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Abstract

We report on novel investigations into training
models that make sentences concise. We de-
fine the task and show that it is different from
related tasks such as summarization and sim-
plification. For evaluation, we release two test
sets, consisting of 2000 sentences each, that
were annotated by two and five human anno-
tators, respectively. We demonstrate that con-
ciseness is a difficult task for which zero-shot
setups with large neural language models often
do not perform well. Given the limitations of
these approaches, we propose a synthetic data
generation method based on round-trip trans-
lations. Using this data to either train Trans-
formers from scratch or fine-tune T5 models
yields our strongest baselines that can be fur-
ther improved by fine-tuning on an artificial
conciseness dataset that we derived from multi-
annotator machine translation test sets.

1 Introduction

“Vigorous writing is concise. A sentence
should contain no unnecessary words, a
paragraph no unnecessary sentences, for
the same reason that a drawing should
have no unnecessary lines and a machine
no unnecessary parts.”

Strunk and White (1918)
The Elements of Style

Conciseness is a writing principle of removing
redundant information in text. Even though con-
ciseness is highly valued in expository English
writing and is often considered good writing style
(Brock and Walters, 1992; Zinsser, 2016), it is still
an understudied topic in the natural language pro-
cessing (NLP) community, mainly due to the lack
of annotated data sets. However, automatic meth-
ods for improving conciseness have the potential
to improve the writing experience even for native
speakers, or to provide useful tools for editorial

tasks. In this work we take initial steps towards con-
ciseness from an NLP perspective. We release1 two
hand-annotated test sets for conciseness – Concise-
Lite (2-way annotated) and Concise-Full (5-way
annotated). Concise-Lite annotators were asked
to make minimal changes to the original sentence,
whereas Concise-Full annotators were given the
option to make larger rewrites. Table 1 contains
examples from both test sets. For evaluation, we
compute F0.5-scores of edit spans, a metric that is
also commonly used for grammatical error correc-
tion (GEC) (Dahlmeier and Ng, 2012; Felice et al.,
2016; Bryant et al., 2017). Given that both the test
sets and the evaluation tool we employ are publicly
available, we hope our setup will encourage NLP
researchers to investigate models for conciseness.

We evaluate a range of models on our newly col-
lected conciseness test sets. Our initial approach
follows the recent paradigm of using massively pre-
trained neural models with either no or very little
task-specific training data. Inspired by Brown et al.
(2020) we report on zero-shot experiments with the
large language model LaMDA (Thoppilan et al.,
2022). We also fine-tune the large sequence model
T5 (Raffel et al., 2020) on small conciseness data
sets. We achieve our best results using an unsu-
pervised synthetic data generation method based
on round-trip translations, i.e. sentence pairs that
were generated by translating an English sentence
into another language (e.g. German) and back, a
technique that was previously proposed for GEC
pre-training (Lichtarge et al., 2019). We construct
additional data sets by creating mappings from the
longest to the shortest reference in multi-reference
machine translation (MT) test sets. Our experi-
ments suggest that conciseness is a hard task for
current NLP models. We conclude with a thorough
investigation into the similarities and differences
of our systems and map out the challenges ahead.

1https://github.com/google-research-datasets/
wiki-conciseness-dataset
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Input sentence Concise-Lite Concise-Full
Gemco had a version called Memco,
also owned by Lucky Stores, that oper-
ated stores in the Chicago and Washing-
ton, D.C., areas.

Gemco had a version called Memco,
owned by Lucky Stores, operating
stores in the Chicago and Washington,
D.C.

Memco was a version of Gemco oper-
ated by Lucky Stores in Chicago and
Washington, D.C.

The film was adapted from a best-
selling biography of the brothers, and
was well presented and well received.

The film was adapted from a best-
selling biography of the brothers, and
was well presented and received.

The film, adapted from the brothers’
best-selling biography, was well pre-
sented and received.

Table 1: Example sentences from our Concise-Lite and Concise-Full test sets.

Input sentence Abstractive sentence summarization Conciseness model output
Exxon corp. and Mobil corp. have held
discussions about combining their busi-
ness operations, a person involved in
the talks said Wednesday.

Exxon and Mobil discuss combining
business operations; possible merger.

Exxon Corp. and Mobil Corp. have dis-
cussed combining their business opera-
tions, a person involved in the talks said
Wednesday.

Chuck Knoblauch and Tino Martinez
were as popular as squeegee men a
week ago, the speculation rampant that
one or the other or both might be exiled
if the Yankees’ historic year crumbled
in the post-season.

Knoblauch and Martinez home run hits
cinch Yankee’s First World Series game

Chuck Knoblauch and Tino Martinez
were as popular as squeegee men a
week ago, the speculation rampant that
either or both could be exiled if the
Yankees’ historic year crumbled in the
postseason.

