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Abstract

We present our contribution to the Identifica-
tion of Languages and Dialects of Italy shared
task (ITDI) proposed in the VarDial Evalua-
tion Campaign 2022 (Aepli et al., 2022), which
asked participants to automatically identify the
language of a text associated to one of the
language varieties of Italy. The method that
yielded the best results in our experiments was
a Deep Feedforward Neural Network (DNN)
trained on character ngram counts, which pro-
vided a better performance compared to Naïve
Bayes methods and Convolutional Neural Net-
works (CNN). The system was among the best
methods proposed for the ITDI shared task.
The analysis of the results suggests that simple
DNNs could be more efficient than CNNs to
perform language identification of close vari-
eties.

1 Introduction

In this paper, we present the submissions of Team
Phlyers to the Identification of Languages and Di-
alects of Italy (ITDI) shared task of the VarDial
Evaluation Campaign 2022 (Aepli et al., 2022).
The campaign is part of a conference series, the
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial), which has reached its ninth
edition, six of which have included several shared
tasks (Zampieri et al., 2017, 2018, 2019; Găman
et al., 2020; Chakravarthi et al., 2021; Aepli et al.,
2022). The shared tasks involve the categorization
of text documents according to their language vari-
ety, typically across different domains. Language
identification has received attention in the literature
because it is important in the context of machine
translation and categorization of social media posts,
and several approaches to perform it have been pro-
posed (House and Neuburg, 1977; Dunning, 1994;
Bergsma et al., 2012; Lui and Baldwin, 2014; Zu-
biaga et al., 2016; Jauhiainen et al., 2019c). Most
of the VarDial shared tasks invite participants to

Figure 1: A map of the language varieties of Italy, from
Pellegrini (1977).

.

develop language identification systems in contexts
characterized by minimal diversification of the lan-
guages involved and low-resource settings, often
with lack of data for the domain of interest.

In the next sections, we briefly describe our sub-
missions for the ITDI shared task.1

2 ITDI

The ITDI task involves the classification of sen-
tences from eleven different language varieties
from Italy. Five of these varieties - Piedmontese
(pms), Lombard (lmo), Ligurian (lij), Emilian-
Romagnol (eml), Venetian (vec) - are part of
a Northern group composed of Gallo-Italic and
Venetan varieties; they are represented in yellow
in the Carta dei Dialetti Italiani, the reference
map drawn by Pellegrini (1977) using a set of
isoglosses that define the boundaries of certain
morpho-phonological properties. Two of the vari-
eties, Neapolitan (nap) and Tarantino (roa-tara), are
part of the Southern group, in pink. Sicilian (scn)

1The material developed for this work is available at
https://github.com/AndreaCeolin/VarDial2022.
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is the only representative of the Extreme Southern
group, in purple. Friulian (fur) and Ladin (lld) are
part of the Northeastern Rhaeto-Romance group,
although Pellegrini keeps them separate (in orange
and dark green). Finally, Sardinian (sc) is repre-
sented in brown.

Training data is provided in the form of
Wikipedia dumps containing a total of 233K sen-
tences, while evaluation data is provided in the
form of approximately 7K short sentences for seven
out of the eleven languages. The test set contains
sentences from a subset of the given language va-
rieties, and the classifier is evaluated on sentence
level.

An inspection of the development data clearly
shows that the sentences are not taken from
Wikipedia articles, but from other sources, like
literary texts or folktales (see Table 1 for some
examples). The sentences in the test dataset also
appear to be clearly different from the kind of sen-
tences one expects to find in Wikipedia articles,
and we assume that they were taken from domains
similar to those used to collect the development
sentences.

The fact that the training and validation/testing
data come from different domains implies that the
task is essentially a cross-domain classification
task.

3 Methods

The state-of-the-art methods for language identifi-
cation are typically inspired by Support Vector Ma-
chines (SVM) models (Goutte et al., 2014; Çöltekin
and Rama, 2017; Medvedeva et al., 2017; Kreutz
and Daelemans, 2018; Benites de Azevedo e Souza
et al., 2018; Wu et al., 2019; Çöltekin, 2020) and
multinomial Naïve Bayes (NB) models (Barbaresi,
2016; Clematide and Makarov, 2017; Jauhiainen
et al., 2019a, 2020; Ceolin and Zhang, 2020; Jauhi-
ainen et al., 2021b), that are trained on features
derived from word and character ngrams.

