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Abstract

We describe the systems developed by the Na-
tional Research Council Canada for the French
Cross-Domain Dialect Identification shared
task at the 2022 VarDial evaluation campaign.
We evaluated two different approaches to this
task: SVM and probabilistic classifiers ex-
ploiting n-grams as features, and trained from
scratch on the data provided; and a pre-trained
French language model, CamemBERT, that
we fine-tuned on the dialect identification task.
The latter method turned out to improve the
macro-F1 score on the test set from 0.344
to 0.430 (25% increase), which indicates that
transfer learning can be helpful for dialect iden-
tification.

1 Introduction

This paper describes the NRC team’s submissions
to the French Cross-Domain Dialect Identification
(FDI) task that was organized as part of the evalua-
tion campaign at VarDial 2022.

For this task, participants had to “train a model
on news samples collected from a set of publication
sources and evaluate it on news samples collected
from a different set of publication sources. Not
only the sources are different, but also the topics.
Therefore, participants have to build a model for a
cross-domain 4-way classification by dialect task,
in which a classification model is required to dis-
criminate between the French (FR), Swiss (CH),
Belgian (BE) and Canadian (CA) dialects across
different news samples.”1

Our main motivation to participate in this shared
task was that it would allow us to compare fine-
tuning of a pre-trained neural language model to
n-gram based methods trained from scratch, which
have been successful at discriminating between
similar languages (DSL) in the past. This was
not possible in many shared tasks on DSL in the

1https://sites.google.com/view/
vardial-2022/shared-tasks

past, at least not since transfer learning became
a common approach to various NLP tasks, with
the advent of models such as BERT (Devlin et al.,
2019), GPT (Radford et al., 2018), etc. So we
took this opportunity to investigate whether DSL
is also an area where transfer learning can improve
accuracy.

We submitted three runs each to the closed and
open tracks of the FDI shared task. Our closed
submissions ended up achieving the highest scores
in that track, and we were the only team to submit
to the open track. Our open submissions outper-
formed the baselines computed by Gaman et al.
(2022) as well as our closed submissions, which
indicates that transfer learning can be helpful for
discriminating between similar languages, at least
when a domain shift is present.

2 Related Work

Thorough surveys of research on language identi-
fication are provided by Jauhiainen et al. (2019)
and Zampieri et al. (2020).

Language identification is one of the few tasks
in natural language processing where deep learning
methods have yet to provide convincing gains in ac-
curacy, at least in the context of shared tasks. Jauhi-
ainen et al. (2019) pointed out that linear SVMs
exploiting character n-grams as features have been
highly successful in shared tasks on language iden-
tification.

The winning submission by the NRC team
to the Cuneiform Language Identification task
at VarDial 2019 (Bernier-Colborne et al., 2019),
which involved seven language varieties written in
Cuneiform script, was the first time a neural system
was ranked first on a language identification shared
task (Zampieri et al., 2019). This system was a
character-based BERT model trained from scratch.

However, we also submitted both n-gram mod-
els and deep learning models to the Uralic Lan-
guage Identification (ULI) shared task at VarDial

https://sites.google.com/view/vardial-2022/shared-tasks
https://sites.google.com/view/vardial-2022/shared-tasks


110

2021 (Bernier-Colborne et al., 2021; Chakravarthi
et al., 2021), and in that case, our best n-gram mod-
els outperformed our best BERT models.

These results cast doubt on whether a deep neu-
ral network can reliably produce the best results
in settings more representative of real-world appli-
cations of language identification, as the ULI task
involved a total of 179 languages, including pairs
of very similar languages. They suggested that the
simpler, n-gram based approach was still a very
strong baseline.

Note that all our previous shared task participa-
tions that involved deep learning were in a closed
setting, so no pre-trained models were allowed.
This has usually been the case for shared tasks on
language identification in our experience. However,
transfer learning has been used for language iden-
tification outside of shared tasks (Caswell et al.,
2020, inter alia).

3 Data and Task Definition

The FDI task (Aepli et al., 2022) requires participat-
ing systems to predict the French language variety
used in a sample of text. The set of four language
varieties that the systems must learn to discriminate
are the national varieties used in France, Belgium,
Switzerland, and Canada.