Table 2: Example outputs of one of our conciseness models on sentences from an abstractive sentence summariza-
tion data set (Over et al., 2007, DUC2004).

Input sentence Sentence simplification Conciseness model output
A mutant is a type of fictional character
that appears in comic books published
by Marvel comics.

A mutant is a form of imaginary char-
acter that is seen in comic books pub-
lished by Marvel comics.

A mutant is a fictional character that
appears in comics published by Marvel
comics.

It will then dislodge itself and sink back
to the river bed in order to digest its
food and wait for its next meal.

It will then get away from its place
and sink back into the river bed in order
to digest its food and wait for its next
meal.

It will then dislodge and return to the
riverbed to digest its food and wait for
the next meal.

Table 3: Example outputs of one of our conciseness models on sentences from a text simplification data set (Zhang
and Lapata, 2017, WikiLarge).

2 The conciseness task

In this work we define the conciseness task as ap-
plying the required edits to make a sentence less
wordy without changing its meaning, intent or sen-
timent. We will shed more light on the limitations
of this definition in Sec. 6. We expect conciseness
models to be useful mainly for native or advanced
non-native writers who wish to improve their writ-
ing style. Conciseness is related to several other
NLP tasks, but we argue below that each of these
tasks has a different focus and deserves an indepen-
dent treatment.

Summarization and sentence compression
Abstractive sentence summarization (Over et al.,
2007) attempts to produce a condensed version of
the input text. Summaries are similar to headlines
with a maximum length that is independent of the
input sentence length (Rush et al., 2015). Thus,
generating a summary often requires a much more
severe compression compared to conciseness.

Unlike summarization, conciseness is faithful
to the input and aims to avoid the loss of any
information – the goal is to generate a shorter
sentence that can replace the original sentence
within continuous text (see Table 2 for examples).
Furthermore, most work on summarization focuses
on the compression of entire documents or
paragraphs (Zhang et al., 2020) and not on single
sentences.

Similarly to sentence summarization, sentence
compression also aims to generate a shorter version
of the input text. Many sentence compression mod-
els only allow the deletion of words without the
ability to rephrase parts of the sentence (Knight and
Marcu, 2000; Jing, 2000; Filippova et al., 2015).
Perhaps closest to our work, Mallinson et al. (2018)
trained sentence compression models on round-trip
translations and thereby avoided this restriction.
The main difference to us is that we evaluate a
broader range of methods on human-annotated test
sets which we release for future research.
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Sentence simplification The task of reducing
the linguistic complexity of text to improve read-
ability is known as sentence simplification (Sag-
gion, 2017). It can be subdivided into lexical (e.g.
replacing uncommon words with synonyms) and
syntactic (e.g. changing passive to active) simpli-
fication (Devlin, 1999; Carroll et al., 1999). Most
forms of syntactic simplification result in concise
outputs,2 but lexical simplification may yield even
more verbose outputs. For example, replacing ‘to
portray’ with a simpler but verbose phrase such
as ‘to describe very vividly’ would be an instance
of lexical simplification but not of conciseness.
Conversely, a conciseness system may substitute a
phrase with another that is concise but less common
and thereby deteriorate readability. Another differ-
ence is that simplification often targets people with
cognitive disabilities (Devlin, 1999; Carroll et al.,
1999; Rello et al., 2013) or low literacy (Watanabe
et al., 2009) or second language learners (Petersen
and Ostendorf, 2007; Siddharthan, 2002; Xia et al.,
2016) whereas conciseness can be thought as writ-
ing assistance for proficient writers. Table 3 con-
trasts simplification and conciseness with the help
of example sentences.

Style transfer Text style is an important consid-
eration for several NLP tasks (Fu et al., 2018). For
example, it is desirable for MT output to match
the stylistic properties of the source sentence (Sen-
nrich et al., 2016; Lohar et al., 2017). Natural
language generation systems not only need to take
into account the content of generated utterances
but also other attributes such as style and sentiment
(Li et al., 2018). Text-to-text style transfer systems
have been used to change Shakespearean English
to modern English (Jhamtani et al., 2017). We con-
sider conciseness as a special case of style transfer
with a single source style (wordy) and one target
style (concise). However, while most style transfer
systems attempt to change attributes like sentiment
or political slant (Li et al., 2018; Fu et al., 2018;
Prabhumoye et al., 2018; Shen et al., 2017), our
conciseness models aim to keep them unchanged.

Paraphrasing Paraphrasing databases such as
PPDB (Ganitkevitch et al., 2013; Pavlick et al.,
2015) that store pairs of phrases with the same
meaning have proven useful for various NLP tasks
such as textual entailment (Bjerva et al., 2014) and

2An exception would be sentence splitting since it is a syn-
tactic simplification strategy that often makes the text longer.

semantic similarity (Han et al., 2013). In this work
we include a paraphrasing system for comparison.

