AssistantGeneratedContent 16870 -75.52 -63.42 -45.24 -39.51 -72.86 -27.67
Apps 8887 -76.62 -77.19 -83.24 -79.24 -77.12 -82.92
Books 8748 -8.17 -17.89 -19.55 -14.96 -23.41 -26.38
Help 7727 -5.92 -0.44 -5.46 -7.8 -3.83 -9.63
News 4448 -29.78 -48.92 -35.68 -46.33 -54.39 -56.69
Shopping 2121 -6.32 -22.32 -11.11 -9.79 -16.0 -19.67
MovieShowTimes 374 -80.19 -86.47 -85.02 -84.06 -87.92 -84.06
Sports 89 -56.67 -56.67 -56.67 -63.33 -53.33 -63.33
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