Deep learning methods have also been success-
fully applied to language identification tasks (Cian-
flone and Kosseim, 2016; Jaech et al., 2016; But-
naru and Ionescu, 2019; Hu et al., 2019; Tudoreanu,
2019), and in particular several of the most recent
VarDial shared tasks have been addressed using
transformer models (Bernier-Colborne et al., 2019;
Popa and Stefănescu, 2020; Scherrer and Ljubešić,
2020; Zaharia et al., 2020; Jauhiainen et al., 2021b;
Zaharia et al., 2021).

While last year we decided to use Convolutional
Neural Networks (CNNs) to address the shared
tasks (Ceolin, 2021), this year we decided to focus
on Deep Feedforward Neural Networks (DNNs),
since they represent an alternative approach to lan-
guage identification.

The reason for this shift of focus is that while
CNNs have been the most popular neural architec-
ture used for language identification (Zhang et al.,
2015; Conneau et al., 2016; Kim et al., 2016; Jaech
et al., 2016), following their success in tasks like
image classification and sequence processing, lan-
guage identification is quite different from such
tasks.

While in domains like image classification and
sequence processing hard-coding features is not
straightforward, in language identification the cues
for discriminating among classes are usually words
or orthographic/morpheme sequences, which can
be directly extracted and used as input features for
a simple DNN in the form of word and character
ngrams of different size. A CNN instead performs
feature extraction indirectly, using fixed-size filters
applied to input sequences that have to be of the
same length (which is rarely the case for texts), and
therefore is less flexible.2

For these reasons, comparing these two different
approaches can be informative to decide whether
CNNs provide any advantage over regular DNNs
for language identification.

3.1 DNN

The DNN we used has two hidden layers of size
50, and is trained on a term-frequency matrix of
20K character ngrams in the window [1-5] derived
from the training sentences.3 The DNN is trained
with a learning rate of 0.0001 and a batch size of 4
for 20 epochs. The number of parameters is ≈1M.
The hyper-parameters and the size of the network
were manually selected based on the performance
on the evaluation set across different runs. The
architecture is visualized in Figure 2.

3.2 CNN

The CNN has two 1-D convolutional layers, one
with 256 filters and one with 128 filters, both of size
3 with stride 1, each followed by a max pool layer

2Google’s LID system, CLD3
(https://github.com/google/cld3), also uses a DNN trained on
character ngrams rather than a CNN.

3The term-frequency matrix has been extracted using the
CountVectorizer method in sklearn.
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Dataset Label Text Source
train vec El Yucatán el ze uno dei 31 Stati del Mèsego, situà inte

el sud-est del teritòrio, inte ła parte nord de l’omònema
penìzoła. El confina verso nord col Golfo del Mèsego,
verso est col Stato de Quintana Roo e verso sud-òvest
col Stato de Campeche.

vec.wikipedia.org, “Yucatán"

train scn Heaven For Everyone è na canzuni scritta ra Roger Tay-
lor e pubbricatu nto 1988 da li The Cross comu singulu
trattu ra l’album Shove It, ru stissu annu.

scn.wikipedia.org, “Heaven For Everyone"

dev vec Da seno a mi me par
Che no ghe sia rason de barufar

Iliad (version by Luigi de Giorgi)

dev scn e Mirimì chi aiutava nnâ mandria na picuredda a fig-
ghiari, lassau l’opira a mezzu e si misi a curriri chî manu
ntê capiddi, non sapennu chi fari

Storia di Pietracucca (Francesco Lanza)

Table 1: Example sentences from the training and evaluation data. We can see that while the training data contains
Wikipedia articles which look like direct translations from other languages, the evaluation data contains sentences
from other sources, like poetry or short stories.

(with a window of size 3). Then, it is followed by a
fully connected layer of size 50, and is trained with
a learning rate of 0.0001 and a batch size of 4 for
20 epochs. The number of parameters is ≈250K.
The hyper-parameters and the size of the network
were manually selected based on the performance
on the evaluation set across different runs. The
architecture is visualized in Figure 3. Each input
sentences was truncated at 160 characters.