3 Modeling conciseness

The approaches in this section cover a wide range
of NLP models to convey a better sense for the task.
They are intended to serve as baselines to compare
against, and as a starting point for future research.

3.1 Giant language models (LaMDA)

Large language models (LMs) such as OpenAI’s
GPT-3 (Radford et al., 2019), Google’s Meena
(Adiwardana et al., 2020) and PaLM (Chowdhery
et al., 2022) and Microsoft’s Turing NLG3 have
recently captured the interest of the general public
through their ability to generate text that is some-
times astonishingly difficult to distinguish from
text written by humans. While these models are
useful for building open-domain dialog agents, they
also have the potential to solve specific NLP prob-
lems when provided with an appropriate preamble
(LM history) (Brown et al., 2020). We expect gen-
eral dialog agents to understand the nuances of
language such as grammar, conciseness, etc. Thus,
we explored using the large LM LaMDA (Thop-
pilan et al., 2022) with a zero-shot preamble that
steers the model towards making a sentence more
concise. We use the following template to provide
the LM context:

Here is some text:
“[INPUT_SENTENCE]”. Rewrite it to be
more concise.

where [INPUT_SENTENCE] is replaced by the
source sentence.4 We post-process the output to
a) discard any additional comment that the model
generated besides the rewrite, and b) retain only the
first suggestion if multiple rewrites are generated.

3.2 Transformers pre-trained on round-trip
translations

This method employs synthetic training data gener-
ated using MT. Fig. 1 illustrates the approach. First,
we translate an English sentence into a pivot lan-
guage such as German, and then translate it back

3https://msturing.org/
4This prompt was best among a small number of zero-

shot and few-shot prompts we explored. Systematic prompt
engineering could potentially improve LaMDA results at a sig-
nificantly higher computational cost, but we have not explored
this option in this work since we focus on conciseness as an
NLP task.
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Figure 1: Synthetic pre-training data generation using round-trip translations.

Name Number of Average source sentence Average target sentence Compression
sentence pairs length in words length in words ratio

Pre-training and fine-tuning data sets
RoundTrip-French 169M 20.6 19.4 0.94
RoundTrip-German 169M 20.4 19.4 0.95
RoundTrip-Japanese 169M 20.4 17.9 0.88
RoundTrip-Russian 169M 20.9 19.5 0.93
MultiRefMT-FineTune 9K 31.9 26.1 0.82
Development sets
MultiRefMT-Dev 820 33.3 25.8 0.77
Hand-annotated test sets
Concise-Lite 2K 23.7 21.2 0.89
Concise-Full 2K 23.7 20.1 0.85

Table 4: Data set statistics. The compression ratio is the number of target words divided by the number of source
words.

into English. This idea of generating sentence pairs
via round-trip translation was initially proposed by
Lichtarge et al. (2019) to pre-train GEC systems.
In this work, we construct synthetic parallel data
for conciseness by using the longer sentence as the
source and the shorter sentence as the target sen-
tence. We then train a standard neural sequence-to-
sequence Transformer (Vaswani et al., 2017) on the
synthetic data until convergence.5 This approach is
simple and enables us to generate large quantities
of data, but the resulting data set contains noise.
For example, round-trip translation pairs often con-
tain synonym substitutions (see the replacement of
almost with nearly in the second sentence in Fig.
1) that do not help conciseness. Furthermore, MT
may fail to translate the sentence properly, resulting
in an undesirable change of meaning (see the third
sentence in Fig. 1). Another problem is that it is
hard to control the compression ratio in the data set.
Despite these limitations we show in Sec. 5 that

5More details about the Transformer model implementa-
tion are provided in Appendix A.

round-trip translations are useful for pre-training.

3.3 Fine-tuning T5
The final method considered in this work employs
T5 (Raffel et al., 2020). Very large sequence-to-
sequence models have been found to be extremely
powerful, even for challenging language tasks with
a limited amount of training data. We fine-tuned
the publicly available 11B parameter version (xxl)
of T56, with a batch size of 1,024 sentences and a
learning rate of 10−4.

4 Data sets

Table 4 lists the data sets used in this work. Table
5 contains information about their provenance.

Round-trip translations (RoundTrip-*) Our
Transformer system is pre-trained on round-trip
translations of sentences crawled from news web-
sites following the recipe of Lichtarge et al. (2019)

6https://github.com/google-research/
text-to-text-transfer-transformer/blob/main/
released_checkpoints.md

46

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md


Name Reference Type
RoundTrip-* Lichtarge et al. (2019) Round-trip translations (news)
MultiRefMT-FineTune LDC2010T10, LDC2010T11, 4-annotator MT test sets (Arabic-English,

LDC2010T12, LDC2010T14 Chinese-English)
MultiRefMT-Dev LDC2013T03 4-annotator MT test set (Chinese-English)
Concise-Lite This work 2-way hand-annotated conciseness test set
Concise-Full This work 5-way hand-annotated conciseness test set

Table 5: Synthetic and hand-annotated conciseness data sets used in this work.