The evaluation metrics for this shared task were
not specified, so we chose to focus on macro-
averaged F1-score, which is commonly used for
language identification and DSL tasks.

This shared task featured both open and closed
tracks. For the closed track, participants were not
allowed to use pre-trained language models or any
external data to train their models. This is the usual
setting for DSL shared tasks in our experience. For
the open track, external resources such as unla-
belled corpora, lexicons, and pre-trained language
models were allowed, but no additional labelled
data could be used. Thus, this shared task pro-
vided us a unique opportunity to evaluate transfer
learning on a DSL shared task.

Gaman et al. (2022) describe the corpus they de-
veloped for this task, which they named FreCDo
(for French Cross-Domain [dialect identification]).
This corpus contains 413,522 text samples col-
lected from public news websites. The CA class
is under-represented in the dataset, as fewer open
sources were available. As we will show below, the
presence of duplicates makes this class imbalance
even greater.

Efforts were carried out to eliminate potential
biases related to factors such as topic and writing
style. This was done by using separate sets of
publication sources and search keywords to com-
pile the training, validation (aka development), and
test sets. The keywords represent general topics
that are not specific to any of the four countries in-
volved. The keywords were: “guerre” (“war”) and
“Ukraine” for the training set; “Russie” (“Russia”)
and “États-Unis” (“United States”) for the develop-
ment set; and “réchauffement climatique” (“global
warming”) and “Covid” for the test set. Note that
there is likely more topical similarity between the
training and development set, than between either
and the test set, so the development set may not be a
good estimator of test accuracy, which is confirmed
by our experiments below.

Furthermore, named entities were identified us-
ing spaCy2 and replaced with the special token
“$NE$”, again in order to remove biases related to
topic or country.

The training, development and test sets contain
358,787, 18,002, and 36,733 samples respectively.
Each text sample is a paragraph containing up to
three sentences.

Gaman et al. (2022) also evaluated three baseline
systems on this corpus and concluded that it is a
difficult task. Their baseline models were able to
outperform a naive baseline that always selects the
most frequent class, but macro-averaged F1 scores
did not exceed 0.4.

It turns out that one of those baselines was a fine-
tuned CamemBERT model, which is the model
that we used for the open track, although we were
not aware of this before submitting our runs. That
baseline produced the best results, and the runs
we submitted outperformed this baseline by a few
points (in terms of macro-F1). This may be due
to differences in hyperparameter settings, or to the
fact that we used the development set along with
the training set to fine-tune the model. Whether this
was done by Gaman et al. (2022) is not specified,
so we would tend to assume it was not.

They also evaluated SVM and XGBoost models
based on the text encodings produced by a fine-
tuned CamemBERT model, but the best results
were achieved by CamemBERT itself. Their results
were much better on Belgian and Swiss French than
on the other two varieties.

2https://spacy.io

https://spacy.io
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3.1 Data Analysis
Gaman et al. (2022) analyzed the most discrimina-
tive features of the CamemBERT model, by man-
ually inspecting “a few correctly classified sam-
ples [and analysing] the features for which Camem-
BERT has given high scores.” They concluded
that “there are quite a few noticeable dialectal pat-
terns learned by the model,” such as numerals only
used in Belgian French and a currency only used
in Switzerland.

We carried out some analysis on this dataset be-
fore starting to develop our systems. Looking at
text lengths showed that the training set contains
both very short texts, containing a single charac-
ter, and very long texts, containing up to 18,218
characters, although the text samples are supposed
to contain only up to three sentences. Here is a
small part of the longest training text: “<NE> Gar-
diens : <NE> <NE> (<NE> <NE>), <NE> <NE>
(<NE>), <NE> <NE> (<NE>) Défenseurs : <NE>
<NE> (<NE> <NE>), <NE> <NE> (<NE>), <NE>
<NE> (<NE> <NE>), <NE> <NE> (<NE>), <NE>
<NE> (<NE> <NE>), <NE> <NE> (<NE> <NE>),
<NE> <NE> (<NE> <NE>), <NE> <NE> (Leeds),
<NE> <NE> (<NE> <NE>) <NE> : Ilkay Gündo-
gan (<NE> <NE>) [...]” Such training texts may
inflate the importance of the NE word feature.

