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Abstract
Controllable text simplification assists lan-
guage learners by automatically rewriting com-
plex sentences into simpler forms of a tar-
get level. However, existing methods tend
to perform conservative edits that keep com-
plex words intact. To address this problem, we
employ lexically constrained decoding to en-
courage rewriting. Specifically, the proposed
method predicts edit operations conditioned to
a target level and creates positive/negative con-
straints for words that should/should not appear
in an output sentence. The experimental results
confirm that our method significantly outper-
forms previous methods and demonstrates a
new state-of-the-art performance.

1 Introduction

Text simplification (Shardlow, 2014) paraphrases
complex sentences into simpler forms. Control-
lable text simplification (Scarton and Specia, 2018;
Nishihara et al., 2019; Agrawal et al., 2021) is a
task in text simplification that aims to rewrite a
sentence for an audience of a specific level. It is
a crucial technique in assisting children and non-
native speakers with language learning (Watanabe
et al., 2009; Allen, 2009).

Text simplification can be performed based on
three approaches: (1) translation-based, (2) edit-
based, and (3) hybrid approaches. The translation-
based approach, e.g., (Nisioi et al., 2017; Zhang
and Lapata, 2017; Kriz et al., 2019; Surya et al.,
2019; Martin et al., 2022), formalizes text simpli-
fication as monolingual machine translation from
complex to simple sentences. This approach can
rewrite a sentence flexibly; however, it implicitly
learns simplification operations through transla-
tion. The infrequent nature of simplification op-
erations hinders a model from learning necessary
operations, which makes the model conservative to
maintain complex words intact (Zhao et al., 2018;
Kajiwara, 2019). In contrast, the edit-based ap-
proach (Alva-Manchego et al., 2017; Dong et al.,

2019; Kumar et al., 2020; Mallinson et al., 2020;
Omelianchuk et al., 2021) rewrites an input by ap-
plying edit operations of add or replace, keep,
and delete to words. This approach can address
the conservativeness problem owing to explicit
word-by-word edits. However, it lacks the flexi-
bility to rewrite an entire sentence to drastically
change its syntactic structure.

Finally, the hybrid approach takes advantages
of the above two by applying lexical constraints
to translation-based models. Nishihara et al.
(2019) added weights to a loss function to bias
a sequence-to-sequence (seq2seq) model to output
certain words. Agrawal et al. (2021) biased a non-
autoregressive simplification model by setting an
initial state of decoding, considering the lexical
complexity of a source sentence. The constraints
in these studies were soft; in contrast, Kajiwara
(2019) and Dehghan et al. (2022) applied a hard
constraint using lexically constrained decoding to
avoid outputting complex words. In spite of their
success, these two methods lack flexibility in their
constraints. They only use negative constraints to
avoid outputting specified words. However, pos-
itive constraints, which encourage the output of
specified words, are also valuable for text simplifi-
cation.

In this study, we propose a hybrid method for
controllable text simplification with flexible com-
binations of positive and negative constraints us-
ing NeuroLogic decoding (Lu et al., 2021). The
proposed method predicts edit operations condi-
tioned on a target level to generate positive and
negative lexical constraints sensible to a target
level. Experiments on Newsela (Xu et al., 2015)
and Newsela-Auto (Jiang et al., 2020) reveal that
the proposed method outperforms previous meth-
ods and achieves a new state-of-the-art perfor-
mance. The codes and outputs of the proposed
method will be released at https://github.com/
t-zetsu/ConstrainedTS.
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Figure 1: Overview of the proposed method

2 Proposed Method

Figure 1 illustrates an overview of the proposed
method, in which generated constraints are applied
to a seq2seq model via NeuroLogic decoding.

2.1 Word Level Lexicon
We create word level lexicons to generate con-
straints sensible to a target level. We assign word
levels based on their frequency in sentences of a cer-
tain level, assuming that higher-level words would
frequently appear in higher-level sentences. The
frequency of a word w in sentences of a level ℓ is
as follows: f(w, ℓ) = nℓ(w)∑

ŵ∈Vℓ
nℓ(ŵ) , where nℓ(w)

denotes the number of occurrences of w in ℓ-level
sentences, and Vℓ denotes a set of unique words
in those sentences. A word level k is determined
as k = argmaxℓ f(w, ℓ). Finally, we collect all
ℓ-level words as a lexicon Dℓ for each level.