Figure 2: Fine-tuning data generation using multi-reference MT test sets.

that were prepared as described in Sec. 3.2. For
fine-tuning T5 on round-trip translations we ran-
domly sample 1M sentence pairs from the full data
set to limit computation.

OpenMT-based fine-tuning and development
sets (MultiRefMT-*) We derive fine-tuning and
development sets from existing publicly available
MT test sets. It is common practice in several NLP
areas to collect reference sentences from multiple
annotators to increase the trustworthiness of auto-
matic evaluation measures, for example in gram-
matical error correction (Ng et al., 2014; Bryant
and Ng, 2015; Napoles et al., 2017), MT (Fre-
itag et al., 2020), and image caption generation
(Zheng et al., 2018). Multi-reference MT test sets
have been used in the past to evaluate paraphras-
ing or sentence compression systems (Ganitkevitch
et al., 2011; Pang et al., 2003). We make use
of these multi-annotator test sets by selecting the
longest reference sentence as the (wordy) source
sentence and the shortest reference sentence as
the golden (concise) target sentence (Fig. 2). Our
MultiRefMT-FineTune set uses all Arabic-English
and Chinese-English NIST Open Machine Trans-
lation (OpenMT) evaluation sets from 2002-2005.
The MultiRefMT-Dev set is based on the Chinese-
English 2012 OpenMT evaluation set.

Hand-annotated test sets (Concise-*) Deriving
conciseness test sets from multi-reference MT eval-
uation sets is viable as a first approximation given

that all references have similar meaning, intent, and
sentiment by design (apart from annotation errors).
However, it does not allow us to determine how
wordy the sentence is in the first place. If all MT
references agreed, it would suggest that the original
source sentence has a single obvious translation,
not that the references are already concise.

Therefore, we collected two new data sets, con-
sisting of 2000 sentences each, that were explic-
itly annotated for conciseness – Concise-Lite and
Concise-Full. Both data sets used the same set of
source sentences drawn from Wikipedia. Sentences
that a) were ungrammatical, b) contained fewer
than 15 words or c) included mismatched quota-
tion marks were not selected. While Concise-Lite
annotators were asked to make minimal changes to
the original sentence, Concise-Full annotators were
given the flexibility to make larger changes to the
original sentence. The exact annotator guidelines
are listed in Appendix B.

We will make the test sets publicly available to
establish a benchmark for researchers to evaluate
conciseness models.

5 Results

We use the GEC evaluation toolkit ERRANT
(Bryant et al., 2017; Felice et al., 2016) to com-
pute F0.5-scores on spaCy7-tokenized text. Like in
GEC, precision is weighted twice as high as recall
using the F0.5-score, which matches our intuition

7https://spacy.io/
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System Concise-Lite Concise-Full
P R F0.5 P R F0.5

Other NLP tasks
a Summarization: Pegasus 0.8 1.4 0.9 2.0 3.9 2.2
b Summarization: Long-T5 1.7 6.3 2.0 3.5 11.7 4.1
c Simplification: T5 7.4 5.4 6.9 13.8 9.9 12.8
d Paraphrasing: ParaNMT 9.3 21.4 10.4 15.4 25.1 16.7

Conciseness models
e Giant-LM (zero-shot LaMDA) 4.4 13.5 5.1 8.5 20.0 9.6
f Transformer (RT) 13.6 21.3 14.6 21.1 25.5 21.9
g Transformer (RT→MT) 15.0 25.8 16.4 24.4 29.6 25.2
h T5 (RT) 18.4 19.5 18.6 29.1 24.2 28.0
i T5 (RT→MT) 16.0 26.8 17.4 26.6 30.6 27.3

Table 6: System comparison on our two conciseness test sets. “RT” denotes models trained on round-trip transla-
tions. “RT→MT” configurations are subsequently fine-tuned on MultiRefMT-FineTune.

System Number of parameters
Giant-LM (LaMDA) 137B
T5 11B
Transformer 313M

Table 7: Number of model parameters.

0% 3% 6% 9% 12% 15% 18% 21%

Concise-Lite

Concise-Full

F0.5

Figure 3: Transformer models trained from scratch on
round-trip translations via different pivot languages.

that a conciseness system should act as a minimally
intrusive writing assistant for which false positives
are far worse than false negatives.

5.1 System comparison

Table 6 compares all approaches from Sec. 3 and
the following baselines from other NLP tasks:

• Summarization: Long-T5 (Guo et al., 2022)
and Pegasus (Zhang et al., 2020).