3.3 NB

We also decided to use a NB system as a baseline.
The system is trained on the same term-frequency
matrix of character ngrams that was used to train
the DNN, with alpha=1.

All models were run on Google Colab, with
1 GPU, using the sklearn and tensorflow libraries.

4 Evaluation

This section summarizes our contributions to the
ITDI shared task and the evaluation of our models.

4.1 In-domain Classification

One of the main challenges of the ITDI shared task
was to find a proper way to evaluate the perfor-
mance of the classifiers given that the evaluation
set and the test set were not expected to contain
the same languages. In a first experiment, we tried
a simple in-domain classification task, using only
the ≈7K sentences in the evaluation dataset for
the seven languages represented in it (henceforth,
‘gold’ languages) divided in training/test sets using
a 80:20 split. We applied minimum normalization:
the text was converted to lowercase and numbers
and punctuation were removed, with the exception

Figure 2: This is the architecture of the DNN model
trained for the task. Learning rate: 0.0001, Batch: 4,
Epochs: 20. Each hidden layer has size=50.

Figure 3: This is the architecture of the CNN model
trained for the task. Learning rate: 0.0001, Batch: 4,
Epochs: 20. The first convolutional layer has 256 filters
of size 3x1, while the second one has 128 of them.
Stride: 1. Each layer is followed by a max pool layer,
with a window of size 3x1. The fully connected layer
has size=50.
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Model Micro F1 score Macro F1 score
DNN 0.994 0.994
Naïve Bayes 0.983 0.984
CNN + data aug. (10ep.) 0.982 0.983
CNN 0.977 0.978

Table 2: Performance of the models on the evaluation
set, in-domain classification. The DNN is the model that
yields the best performance when using the evaluation
set for both training and testing.

of "’", that in these varieties can represent elision
of vowels or syllables, and thus is informative. As
we can see from Table 2, all models yielded very
good results, with the DNN performing best.

We also tried to improve the performance of the
CNN by augmenting the training data. Two copies
of each sentence were added to the training set
with their words shuffled, following the strategy
described in Ceolin (2021). Indeed, the strategy
allows the network to reach convergence in just 10
epochs and slightly increase its accuracy.4 Inter-
estingly, increasing the number of parameters of
the CNN or the number of epochs did not have the
same effect.

These results suggest that the ‘gold’ languages
are well distinguished, and that the amount of sen-
tences in the evaluation set is sufficient to train a
robust classifier, assuming that the sentences in the
evaluation and test sets belong to the same domain.

4.2 Cross-domain Classification

The second experiment we attempted was a cross-
domain classification task. For training, we used a
balanced sample of 20K sentences from the 233K
training sentences extracted from the Wikipedia
dumps using the script recommended by the orga-
nizers (Attardi, 2015), while for testing we used
the 7K evaluation sentences.5 In this case, a heav-
ier normalization was required, since the texts
contained roman numerals, several proper names
of cities/regions, and many different hyperlinks,
which had to be removed. From Table 3, we can see
that the performance dropped significantly, espe-
cially for the neural networks. In particular, many
of the predictions (up to 10%, depending on the

4We explained this behavior with the fact that this pre-
vents the network from focusing on character sequences at
word boundaries, i.e. involving space characters in the mid-
dle (Ceolin, 2021), which are not informative and can lead to
overfitting.

5The only reason why we used a subset of the data was
to avoid RAM issues. However, we noticed that using more
training data did not have any noticeable effect on the results.

Model Micro F1 score Macro F1 score
Naïve Bayes 0.861 0.554
DNN 0.791 0.520
CNN 0.718 0.471

Table 3: Performance of the models on the evaluation
set, cross-domain classification. The Naïve Bayes sys-
tem is the model that yields the best performance when
using the training set for training, and the evaluation set
for testing.

model and the run) contain one of the four lan-
guages which are not represented in the evalua-
tion set (henceforth, ‘silver’ languages), and so the
macro F1 score is quite low.6

4.3 Combining Cross-domain and In-domain
Classification

Since the cross-domain classification task turned
out to be much harder than the in-domain task, we
decided to run a third experiment that was similar to
the first one, which relied on the evaluation set for
both training and testing. However, after dividing
the evaluation set into training/testing sets using a
80:20 split, we augmented the training set using the
sentences from the Wikipedia dumps for the four
‘silver’ languages, in order to cover all languages
in the training phase, and we retrained the models.
The results are in Table 4.