2.2 Constraint Generation
Constraints are generated in three steps. The pro-
posed method first predicts all edit operations in
an input conditioned on a target level. Following
this, it identifies lexical paraphrases for replacing
higher-level words. Finally, positive and negative
constraints are assembled based on these edit opera-
tions, lexical paraphrases, and word level lexicons.

Edit Operation Prediction The proposed
method uses a pre-trained language model to
predict an edit operation among replace, keep,
and delete for each word. These edit operations
should depend on a target level. Therefore, the
input sentence is tagged with a special token
representing the target level, e.g., “sentence <3>.”

Manual annotation of these edit operations is
costly. Thus, we synthesize a fine-tuning corpus
using a state-of-the-art word alignment model (Lan
et al., 2021). Specifically, we obtain word align-
ments between parallel sentences in a simplifica-
tion corpus. Words with null-alignments are as-

target level: ℓ replace keep delete

word level ≤ ℓ — P —
word level > ℓ N, P — N

Table 1: Assembling positive (P) and negative (N) con-
straints relevant to controlling output levels

signed delete labels. Among the aligned words,
words aligned with identical counterparts are as-
signed keep labels, and the ones aligned to words
with different surfaces are assigned replace labels.
This pseudo-labelled corpus is used for fine-tuning.

Replacement Word Identification The pro-
posed method identifies a word ŵ that should re-
place another word w whose predicted label is
replace. Given the target level ℓ of simplifica-
tion, it computes the semantic similarity between
w and words in {Dk|k ≤ ℓ} and identifies the
replacement word ŵ as the one with the highest
similarity. For similarity estimation, we fine-tune a
pre-trained language model.

Constraint Assembling Finally, we generate
positive and negative constraints based on the pre-
dicted edit operations and the replacement words.
We focus on the edit operations that are relevant to
controlling output levels. Note that the predicted
edit operations should be a mixture of various edits,
including general lexical paraphrasing and omis-
sions. Therefore, we use the word level lexicons
to select operations relevant to controlling output
levels as summarized in Table 1.

Specifically, words with the delete label trans-
form into negative constraints if their levels are
higher than the target level ℓ. Words with keep
labels transform into positive constraints if their
levels are lower than or equal to ℓ. Finally, words
with replace labels transform into negative con-
straints and their replacement words transform into
positive constraints if their levels are higher than ℓ.

The cases where the edit operations and the word
level lexicons conflict, i.e., words whose levels are
lower than or equal to ℓ but predicted replace and
delete operations, are expected to be independent
for controlling output levels and correspond to gen-
eral lexical paraphrasing and omissions. Therefore,
we exclude these operations from the constraints
and rely on the seq2seq model for their handling.
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3 Experiments

3.1 Dataset

To evaluate the proposed method on the control-
lable text simplification task, we used Newsela and
Newsela-Auto, which provide pairs of complex and
simple sentences with K-12 grade levels. These
are the only corpora providing fine-grained levels,
which makes them standard datasets for evaluat-
ing controllable text simplification models. While
Newsela-Auto preserves higher quality sentence
alignments, we also experimented on Newsela for
comprehensive comparison to previous studies. For
Newsela, we used the data-split by Zhang and La-
pata (2017) consisting of 94, 208 training, 1, 129
validation, and 1, 077 test sentences. For Newsela-
Auto, we used the official split of 394, 300 training,
43, 317 validation, and 44, 067 test sentences.

3.2 Implementation Details

We implemented the proposed method using Py-
torch1 and Transformers (Wolf et al., 2020)2. All
experiments were conducted on an NVIDIA A6000
GPU with a 48 GB memory. Appendix A presents
details regarding the fine-tuning settings.

Edit Operation Prediction Model We fine-
tuned pre-trained BERT (Devlin et al., 2019) mod-
els for an edit operation prediction using the
pseudo-labelled corpora created using Newsela and
Newsela-Auto, respectively. Table 2 depicts the
precision, recall, and F1 of the operation prediction
on the test sets. The results indicate that replace
operations are difficult to predict owing to their
infrequency; however, the results confirm that the
proposed method improves text simplification even
though the edit operation prediction is imperfect.