• Simplification: T5 fine-tuned on the Wiki-
Large simplification dataset (Zhang and La-
pata, 2017) using a procedure similar to our
T5-conciseness system from Sec. 3.3.8

• Paraphrasing: A Transformer model trained
on the full ParaNMT-50M (Wieting and

8Our simplification baseline achieves 33.1 SARI on the
WikiLarge test set.

Gimpel, 2018) training set using the hyper-
parameters in Appendix A.

The summarization baselines (rows a and b) per-
form poorly since they are mostly trained on full
documents. The simplification system achieves
a slightly higher performance but is weaker than
the paraphrasing or the Transformer/T5 based con-
ciseness systems. The paraphrasing system (row
d) achieved a recall of over 20% on both test
sets, but the precision is relatively low because
the ParaNMT training set contains various types
of edits such as synonym replacements or word re-
orderings that do not necessarily help conciseness.

The zero shot Giant-LM (LaMDA) setup (row e)
was not able to match either the precision or recall
of the other conciseness systems. Round-trip trans-
lations are useful for both training a Transformer
model from scratch (row f) and fine-tuning T5
(row h). Subsequent fine-tuning on MultiRefMT-
FineTune yields large precision and recall gains
for the Transformer model (row g). MultiRefMT-
FineTune also improves the recall for T5, but the
precision suffers (row i).9 T5 outperforms the
Transformers in terms of F0.5-score by achieving
higher precision on both sets but has many more
parameters (Table 7).

5.2 Ablation studies and analyses

The following analyses were carried out on the
Concise-Lite and Concise-Full test sets.

Round-trip translation languages Our final
models in Table 6 use round-trip translations from
four different pivot languages: French, German,

9T5 is fine-tuned for 4K steps on the 1M round-trip trans-
lations and for 1K steps on the smaller MultiRefMT-FineTune
set.
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Figure 4: Trade-off between semantic similarity and
the sentence compression ratio.

Japanese, and Russian. Fig. 3 shows that combin-
ing all languages yields consistent gains on both
test sets over using any single language.

Preserving semantics To measure how well our
systems retain the meaning of the original sentence
we computed semantic similarity scores between
the input and the output sentences using the models
provided by the Semantic Reactor toolkit (Yang
et al., 2018; Cer et al., 2018). Systems and annota-
tors trade off compression against semantic similar-
ity differently (Figure 4). There is a large variabil-
ity in compression ratio (i.e. the number of target
words divided by the number of source words) and
semantic similarity between the Concise-Full an-
notators (dark purple). The Giant-LM (blue) is
more prone to meaning change than other systems,
and is not effective in reducing the sentence length.
Fine-tuning on MultiRefMT-FineTune (empty vs.
filled circle/square) improves the compression ratio
but hurts semantic similarity. T5 (red) preserves
semantics better than the Transformer but outputs
slightly longer sentences.

Readability Fig. 5 shows that our systems often
improve the readability of the sentence, in partic-
ular the Giant-LM system. The Giant-LM prefers
simpler language as it was originally designed for
dialog applications (Thoppilan et al., 2022). In con-
trast, the Concise-Full annotators tend to achieve
concision using longer and more complex words,
resulting in a decline in readability (dark purple).

Annotator (Concise-Full)

Annotator (Concise-Lite)

T5 (RT->MT)

T5 (RT)

Transformer (RT->MT)

Transformer (RT)

ParaNMT

Giant-LM (zero-shot)

-5% 0% 5% 10%15%20%

Rel. change in FK score

Figure 5: Relative change in Flesch–Kincaid readabil-
ity scores (Kincaid et al., 1975).

Annotator (Concise-Full)

Annotator (Concise-Lite)

T5 (RT->MT)

T5 (RT)

Transformer (RT->MT)

Transformer (RT)

ParaNMT

Giant-LM (zero-shot)

-2% 0% 2% 4% 6%

Rel. change in per-token IDF

Figure 6: Relative change in information density.

Information density We expect the outputs of a
high-performing conciseness system to have a high
information content per word. This information
density can be measured using per-token inverse
document frequency (Jones, 1973):

idf(t) = log
N

|{d ∈ D : t ∈ d}| ,

where t is the token, N is the total number of doc-
uments, and D is the document collection. In our
case, the document frequencies are derived from
the C4 corpus (Raffel et al., 2020). Fig. 6 shows
that the reference sentences from the Concise-Lite
and Concise-Full annotators indeed have a higher
per-token IDF than the input sentences (pink and
dark purple bars). The results on the system out-
puts are mixed, but fine-tuning on MultiRefMT-
FineTune improves the per-token IDF for the Trans-
former and T5 (“RT” vs. “RT→ MT”).