An example of the shortest texts contains only
the character “»” (closing quote in French), which
appears 372 times in the training set, in three dif-
ferent classes.

These two examples show several potential
sources of noise, besides the presence of very long
or short texts.

• Large number of NE tokens. Indeed, “$NE$”
is the most frequent word in the training, de-
velopment, and test sets.

• Duplicates within classes.

• Duplicates across classes (i.e. ambiguous ex-
amples).

We looked into the issue of duplicates, and found
a large number of them. In the training data, 43,007
unique texts appear more than once in the same
class, and 70 belong to more than one class. In
the development data, those counts are 897 and 2
respectively.

Applying deduplication (within classes, not
across) reduces the number of examples in the train-
ing set from 358,787 to 277,565 (and from 18,002

Class # before dedup # after dedup
BE 121,746 113,487
CA 34,003 169
CH 141,261 107,982
FR 61,777 55,927

Table 1: Number of training samples before and after
deduplication.

to 13,216 for the dev set). The class that suffers
most from this is CA, for which the training set
size shrinks from 34,003 to only 169 unique texts
after applying simple deduplication (see Table 1 for
full stats). This creates a huge imbalance between
CA and the other classes in terms of the training
set size. And even within these 169 remaining
texts, we found 36 that contained either of these
two boilerplate patterns:

• “Nous utilisons les témoins de navigation
(cookies) afin d’opérer et d’améliorer nos ser-
vices ainsi qu’à des fins publicitaires. Le re-
spect de votre vie privée est important pour
nous.” This appears in 6631 training exam-
ples for CA (as well as 1-3 times in the other
classes)

• “Si vous n’êtes pas à l’aise avec l’utilisation
de ces informations, $NE$ $NE$ vos
paramètres avant de poursuivre votre visite.”
This also appears in 6631 CA training ex-
amples. Also note that the two words that
were detected as NE here are “veuillez” and
“revoir”, which are not named entity mentions.
So noisy NER may be another source of er-
rors.

Because of all the duplicates we observed, we de-
cided to try applying deduplication (within classes)
to the training data. Also, since we observed boiler-
plate even after deduplication, we decided to apply
it after splitting the training data into sentences,
using the sentence splitter in Portage Text Process-
ing (Larkin et al., 2022). We also optionally applied
word tokenization (again using Portage Text Pro-
cessing) and removal of redundant NE tokens (see
Section 4.1) – these preprocessing steps were also
applied to the development and test data, but sen-
tence splitting and deduplication were only applied
to the training data. Applying this preprocessing
to the training data reduces the average text length
by more than half, and increases the number of
training samples from 358,787 to around 700,000,
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depending on the version. In the original training
set, there were 43,007 unique texts that had dupli-
cates within a single class, and 70 unique texts that
had duplicates in multiple classes. In the prepro-
cessed versions, no unique texts have duplicates
within a single class, but around 1700 unique texts
have more than one label. Note that we did not try
removing these ambiguous training examples from
the training data, but this might be worth investi-
gating.

We also checked for duplicates between the train-
ing, development, and test sets (i.e. data leakage).
146 of 18,002 development texts are also in the
training set, as well as 29 of 36,733 test texts, and
6 test texts are also in the development set. Given
these small numbers, using a heuristic to ensure
that these texts have the same label as in training
did not seem worthwhile.

Another potential source of noise is the presence
of many non-Latin characters, including right-to-
left scripts and many emoji. We might want to
discard such characters to avoid overfitting, but we
did not explore this.

4 Methodology

In this section we will explain how we processed
the data and trained the models that we used for
our submissions to the FDI task.

4.1 Data Processing

We produced four different pre-processed versions
of the data by optionally applying word tokeniza-
tion or removal of redundant NE tokens. In the
case of the training set, before applying these pre-
processing steps, we applied sentence splitting fol-
lowed by deduplication within classes. We did not
apply this to development or test data (and we did
not check the impact of this mismatch between
the training and evaluation data, e.g. by sentence-
splitting the evaluation data and aggregating the
predictions over the sentences of each example).