In this setting, the performance is much better,
which means that using the in-domain sentences
from the evaluation set instead of the Wikipedia
sentences (whenever possible) has a positive effect
on the systems. In particular, the improvement in
the macro F1 score is caused by the fact that these
systems are more conservative when it comes to
the four ‘silver’ languages: only 1% of the test
sentences are assigned to a label that is not part of
the evaluation set in all models.

In particular, the DNN and NB systems turned
out to be more reliable than the CNNs, both the
regular one and the one trained with data augmen-
tation. Interestingly, data augmentation had a clear
positive effect on the CNN model (2% for the mi-
cro and 9% for the macro F1 score), but it was still
not sufficient to make the CNN reach the accuracy
of the other systems.7

6In this case we did not try to augment the data for the
CNN because the operation was not legitimate, given our
access to more training data.

7We note that these effects could have been overestimated
because, contrary to the in-domain experiment, variation in
text length was higher with Wikipedia articles, and so shuffling
sentences had the effect of exposing the network to words that
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Figure 4: Evaluation of the DNN model on a training set
composed of sentences from both the evaluation set (for
the seven ‘gold’ languages) and the Wikipedia dumps
(for the four ‘silver’ languages). Training and validation
loss converge after 10 epochs and then decrease together.
Accuracy improves up to the 13th/14th epoch, and then
stays constant.

For these reasons, we decided to select the DNN
as the model of choice for this task. In particular,
its high precision, that was highlighted from the
results of the in-domain experiment, gives us the
option of using some of the sentences from the
test set for which the network makes a confident
prediction to augment the training data, a form
of language model adaptation (Jauhiainen et al.,
2018a,b, 2019b), as is explained in the next sec-
tion. See Figure 4 for the loss and accuracy plots
obtained during the evaluation of the DNN.

4.4 Predictions

Table 5 contains the predictions for the 11K sen-
tences in the test set, made by the DNN model
which was trained on the evaluation set for the
seven ‘gold’ languages and on the Wikipedia sen-
tences for the four ‘silver’ languages (in bold).

The most represented among the ‘silver’ lan-
guages is Neapolitan (nap), which is the second

would have otherwise been truncated. Truncation could thus
be the main reason why CNNs underperform in this setting.

Model Micro F1 score Macro F1 score
DNN 0.978 0.761
Naïve Bayes 0.974 0.757
CNN + data aug. (10ep.) 0.951 0.740
CNN 0.929 0.651

Table 4: Performance of the models on the evaluation
set, final model.

Label Labels
vec 3127
nap 1519
scn 1365
fur 1325
lmo 1014
lld 751
eml 700
lij 585
sc 562
roa-tara 79
pms 63

Table 5: Predictions of the DNN for the test dataset.
‘Silver’ languages in bold.

most common predicted label. This suggests that
the language is present in the test set.

Ladin (lld) and Emilian-Romagnol (eml) are pre-
dicted to each represent about 6-7% of the sen-
tences, a number which is not far from the number
of sentences we expect to find a priori, especially
given that we might expect ‘silver’ languages to be
underpredicted.

The situation with the last ‘silver’ language,
Tarantino (roa-tara) is tricky: the language appears
to be quite rare in the test set (0.7%), and an exam-
ination of the logit scores associated with the pre-
dictions (Figure 5) revealed that Tarantino was the
language whose average confidence was the lowest.
All the other languages were associated with many
more predictions and higher logit scores.

On the other end, Piedmontese (pms), a ‘gold’
language for which we have several sentences in
the evaluation set, is also rare as a prediction, with
an occurrence of 0.6%, which is compatible with
the ratio of out-of-sample predictions detected in
the evaluation experiments.

For these reasons, we decided to remove both
Tarantino and Piedmontese, and re-train the classi-
fier to predict only the remaining nine languages.

5 Results

For our first submission, we simply re-trained the
DNN excluding Piedmontese and Tarantino, and
submitted the predictions on the test set obtained
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Figure 5: Logit scores associated to each prediction
made by our DNN, divided per class.