Synonym substitutions One problem with us-
ing round-trip translations for training and multi-
reference test sets for evaluation is that both may
contain synonym substitutions that do not help
conciseness. We counted synonym substitutions
by extracting all 1:1 substitutions and checking
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Without A1 Without A2 Without A3 Without A4 Without A5
P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

Annotator A1 45.8 52.0 46.9
Annotator A2 16.3 32.0 18.1
Annotator A3 51.5 48.4 50.9
Annotator A4 23.1 32.6 24.5
Annotator A5 33.5 27.1 32.0
Transformer 22.7 27.6 23.5 19.7 28.6 21.0 23.6 27.7 24.3 20.8 26.8 21.8 23.0 25.9 23.6
T5 25.3 28.9 26.0 20.7 29.2 22.0 25.7 28.9 26.3 23.1 28.0 23.9 25.4 27.0 25.7

Table 8: Measuring annotator agreement on Concise-Full by evaluating each single annotator using the other four
annotations as references. We list the Transformer and T5 system outputs (“RT→MT”) for comparison.

Annotator (Concise-Full)

Annotator (Concise-Lite)

T5 (RT->MT)

T5 (RT)

Transformer (RT->MT)

Transformer (RT)

ParaNMT

Giant-LM (zero-shot)

 0  0.04  0.08  0.12

Synonym repl. per sentence

Figure 7: Number of 1:1 synonym substitutions.

whether these were marked as synonyms in Word-
Net (Miller, 1995). Fig. 7 shows that most of our
systems replace synonyms on an average in every
10th sentence. Fine-tuning the Transformer or T5
on MultiRefMT-FineTune reduces the number of
synonym substitutions. Synonyms are much less
of a problem with the Giant-LM (blue bar) which
was not trained on round-trip translations.

6 Limitations

In terms of both information density (Fig. 6) and
number of unnecessary synonym replacements (Fig.
7), the annotators are clearly separated from most
of our automatic systems, illustrating the gap to
human performance on this task.

Our experiments showed that the Giant-LM
(zero-shot) underperformed the other approaches.
Preliminary experiments using few-shot learning
did not yield improvements over the zero-shot set-
ting. We expect the performance of Giant-LM to
improve via systematic prompt engineering.

Another challenge lies in the intrinsic uncer-
tainty (Ott et al., 2018; Stahlberg et al., 2022) of
the conciseness task, i.e. the existence of multi-
ple viable ways to make a sentence more concise.
Table 8 demonstrates that the five Concise-Full an-
notators usually did not agree on a single concise

version of a sentence, leading to great variability
in F0.5-scores when evaluated against each other.10

Therefore, adequate system outputs may get penal-
ized if they do not agree with one of the human
references. We mitigate this concern by using mul-
tiple annotators, but – like in other intrinsically
uncertain NLP tasks such as MT – a certain level
of noise remains in our evaluation.

Limitations of our task definition We acknowl-
edge that there are various aspects of conciseness
that are not covered by our definition in Sec. 2
(“applying the required edits to make a sentence
less wordy without changing its meaning, intent
or sentiment”). First, we intentionally did not in-
clude the use of context in our definition. In prac-
tice, however, appropriate levels of conciseness
can be highly context dependent. Treating the prob-
lem on the sentence-level is limiting because using
inter-sentential cross-references for conciseness re-
quires access to the document-level context such as
the previous sentence. Furthermore, the sentence-
level restriction prevents the systems from improv-
ing conciseness through sentence splitting (Botha
et al., 2018) or merging (Geva et al., 2019). In real-
life situations, the context may also be provided
through other channels such as physical medium
(e.g. pointing to things) or social factors (e.g. does
person B know person A?). We also noticed that
our Concise-Full annotators occasionally relied on
common knowledge to shorten sentences (see Ap-
pendix C for examples), a strategy that is not cov-
ered by our definition and thus makes our evalu-
ation slightly more noisy. Exploring the various
forms of context for conciseness is a promising
potential direction for future research.

Another limitation of our definition is that it does
10On some of the setups in Table 8 (e.g. “Without A2” or

“Without A4”), T5 achieves scores comparable to the human
annotators. We emphasize that this is a sign of low inter-
annotator agreement and does not allow us to claim human
parity since this pattern is not consistent across annotators.
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not allow for a change of semantics, intent, or senti-
ment. In practice, however, conciseness or the lack
of it may reflect the intent of the speaker, for exam-
ple in indicating emergency situations (signalling
urgency through brevity) or in detecting lying (Vrij,
2005). Another manner in which conciseness can
carry meaning is when used as a rhetorical device
to persuade or inspire the audience, a well-known
strategy in legal writing (Osbeck, 2011) that was
perhaps most famously demonstrated by Abraham
Lincoln in the Gettysburg Address (Oseid, 2009).
Furthermore, our ablation studies in Sec. 5.2 re-
vealed that systems and human annotators alike
sometimes accepted a minor loss of (irrelevant) in-
formation to achieve better compression, which,
despite being contrary to our definition, may be
acceptable in practice.