To remove redundant NEs, we simply replace
consecutive NE tokens with a single token. Note
that we converted the “$NE$” token to “<NE>”, so
that it would not be split into multiple tokens by our
word tokenizer. Also note that CamemBERT’s sub-
word tokenizer split the “<NE>” into three tokens:
“<”, “NE”, and “>”.

We chose not to fold the data for cross-validation,
because this is a cross-domain task, so simply us-
ing the training and development sets as is should

provide a better estimator of test accuracy.

4.2 Models Tested

We tested various models for the open and closed
tracks of this shared task, which we describe below.

4.2.1 Closed Track
For the closed track, we tested multi-class support
vector machine (SVM) classifiers, as well as a prob-
abilistic classifier (Gaussier et al., 2002), that we
call ProbCat. This classifier is similar to multino-
mial Naive Bayes except that it does not assume
that all features in a given text are generated from
a single class. It has been used in the past to obtain
state-of-the-art results on language identification
tasks (Goutte and Léger, 2016). For more details
on this classification algorithm, refer to Goutte et al.
(2014, Sec. 2.2).

To train these models, we tested a variety of
character n-gram and word n-gram features. Fea-
tures were weighted with a variant of tf-idf, and
texts were always converted to lower-case before
extracting the features.

Note that training a multi-class SVM classifier
involves calibrating the predicted probabilities of
single-class classifiers, which are trained to distin-
guish a specific class from all other classes com-
bined (i.e. one-vs-all training). Part of the training
data must be held out for this calibration step. We
chose to hold out 10% of the training set (using
stratified sampling to ensure the classes are sam-
pled proportionally) for calibration purposes. We
did this for both model selection (on the develop-
ment set) and our final submissions (on the test set),
as we wanted to use the whole dev set for held-out
evaluation during model selection and for training
our final models. As for ProbCat, it does not re-
quire calibration, so no training data was held out
in that case.

We tested two additional methods to improve
accuracy: pseudo-labelling of test cases and ensem-
bling. In the first case, we used a model’s predic-
tions on the development set (or test set, once we
had selected the models we wanted to submit) as
pseudo-labels, added these examples to the train-
ing data, and trained a model on this augmented
training set before evaluating the model on the de-
velopment (or test) set. We ended up training a
ProbCat model on the pseudo-labels produced by
SVM models, as model selection experiments indi-
cated this worked better than training an SVM on
its own pseudo-labels (which is commonly known
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as “self-training”).
As for ensembling, we use a plurality vote ap-

proach, so we simply take the most frequently pre-
dicted class for each text sample. To select the
models included in the ensemble, we conducted a
brute force search among a set of candidate models
and greedily added the model that improved the en-
semble’s score the most at each step, then selected
one of the ensembles that achieved the best scores
overall.

Note that pseudo-labelling was only used in the
closed track. We experimented with ensembling in
the open track as well as in the closed track, but we
selected the models included in the open ensemble
arbitrarily, not based on a systematic search.

4.2.2 Open Track

For the open track, we fine-tuned a pre-trained
CamemBERT model (Martin et al., 2020), which
uses the RoBERTa architecture and training pro-
cedure (Liu et al., 2019). More, specifically, we
downloaded the camembert-base checkpoint
from HuggingFace’s repository of pre-trained mod-
els.3 This model has 110 million parameters, and
was pre-trained on the French portion of the OS-
CAR corpus (Ortiz Suárez et al., 2019; Ortiz Suárez
et al., 2020; Abadji et al., 2021), which contains
138 GB of unlabelled French text. We fine-tuned
this model on the FreCDo training data using the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 5× 10−5.