Team Model Weighted F1 score
SUKI NB + language adaptation 0.901
Baseline SVM Char-ngram TFIDF 0.773
Phlyers DNN 0.694
ETHZ Logistic Regression 0.688
Baseline SVM Unigram TFIDF 0.490
ETHZ BERT 0.576
Baseline FastText 0.132

Table 6: Performance of the models on the evaluation
of the ITDI task.

in this way. The second and third submission were
similar, but we re-trained the network changing
the way in which the ‘silver’ languages were rep-
resented: instead of the Wikipedia sentences, we
used the label/sentences from the test set for which
the predicted label was associated with a high likeli-
hood, following a language model adaptation strat-
egy similar to the one proposed by Jauhiainen et al.
(2019b). The main difference is that instead of
adding the new predictions, we used them to di-
rectly replace the training data for the ‘silver’ lan-
guages, with the aim of obtaining a better repre-
sentation. We used different likelihood threshold
to filter the predictions (>0.90 and >0.95, after
transforming the logits into probabilities). On aver-
age, the number of predictions per class that were
included was quite high, between 75-80%, which
seemed a good balance in the trade-off between
number of sentences and confidence associated
with them.

The overall results of the ITDI shared task are
summarized in Table 6.

The best system by far was the SUKI system
(Jauhiainen et al., 2021a), a Naïve Bayes-like clas-
sifier which performs language adaptation. One of
the baselines provided by the organizers, a SVM
trained on character ngrams, provided the second

Label Real Predicted F1 score
vec 1139 1642 0.64
nap 2026 2296 0.78
scn 0 1003 0
fur 1323 1283 0.96
lmo 689 921 0.84
lld 2200 1937 0.85
eml 825 746 0.91
lij 2282 626 0.40
sc 0 636 0
roa-tara 603 0 0

Table 7: Predictions of the third submission, a DNN
model trained on the evaluation set augmented with the
test sentences that, according to the basic DNN model,
belonged to the classes not represented in the evaluation
set with probability >0.95.

Label Sub-1 Sub-2 Sub-3
vec 1646 (0.63) 1205 (0.60) 1642 (0.64)
nap 2787 (0.73) 3229 (0.71) 2296 (0.78)
scn 638 (0) 654 (0) 1003 (0)
fur 1248 (0.96) 1299 (0.94) 1283 (0.96)
lmo 816 (0.89) 711 (0.93) 921 (0.84)
lld 2060 (0.86) 2513 (0.86) 1937 (0.85)
eml 1083 (0.80) 964 (0.86) 746 (0.91)
lij 459 (0.32) 268 (0.20) 626 (0.40)
sc 353 (0) 247 (0) 636 (0)
all 0.66 0.64 0.69

Table 8: Output of the models on the evaluation of our
ITDI task submissions.

best result, with an F1 score of 0.773. Our best
submission, the third one, completes the podium
with an F1 score of 0.694.

The organizers provided us with the results per
class, in Table 7. It is apparent that our system
overpredicted texts written in Sicilian (scn) and
Sardinian (sc), which were actually absent from the
data, and underpredicted texts written in Ligurian
(lij) and in Tarantino (roa-tara), which was actually
present in the test set, contrary to what we were
expecting.

A comparison of the predictions of our three
submissions, in Table 8, shows that the last submis-
sion led to improvements across the board, with
one clear exception (Lombard, ‘lmo’) and a mi-
nor one (Ladin, ‘lld’). This suggests that language
adaptation had a positive impact on the system.
However, it also led to the increase of sentences
associated with the two languages absent from the
test set, which had the effect of countering any
substantial improvement, since their presence nec-
essarily ended up hurting the performance of the
other classes.
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Figure 6: Confusion matrix with the predicted and the
gold labels for our third submission.

6 Discussion

Comparing our class results with those of the other
teams, the main weakness of our approach turned
out not to be the underprediction of Tarantino (roa-
tara), with which all the systems struggled, but that
of Ligurian (‘lij’), which was heavily weighted in
the evaluation of the systems, since it was the most
common language. An inspection of our evalua-
tion results showed that Ligurian was not among
the languages for which we were expecting un-
derprediction. Moreover, Ligurian is a Gallo-Italic
language like Lombard and Emilian-Romagnol, but
both languages were associated with high F1 scores
in testing, and therefore cannot be responsible for
this misclassification.