7 Conclusion

Our work is an initial exploration of conciseness
from an NLP point of view. We compared a variety
of approaches to the problem using popular tech-
niques based on synthetic data generation or giant
pre-trained sequence models. Round-trip trans-
lations provide a useful data source for training
conciseness models but can introduce undesirable
synonym substitutions.11 Our analyses show that
our systems trade off the objectives in conciseness
differently (e.g. reducing the sentence length vs.
preserving semantics vs. improving readability vs.
increasing information density). Further experi-
ments are necessary to understand how these trade-
offs would impact the user experience or potential
downstream NLP tasks. We expect our study and
our annotated test sets to provide impetus for re-
searchers to explore this field further.
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Parameter Value
Attention dropout rate 0.1
Attention layer size 1,024
Batch size 256
Beam size 10
Dropout rate 0.1
Embedding size 1,536
Learning rate 0.4
MLP dimension 4,096
Number of attention heads 4
Number of layers 6
Number of fine-tuning iterations 100-2,000

(early stopping)
Number of pre-training iterations 100,000
TPU topology 4x4

Table 9: Transformer hyper-parameters.

A Transformer hyper-parameters

Our round-trip translation based models (Sec. 3.2) are trained on TPUs with the LAMB optimizer (You et al.,
2020) in JAX (Bradbury et al., 2021). We used the Transformer (Vaswani et al., 2017) implementation
from the MT example in Flax12 with the 32K SentencePiece vocabulary (Kudo and Richardson, 2018)
from T5 (Raffel et al., 2020). Model hyper-parameters are listed in Table 9.

B Annotator instructions

The Concise-Lite annotators received the following instructions:

Rewrite the sentence to make it more concise, without changing the sentence structure. By
sentence structure, we mean the general order of words in the sentence should not change, some
sub-phrases could be rewritten/replaced/deleted (3-5 words). These should be relatively minor
rewrites, such that you can replace a phrase with a shorter alternative without reorganizing the
entire sentence. The sentences should be annotated in isolation without any assumptions on
preceding or succeeding sentences.

The Concise-Full instructions are:

Rewrite the sentence to achieve maximum conciseness. These can be major rewrites that alter
the sentence structure to make it as concise as possible. The annotator needs to make sure
that the sentence stays the same semantically (meaning, intent & sentiment) and there is no
loss of any critical information. The sentences should be annotated in isolation without any
assumptions on preceding or succeeding sentences.

C Example outputs

Table 10 shows some example outputs of our systems and the baselines. The summarization (Long T5)
system frequently changes the meaning of the source sentence. The simplification (Simplify T5) system
performs slightly better but still changes the meaning in some instances (example c). The T5 system
is mostly faithful to the meaning of the source sentence. We observe occasional slight meaning shifts
with the Transformer and ParaNMT systems (see e.g. examples b) and g)). The Giant-LM often changes
or expands the information in the source sentence (e.g. examples b) and d), f)) or adds certain artefacts
(e.g. “Here is a revision: ‘. . . ’ ” in example a)) that stem from its main use case as a user-facing dialog
agent. Being a paraphrasing system, ParaNMT often falls short of actually improving the conciseness
(examples c) and f)), and often uses unnecessary synonyms. Synonym replacements can also be found
sometimes in Transformer and T5 outputs (examples a) and c)), but not in Giant-LM and human-annotated
sentences. The pre-trained models Giant-LM and T5 are sometimes able to compress sentences by relying

12https://github.com/google/flax/tree/master/examples/wmt/
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Example a)
Source A few other men fell and sneaked back, but I don’t know their names.
Long T5 A few other men fell and sneaked back.
Simplify T5 A few other men fell and sneaked back, but I don’t know their names.
Giant-LM Here is a revision: Other men fell and snuck back, but their names I do not know.
ParaNMT several other men fell and crept back, but I don’t know their names.
Transformer Some other men fell and sneaked, but I do not know their names.
T5 A few other men fell and escaped, but I do not know their names.
Human (C.-Lite) Some other men fell and sneaked back, but I don’t know their names.
Human (C.-Full) Others fell and snuck back, but I don’t know their names.
Example b)
Source "Helplessly Hoping" is a 1969 song by the American folk rock group Crosby, Stills, and Nash.
Long T5 Helplessly Hoping is a 1969 song by the American folk rock group Crosby, Stills and Nash.
Simplify T5 Helplessly Hoping is a song by the American folk rock group Crosby, Stills & Nash .
Giant-LM "Helplessly Hoping" is a 1969 song by the American folk rock group Crosby, Stills, and Nash. The song was written for Stephen Stills’