These settings are similar to those used by
Gaman et al. (2022) for their CamemBERT base-
line, except that we used smaller batch sizes (8 or
16 rather than 32), fewer epochs (3 or 5 instead
of 30), and we only fine-tuned the last one or two
layers of the encoder, along with the classification
head, which is randomly initialized. This requires
less compute and the results we observed on the
development set were better, possibly due to less
forgetting or easier optimisation. Also, Gaman et al.
(2022) used average pooling of the token encod-
ings as input to the classification head, whereas we
used the encoding of the “<s>” token (equivalent
to “[CLS]” in BERT) that is prepended to the token
sequence, which is the default used by RoBERTa’s
classification head.4

3https://huggingface.co/camembert-base
4https://github.com/huggingface/

transformers/blob/v4.20.1/src/
transformers/models/roberta/modeling_
roberta.py#L1435

CamemBERT comes with a subword tokenizer
based on the Byte Pair Encoding (BPE) algo-
rithm (Sennrich et al., 2016) implemented in Sen-
tencePiece.5 The tokenizer produces a maximum
of 512 tokens, as this is the maximum input length
of the model. Longer sequences are truncated to the
maximum length. This is a rare occurrence in the
FDI dataset: if we tokenize the raw (untokenized)
data provided, we obtain the maximum number of
tokens for 107 training texts, 1 development text,
and 22 test texts. Note that if we apply word tok-
enization or removal of redundant NE tokens to the
texts, these numbers are slightly different.

When processing each mini-batch, the sequences
are padded to the maximum sequence length in that
batch – this reduces the amount of computation
compared to padding everything to the maximum
input length of 512 tokens. The vocabulary of
the pre-trained tokenizer contains 32K sub-word
tokens, plus 5 special tokens (beginning and end of
text, padding, out-of-vocabulary, and mask).

Note that we also tested FastText (Joulin et al.,
2017) with pre-trained word embeddings,6 but this
was not used for our final submissions in the open
track. Our best development scores with FastText
were slightly lower than those achieved with an
SVM trained from scratch, and quite a bit lower
than a fine-tuned CamemBERT, so we decided to
focus on the latter for the open track.

Finally, it is worth mentioning that we did not
test any methods specifically designed to deal with
domain/topic shift, as we decided to focus on com-
paring transfer learning to vanilla supervised learn-
ing.

4.3 Model Selection Experiments

To select models for the closed track, we tested
different feature sets on different pre-processed
versions of the datasets, and computed the macro-
F1 score on the development set. We also tested
pseudo-labelling the development set. The main
findings of our model selection experiments can be
summarized as follows:

• SVM generally produced higher scores than
ProbCat (even though 10% of the training data
was held out for calibration in the case of
SVM models).

5https://github.com/google/
sentencepiece

6https://fasttext.cc/docs/en/
crawl-vectors.html

https://huggingface.co/camembert-base
https://github.com/huggingface/transformers/blob/v4.20.1/src/transformers/models/roberta/modeling_roberta.py##L1435
https://github.com/huggingface/transformers/blob/v4.20.1/src/transformers/models/roberta/modeling_roberta.py##L1435
https://github.com/huggingface/transformers/blob/v4.20.1/src/transformers/models/roberta/modeling_roberta.py##L1435
https://github.com/huggingface/transformers/blob/v4.20.1/src/transformers/models/roberta/modeling_roberta.py##L1435
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
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• We tried various combinations of character
n-grams (with n ∈ {3, 4}) and word n-grams
(with n ∈ {1, 2}), and the highest scores were
achieved by using only word bi-grams. Note
that this is somewhat unusual for a language
identification task, where it has often been
observed that character n-grams produce the
best results.

• We tried filtering out very short texts from the
training data, but scores did not improve.

• Pseudo-labelling did not improve the SVM’s
scores. However, we accidentally trained a
ProbCat model on data that had been pseudo-
labelled by an SVM, and observed that the
ProbCat model did better than the SVM
trained only on the training set.

• The SVM models never predicted the CA
class. ProbCat sometimes predicted it, but
was generally wrong.