Since the organizers provided us with the gold
labels, we were able to further investigate the be-
havior of our model by examining the confusion
matrix (Figure 6). Some of the patterns were ex-
pected: most of the Tarantino (roa-tara) sentences
were classified as Neapolitan (nap) or Sicilian (scn),
the other two Southern varieties of the sample, and
many of the predictions involving Venetian (vec)
were instead sentences from Ladin (lld), which is
spoken in the same region.

One pattern is instead very peculiar. Sicilian
(scn) and Sardinian (sc) were the main responsi-
ble for the underprediction of Ligurian (lij), a re-
sult which was unexpected, given that the three
languages belong to distinct groups, they were all
represented in the evaluation set, and were well
discriminated in the evaluation phase.

From a linguistic viewpoint, this outcome has
an explanation: while Ligurian is a Gallo-Italic
language, even classical works like the Carta dei
Dialetti Italiani by Pellegrini (1977) noticed that

there are at least two broad phenomena that the
language shares with varieties spoken far from the
Gallo-Italic area: the preservation of many word-
final vowels, including -u, and the palatalization of
[pl] and [bl] clusters. This means that even though
Ligurian is clearly a Northern Italy language, an
analysis limited to some of its phonological se-
quences or its morphology could well mistake it
for languages spoken outside of the area.

In particular, the first phenomenon was the main
responsible for the mistakes in this specific case.
Table 9 shows some sentences that were misclassi-
fied, from the Ligurian version of Carlo Collodi’s
The adventures of Pinocchio, and in each of them
we see morphemes which are typically associated
with Southern varieties like Neapolitan and Sicilian
and with Sardinian.

It is worth mentioning that the author of the trans-
lation published a second version of the text in
which the orthographic conventions are different,
and u is replaced by o, which is the case also in
the sentences of the evaluation dataset. This varia-
tion in orthographic conventions explains why this
ambiguity did not emerge in our evaluation phase.
There are two reasons why the ambiguity could
have affected our results more than those of the
other teams. First, in our preprocessing we did
not remove proper names from the test sentences
because in the evaluation phase they did not seem
to affect the results, but clearly having a name like
Pinocchiu being strongly associated with Southern
varieties (the only varieties in which the sequence
cchiu was present in the training data) heavily af-
fected the performance of our classifier. Second,
our classifier was not able to learn that the letter æ
was unambiguously associated with Northern vari-
eties (only Ligurian and Emilian-Romagnol had it),
a cue that should have corrected the mistake.

7 Conclusion

While in some of the previous VarDial evaluation
campaigns neural networks yielded the best perfor-
mance in language identification tasks, (Tudoreanu,
2019; Bernier-Colborne et al., 2019), it was not the
case with this shared task, where traditional shal-
low models like Naïve Bayes and Support Vector
Machines performed better, and the DNN model
we devised failed to capture important cues like the
presence of æ in the text.

Even though we were not able to present neural
models that reach state-of-the-art performance, we
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Target Prediction Text Source
lij nap dumandò u Pinocchiu cun anscêtæ e affannu Pinocchio (version by Cino Peripateta)
lij sc E ti rendime a mæ, e femmu paxe Pinocchio (version by Cino Peripateta)
lij scn Mi suin mariunettu Pinocchio (version by Cino Peripateta)

Table 9: Sample of sentences written in Ligurian that were misclassified. The phonological sequences/morphemes
that are strongly associated with other language varieties (Neapolitan, Sicilian, and Sardinian) are in bold.

still argue that this work makes two contributions.
First, data augmentation has proven to be an ef-

fective way to improve the performance of neural
networks when the data is limited, a point that we
also made last year (Ceolin, 2021) and which has
been confirmed throughout the experiments con-
ducted here. Data augmentation has had limited
application in NLP (Coulombe, 2018; Kobayashi,
2018; Wei and Zou, 2019), but our experiments sug-
gest that it can play an important role in adapting
neural models to the task of language identification
in low-resource settings.