wife.
ParaNMT "helpless Hoping" is a 1969 song from the American rock band Crosby, Stills and Nash.
Transformer "Helpless Hoping" is a 1969 song by American folk rock group Crosby, Stills and Nash.
T5 "Helplessly Hoping" is a 1969 song by the American folk rock group Crosby, Stills and Nash.
Human (C.-Lite) "Helplessly Hoping" is a 1969 song by American folk rock group Crosby, Stills, and Nash.
Human (C.-Full) Crosby, Stills, and Nash’s "Helplessly Hoping" was released in 1969.
Example c)
Source The NLA Tower, Britain’s 88th tallest tower, is an example of original 1970s architecture in the town.
Long T5 The NLA Tower, Britain’s 88th tallest tower, is an example of original 1970s architecture in the town.
Simplify T5 The NLA Tower is an example of original 1970s architecture in the town .
Giant-LM NLA Tower, Britain’s 88th tallest tower, is a 1970s example of architecture in the town.
ParaNMT the NLA Tower, the 88th highest British tower, is an example of the architecture of the 1970s in the city.
Transformer The NLA Tower, Britain’s 88th tallest tower, is an example of the city’s original 1970s architecture.
T5 The NLA Tower, Britain’s 88th tallest building, is an example of the town’s original 1970s architecture.
Human (C.-Lite) The NLA Tower, Britain’s 88th tallest tower, is an original 1970s architecture in town.
Human (C.-Full) Britain’s 88th tallest tower, the NLA Tower, is an original 1970s architecture.
Example d)
Source There are some claims that even the kaiser had been amused by the incident.
Long T5 Police say the kaiser used a special case kaiser to cover the snafu on a McDonald’s breakfast.
Simplify T5 There are some claims that even the kaiser had been amused by the incident.
Giant-LM the kaiser was reportedly amused by the incident – This is a pretty vague phrase, in fact. Was the kaiser laughing? Grinning?
ParaNMT there are some claims that even the kaiser was amused by the incident.
Transformer There are some claims that even Kaiser was amused by the incident.
T5 Some claim that even the Kaiser was amused by the incident.
Human (C.-Lite) There are claims that even the Kaiser was amused by the incident.
Human (C.-Full) Some claim that the incident amused even the kaiser.
Example e)
Source Approximately 50% of viewers spend between one and three hours watching TV per day.
Long T5 TV Viewership Up to 50%.
Simplify T5 Approximately 50% of viewers spend between one and three hours watching TV per day.
Giant-LM About half of viewers watch TV for 1 to 3 hours each day.
ParaNMT approximately 50% of viewers spend one to three hours watching TV every day.
Transformer About 50% of viewers spend between one and three hours watching TV a day.
T5 About 50% of viewers watch TV for one to three hours a day.
Human (C.-Lite) Approximately 50% of viewers spend between one and three hours watching TV daily.
Human (C.-Full) 50% of viewers spend 1-3 hours watching TV daily.
Example f)
Source He studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned his medical degree in 1910.
Long T5 German Doctor Emil Henckel von Donnersmarck Dies at 87
Simplify T5 He studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned his medical degree in 1910.
Giant-LM He studied medicine in Tübingen, Freiburg, Berlin and Heidelberg.
ParaNMT he studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned a medical degree in 1910.
Transformer He studied in Tübingen, Freiburg, Berlin and Heidelberg, where he graduated in medicine in 1910.
T5 He studied in Tübingen, Freiburg, Berlin and Heidelberg, where he received his medical degree in 1910.
Human (C.-Lite) He studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned his medical degree in 1910.
Human (C.-Full) He studied at Tübingen, Freiburg, Berlin, and Heidelberg, earning his medical degree in 1910.
Example g)
Source Almost without exception, the Keetoowahs sided with the Northern States during the Civil War.
Long T5 Keetoowahs Speak Out on Civil War.
Simplify T5 Almost without exception, the Keetoowahs sided with the Northern States during the Civil War.
Giant-LM Almost without exception, the Keetoowahs sided with the Union.
ParaNMT almost without exception, Keetoowah sailed with the Northern States during the Civil War.
Transformer Almost without exception, the Keetoowahs joined the northern states during the civil war.
T5 Almost without exception, the Keetoowahs sided with the North during the Civil War.
Human (C.-Lite) The Keetoowahs sided with the Northern States during the Civil War.
Human (C.-Full) During the Civil War, the Keetoowahs sided with the North.

Table 10: Example sentences from our conciseness systems and other baselines (summarization: Long T5, simpli-
fication: Simplify T5, ParaNMT). We use the “RT→ MT” setups for the Transformer and T5 systems. We show
one Concise-Lite and one Concise-Full human reference.

on background knowledge, e.g. by replacing “the Northern States” with “the Union” or “the North” in
example g).
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