We inspected the most discriminative (positive)
features of ProbCat and SVM models using only
word bigrams as features. For ProbCat they were:

• BE: “à jour”, “jour le”, “- mis”, “mis à”,
“"", a”, “"" <ne>”, “<ne> le”, “: ""”, “<ne>
(<ne>)”, “<ne>. ""”

• CA: “— une”, “vos paramètres”, “paramètres
avant”, “poursuivre votre”, “votre visite.”, “la
hausse”, “citation de”, “une citation”, “avec
l’utilisation”, “l’aise avec”

• CH: “: «”, “<ne> est”, “premier ministre”, “la
«”, “<ne> –”, “[ . . . ”, “la guerre”, “. . . ]”, “«
la”, “de <ne>.”

• FR: “<ne> -”, “», a”, “<ne> /”, “/ <ne>”, “par
<ne>”, “[ <ne>”, “— <ne>”, “« <ne>”, “<ne>
]”, “- le”

And for SVM, the top 10 features with the high-
est weights were:

• BE: “"", a”, “<ne>. ""”, “<ne>. ""”, “juin
2013”, “son appréciation”, “"", a-t-il”, “rev-
enues sur”, “horrible "",”, “53 voix,”, “pou-
voir, ni,”

• CA: “journalistes en”, “à lire”, “sentiment dé-
vastateur.”, “source :”, “du widget.”, “photo
:”, “incendie fait”, “<ne> tremblay”, “la cor-
rection.”, “collaboration d’<ne>.”

• CH: “seraient vus”, “suspects des”, “rayon-
nement de”, “droits que”, “activement à”,
“métier est”, “<ne> tira”, “armé pourrait”,
“grandes foules”, “outre, le”

• FR: “a lire”, “"a lire”, “les fesses”, “charges
nucléaires.”, “angleterre -”, “mémoires à”,
“— <ne>”, “« défendrait”, “mécanisation de”,
“signalés par”

This (admittedly limited) exploration of discrimi-
native features does not reveal many obvious dialec-
tal markers, but we can observe some boilerplate
patterns, such as “mis à jour le...” for BE when us-
ing ProbCat, or “à lire aussi :” for FR when using
the SVM.

As for CamemBERT, we did an ad hoc search
for the best settings of a few hyperparameters. Our
main findings can be summarized as follows:

• Fine-tuning only the last 1 or 2 layers of the
12-layer encoder provided better results than
full fine-tuning. It also reduced the computa-
tion required, and the runtime of our experi-
ments.

• Results on the four different pre-processed
versions of the dataset were similar. Word
tokenization had little impact. Removing re-
dundant NEs tended to improve scores slightly.
Lower-casing was not beneficial.

• The best scores were generally achieved
within five epochs (we tested up to 10). Our
three best models, which we used for our fi-
nal submissions, were trained for either 3 or 5
epochs.

• Batch size had little impact, but 8 worked
slightly better than 16 in general.

• Various learning rate schedules were tested,
and provided similar results.

• Weighting the loss to penalize the CA class
more heavily did not improve results.

• Filtering out very short texts from the training
data had very little impact.

Based on these model selection experiments, we
decided to submit the following 6 runs:

• Closed 1: Majority vote ensemble of five
multi-class SVMs trained on the concatena-
tion of the training and development data, us-
ing different data processing and feature sets.
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The differences between the models involve:
whether word tokenization was applied to the
input; whether we removed redundant NE to-
kens from the input; whether training data was
filtered using a minimum text length thresh-
old; and the n-grams used as features. Three
of the models used only word bigrams as fea-
tures, and the two others used word unigrams
and bigrams, as well as character trigrams and
4-grams. To select the models, we carried out
a greedy search among a dozen SVM mod-
els, and used results on the development set
to select the best subset of models.

• Closed 2: ProbCat trained on the concatena-
tion of the training and development data, as
well as the pseudo-labelled test data, where
the test labels are those predicted by the SVM
ensemble used for our first run. The feature
set used by this classifier includes only word
bigrams.

• Closed 3: Our best multi-class SVM classi-
fier according to results on the development
data. It was trained on the concatenation of
the training and development data, using only
word bi-grams as features.