Second, DNNs turned out to be more efficient
than CNNs to handle language identification. They
do not suffer from overfitting in the same way that
CNNs do (Ceolin, 2021), they are more flexible,
and they yield a better performance.

We hope that our results will encourage the ex-
ploration of neural architectures for low-resource
language identification and more research in the
automatic classification of languages varieties in
Italy.
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Nikola Ljubešić, Niko Partanen, Christoph Purschke,
Yves Scherrer, and Marcos Zampieri. 2020. A Re-
port on the VarDial Evaluation Campaign 2020. In
Proceedings of the Seventh Workshop on NLP for
Similar Languages, Varieties and Dialects, pages 1–
14, Barcelona, Spain.

Arthur S House and Edward P Neuburg. 1977. Toward
automatic identification of the language of an utter-
ance. I. Preliminary methodological considerations.
The Journal of the Acoustical Society of America,
62(3):708–713.

Hai Hu, Wen Li, He Zhou, Zuoyu Tian, Yiwen Zhang,
and Liang Zou. 2019. Ensemble Methods to Distin-
guish Mainland and Taiwan Chinese. In Proceedings
of the Sixth Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 165–171, Minneapolis,
USA.

Aaron Jaech, George Mulcaire, Mari Ostendorf, and
Noah A Smith. 2016. A neural model for language
identification in code-switched tweets. In Proceed-
ings of The Second Workshop on Computational Ap-
proaches to Code Switching, pages 60–64, Austin,
USA.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister Lin-
den. 2018a. HeLI-based experiments in Swiss Ger-
man dialect identification. In Proceedings of the Fifth
Workshop on NLP for Similar Languages, Varieties
and Dialects, pages 254–262, Santa Fe, USA.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2018b. Iterative language model adaptation
for Indo-Aryan language identification. In Proceed-
ings of the Fifth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects, pages 66–75, Santa
Fe, USA.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2019a. Discriminating between Mandarin
Chinese and Swiss-German varieties using adaptive
language models. In Proceedings of the Sixth Work-
shop on NLP for Similar Languages, Varieties and
Dialects, pages 178–187, Minneapolis, USA.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2020. Experiments in language variety ge-
olocation and dialect identification. In Proceed-
ings of the Seventh Workshop on NLP for Similar
Languages, Varieties and Dialects, pages 220–231,
Barcelona, Spain.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2021a. Naive Bayes-based Experiments in
Romanian Dialect Identification. In Proceedings of
the Eighth Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 76–83, Kiyv, Ukraine.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2019b. Language model adaptation for lan-
guage and dialect identification of text. Natural Lan-
guage Engineering, 25(5):561–583.

Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Timo-
thy Baldwin, and Krister Lindén. 2019c. Automatic
language identification in texts: A survey. Journal of
Artificial Intelligence Research, 65:675–782.

Tommi Jauhiainen, Tharindu Ranasinghe, and Marcos
Zampieri. 2021b. Comparing approaches to Dravid-
ian language identification. In Proceedings of the
Eighth Workshop on NLP for Similar Languages, Va-
rieties and Dialects, pages 120–127, Kiyv, Ukraine.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial
intelligence, Phoenix, USA.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana.

Tim Kreutz and Walter Daelemans. 2018. Exploring
classifier combinations for language variety identifi-
cation. In Proceedings of the Fifth Workshop on NLP
for Similar Languages, Varieties and Dialects, pages
191–198, Santa Fe, USA.

Marco Lui and Timothy Baldwin. 2014. Accurate lan-
guage identification of Twitter messages. In Pro-
ceedings of the 5th workshop on language analysis
for social media (LASM), pages 17–25, Gothenburg,
Sweden.

Maria Medvedeva, Martin Kroon, and Barbara Plank.
2017. When sparse traditional models outperform
dense neural networks: the curious case of discrim-
inating between similar languages. In Proceedings

https://aclanthology.org/2021.vardial-1.14
https://aclanthology.org/2021.vardial-1.14
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072


108

of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects, pages 156–163, Va-
lencia, Spain.

Giovan Battista Pellegrini. 1977. Carta dei dialetti
d’Italia. Pisa: Pacini.

Cristian Popa and Vlad Stefănescu. 2020. Apply-
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