Lexical Similarity Estimation Model We fine-
tuned a pre-trained RoBERTa (Liu et al., 2019) for
a lexical similarity estimation using a corpus that
provides human assessment of semantic similari-
ties for 26.5k word pairs on a 5-point scale (Pavlick
et al., 2015)3. Specifically, we concatenate a pair
of words w and ŵ with start and separator sym-
bols as “<s>w</s></s>ŵ</s>” and input it in the
model. The hidden output of the <s> symbol is
then input into a linear layer to predict the simi-
larity. Finally, we obtain a symmetric similarity

1https://pytorch.org/
2https://huggingface.co/docs/transformers/
3http://www.seas.upenn.edu/~nlp/resources/

ppdb-2.0-human-labels.tgz

Newsela Newsela-Auto

Edit Operation P R F1 P R F1

replace 0.28 0.21 0.24 0.28 0.15 0.19
keep 0.58 0.57 0.57 0.58 0.57 0.58
delete 0.70 0.73 0.72 0.73 0.77 0.75

Table 2: Performance of edit operation prediction on the
test sets of Newsela and Newsela-Auto

score based on (sim(w, ŵ) + sim(ŵ, w))/2. We
randomly split the corpus into 72% for training,
8% for validation, and 20% for testing. The fine-
tuned model achieved a sufficiently high Pearson
correlation coefficient of 0.86 on the test set. For
a comparison, the correlation coefficient of cosine
similarities computed using FastText (Bojanowski
et al., 2017) was found to be 0.50.

Seq2seq Model As a seq2seq model to employ
NeuroLogic decoding (Lu et al., 2021), we fine-
tuned two pre-trained BART-Base (Lewis et al.,
2020) models separately for Newsela and Newsela-
Auto corpora. The batch size was 64, and the opti-
mizer used was Adam (Kingma and Ba, 2015) with
a learning rate of 1e−5. The fine-tuning continued
for 20 epochs, and a checkpoint with the highest
SARI (Xu et al., 2016) score on the validation set
was used as the final model.

3.3 Comparison

The proposed method is the hybrid of translation-
based and edit-based approaches, hence, we com-
pare it with existing methods in these categories.
As translation-based methods, We compare our
method to DRESS (Zhang and Lapata, 2017),
which uses reinforcement learning for maximiz-
ing SARI score, as a conventional method. We
also compare to MUSS (Martin et al., 2022), which
also uses the pre-trained BART and hods the state-
of-the-art measured on the Newsela corpus. From
strong edit-based methods, we compare the pro-
posed method to EditNTS (Dong et al., 2019)
that explicitly learns edit operations using a neu-
ral programmer-interpreter model and the model
proposed by Kumar et al. (2020) that conducts it-
erative edits of input sentences. As existing hy-
brid methods, we compare our method to the mod-
els proposed by Kajiwara (2019)4 and Dehghan
et al. (2022), both of which employ negative con-

4For a fair comparison, we employed a fine-tuned BART
in (Kajiwara, 2019), which resulted in a higher SARI score.
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Model SARI Add Keep Delete FKGL PCC MSE ACC Len

Source 12.24 0.00 36.72 0.00 9.18 0.338 47.2 15.5 23.06
Reference 100.0 100.0 100.0 100.0 3.96 1.000 0.0 100.0 12.75

DRESS (Zhang and Lapata, 2017)† 38.03 2.43 42.20 69.47 4.97 0.388 13.0 24.3 14.37
MUSS (Martin et al., 2022)† 41.20 6.02 35.88 81.70 2.43 0.362 13.3 20.9 9.23
BART 38.54 3.64 40.59 71.40 4.63 0.350 13.6 26.2 11.26

EditNTS (Dong et al., 2019)⋆ 37.05 1.23 36.55 73.37 3.82 0.266 16.1 21.4 13.25
(Kumar et al., 2020)† 38.37 1.01 36.51 77.58 2.95 0.334 12.6 25.5 9.61

(Kajiwara, 2019) 38.48 ⋆ 4.55 43.41 67.47 5.01 0.417 12.2 28.1 14.27
(Dehghan et al., 2022)‡ 40.01 3.06 36.53 80.43 3.20 − − − 11.72
Proposed 42.65 4.55 42.49 80.90 3.74 0.420 11.1 27.9 12.01
Proposed (Oracle) 54.73 10.98 66.07 87.14 4.07 0.591 8.0 37.3 12.47

Table 3: Results on the Newsela test set: † indicates that a score was recomputed with EASSE using outputs shared
by the authors, ⋆ indicates that a model was trained in this study using the released implementation, and ‡ presents
that a score was borrowed from the original papers with the same settings as this experiment.