• Open 1: Majority vote ensemble of three pre-
trained CamemBERT models, which were
fine-tuned on the concatenation of the train-
ing and development data. Model selection
was based on their scores on the development
data, but the number of models included in the
ensemble was arbitrary. The differences be-
tween the three models involve the batch size
(8 or 16), the learning rate schedule (linear
decay or constant) and the number of encoder
layers that were fine-tuned (either just the last
layer, or the last two layers).

• Open 2: Our best single CamemBERT model
according to results on the development data,
fine-tuned on the concatenation of the training
and development data. This model was fine-
tuned using a batch size of 8 and a constant
learning rate for 3 epochs. Only the last two
layers of the encoder were fine-tuned.

• Open 3: Our second-best single CamemBERT
model according to results on the development
data, fine-tuned on the concatenation of the
training and development data. This model

was fine-tuned using a batch size of 16 for 5
epochs with linear decay of the learning rate.
Only the last two layers of the encoder were
fine-tuned.

The development scores of the 6 models we de-
cided to submit are shown in Table 2.

Run MacroF1
Closed 1 0.4816
Closed 2 0.4858
Closed 3 0.4747
Open 1 0.5556
Open 2 0.5506
Open 3 0.5497

Table 2: Scores of our 6 runs on the development set.

After producing our runs on the test set, we com-
puted the pairwise overlap between the 6 lists of
predicted labels, and observed the following:

• The maximum agreement between open and
closed models was only 65%.

• Even our two single CamemBERT models
(open runs 2 and 3) had pretty low agreement,
at 78%.

• The highest overlap, at 96%, was between the
SVM ensemble and the ProbCat model trained
using the pseudo-labels of the SVM ensemble
(i.e. closed runs 1 and 2 respectively).

5 Results on Test Set

The official scores of our 6 runs on the test set are
shown in Table 3. The scores that ended up being
computed by the organizers were: macro-averaged
F1 score, weighted F1 score, and micro-averaged
F1 score (i.e. accuracy).

Run MacroF1 WeightedF1 MicroF1
Closed 1 0.3266 0.4333 0.4642
Closed 2 0.3437 0.4581 0.4936
Closed 3 0.3149 0.4188 0.4530
Open 1 0.4299 0.5121 0.5243
Open 2 0.4108 0.4977 0.5067
Open 3 0.4145 0.4910 0.4936

Table 3: Scores of our 6 runs on the test set.

These results show that, in the closed track, the
SVM ensemble did better than a single SVM, and
ProbCat with pseudo-labelling did best overall.
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Figure 1: Confusion matrix of our best run on the test
set.

This corroborated our findings on the development
set, although the scores are lower, perhaps because
of a larger domain shift. In the open track, the
ensemble (run 1) did better than our best two in-
dividual models as expected, but our second-best
model (run 3) ended up doing slightly better than
our best model (run 2).

Three teams ended up submitting runs in the
closed track (two or three runs each), and our three
runs achieved the highest scores on the test set. We
were the only team who participated in the open
track, so we can only compare our results to the
baselines computed by the organizers (Gaman et al.,
2022). Our best open run, i.e. the ensemble of 3
fine-tuned CamemBERT models, achieved a higher
macro-F1 score than the highest baseline score,
which was 0.3967. This was also achieved by fine-
tuning a CamemBERT model, but with different
hyperparameter settings and data processing (and
probably not including the development data for
training). That model scored 0.4784 on the devel-
opment set, whereas our run 1 model (but trained
only on the training set, during model selection)
scored 0.5556.

Looking at the confusion matrices of each of our
runs, we observed that our open runs did quite a bit
better on the CA class, getting up to 157 cases right
(run 3), whereas the closed runs all got a single CA
case right. The confusion matrix of our best run on
the test set is shown in Fig. 1.

To get a fuller picture of the results, we investi-
gated various potential sources of errors.

First, we looked at the class-wise F1 scores of
open run 1 and how they relate to the class fre-

quency distribution of the training data, and ob-
served an obvious correlation between the two. Ta-
ble 4 shows that the two most frequent classes in
the (deduplicated) training data are also the two
classes for which F1 is highest, i.e. BE and CH,
and the least frequent class by far, CA, has the
lowest score. Imbalanced training data is often
challenging for machine learning models, and our
only attempt at addressing this, by weighting the
loss function when fine-tuning CamemBERT, was
unsuccessful.

Class TrainFreq F1
BE 0.4008 0.555
CA 0.0005 0.156
CH 0.4002 0.674
FR 0.1985 0.335

Table 4: Class-wise relative frequencies in the dedupli-
cated training set and F1 scores on the test set

Another factor that can impact the accuracy of
language identification systems is the length of
texts. To investigate this, we binned the test ex-
amples by length (after removing redundant NE
tokens) into 10 bins of approximately equal sizes,
and computed the macro-F1 and accuracy for each
bin, using the predictions of our best model (open
run 1). The results, shown in Table 5, indicate that
macro-F1 tends to increase as texts get longer. The
trend for overall accuracy (regardless of class) is
less clear.

# Chars N Macro-F1 Accuracy
4-110 3758 0.344 0.554
111-189 3624 0.369 0.487
190-235 3656 0.389 0.508
236-275 3693 0.419 0.534
276-314 3698 0.411 0.511
315-356 3690 0.411 0.513
357-406 3627 0.445 0.522
407-471 3675 0.446 0.528
472-571 3653 0.422 0.516
572-4946 3659 0.463 0.569

Table 5: Scores with respect to text length

We also checked whether test cases that were
also present in the training data had the same label,
and whether our best model (open run 1) got them
right. The examples we inspected included the
following:

• The example “? ? ? ? ? ?” appears 8 times
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in the test set, always labelled BE. Yet, in
training, it was labelled FR. For some reason,
our model predicts CH.

• The example “$NE$” appears 4 times in the
test set, 3 times as BE, and once as FR. Our
model predicted BE, so it was right 3 times.
In the training data, it appeared in 3 classes:
BE, CH, and FR.

• The example “Pour aller plus loin” was la-
belled CH in the training data, and predicted
as such, but labelled CA in the test data.

We also inspected the examples where our 6
submissions disagreed the most, and found several
examples containing boilerplate such as “Vous avez
lu 29 des 432 mots de cet article”, on which all 4
possible classes were among the predictions of our
6 systems. This boilerplate pattern is also present
in a lot of the most likely CA examples in the
test set according to our best CamemBERT model,
although it generally does not belong to the CA
class in the training or test data. We can not provide
an explanation for this, but perhaps the lack of
diversity of CA examples in the training data is the
cause, as well as the frequency of such boilerplate
in all classes.

One possible reason for the superior perfor-
mance of CamemBERT is its subword tokenizer.
We tokenized the dataset, then trained SVM and
ProbCat models on the CamemBERT tokens, us-
ing token n-grams (with n between 1 and an upper
bound that we raised up to 5) as features. None of
the model fared better using CamemBERT tokens,
so the superior performance of CamemBERT must
be attributable to its pre-trained token embeddings
and encoder weights.

To explore how CamemBERT’s performance
might be improved, we checked how many out-
of-vocabulary tokens, which are represented by
“<unk>”, are produced by CamemBERT’s tokenizer
on the test set. Less than 1% of test examples (342)
contain any “<unk>” tokens, so this is probably
not an important source of errors, and expanding
the vocabulary of the CamemBERT tokenizer and
model seems unlikely to lead to significant gains.

On the whole, the analysis presented in this sec-
tion seems to say more about the properties of the
data than it does about the behaviour of our mod-
els, and does not point to any obvious means to
improve predictive accuracy, as far as we can tell.

6 Conclusion

For the French Cross-Domain Dialect Identifica-
tion shared task at the 2022 VarDial evaluation
campaign, the NRC team evaluated two different
approaches: SVM and probabilistic classifiers us-
ing n-gram features and trained from scratch on
the data provided; and a pre-trained CamemBERT
model fine-tuned on that data. The latter increased
the macro-averaged F1 score on the test set from
0.344 to 0.430 (25% increase). This indicates that
transfer learning can be helpful for dialect identi-
fication, and provides clear evidence that neural
models can be effective at such tasks, at least when
they are pre-trained on large amounts of unlabelled
text.
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