Model SARI Add Keep Delete FKGL PCC MSE ACC Len

Source 12.04 0.00 36.12 0.00 10.11 0.393 57.7 13.9 24.82
Reference 100.0 100.0 100.0 100.0 4.34 1.000 0.0 100.0 13.34

BART 39.66 4.16 39.17 75.65 4.38 0.342 16.4 26.9 10.33

EditNTS (Dong et al., 2019) 37.43 0.97 34.78 76.53 3.12 0.215 20.4 23.2 11.24

(Kajiwara, 2019) 38.30 4.42 40.51 69.96 5.03 0.371 16.0 26.8 13.79
Proposed 43.09 4.41 42.74 82.13 3.89 0.391 15.1 26.8 11.85
Proposed (Oracle) 51.75 7.45 61.14 86.66 4.64 0.611 9.9 34.5 12.90

Table 4: Results on the Newsela-Auto test set, where all models were trained and evaluated in this study.

straints.5 In contrast, our method employs both
positive and negative constraints on a translation-
based model.

3.4 Evaluation Metrics

Following previous studies, we measured the SARI
(with F1 scores of Add, Keep, and Delete opera-
tions) and FKGL using EASSE (Alva-Manchego
et al., 2019), as well as the average output lengths
(Len). Note that the FKGL and Len should be
closer to those of references. Furthermore, to evalu-
ate simplification controllablity, we measured Pear-
son’s correlation coefficient (PCC), Mean Squared
Error (MSE), and Accuracy (ACC) between FKGL
scores of outputs and references (Agrawal et al.,
2021). The Accuracy represents the percentage of
outputs whose grades are within 1-grade difference
from those of references.

5Due to the heavy dependence on Google Translate to
prepare a training corpus, we could not replicate (Agrawal
et al., 2021) in this study.

Src The rest would be preserved as open
space.

Ref The rest would be saved as open space.
BART The rest would be preserved as open

space.
Prop. The rest would be kept as open space.

- PC rest, be, kept, open, space
- NC preserved

Table 5: Example outputs: “PC” and “NC” represent
positive and negative constraints, respectively.

3.5 Results

The experimental results on the test sets of Newsela
and Newsela-Auto are presented in Tables 3 and 4,
respectively. The tables present the performance
of representative translation-based (the second set
of rows), edit-based (the third set of rows), and
hybrid (the last set of rows) methods. The tables
also present the performance of source and ref-
erence sentences (the first set of rows). “BART”
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Src So Yan, a widow since her husband’s death nearly a decade ago, spends every
weekday at a modest community center near her home, where she plays mahjong
and eats meals prepared by a volunteer staff.

Prop. (Grade 8) She spends every weekday at a community center near her home.
- PC husband, at, community, near, staff
- NC widow, a

Prop. (Grade 5) Yan’s husband died almost 10 years ago.
- PC –
- NC widow, nearly, a, every, community, center, and, meals, prepared, by, staff

Prop. (Grade 2) Yan is a widow.
- PC –
- NC widow, husband, nearly, a, ago, at, community, center, near, and, meals, prepared,

by, staff

Table 6: Example outputs of controllable simplification; an input sentence of grade-12 was simplified to the grade-8,
5, and 2, respectively.

corresponds to the fine-tuned BART in this study,
and “Proposed” represents the proposed method
applying our lexical constraint on “BART.”

The proposed method achieved the highest SARI
and MSE scores with the highest and second-
highest PCC scores on Newsela and Newsela-auto,
respectively.6 Furthermore, its output lengths are
closest and second-closest to those of the refer-
ences. A comparison with hybrid methods indi-
cates the effectiveness of the flexible constraints
of the proposed method, in spite of the imperfect
nature of the edit operation prediction, as shown
in Table 2. Among the previous methods, MUSS
presents the highest SARI score, which fine-tunes
BART using a large-scale data augmentation. The
proposed method outperforms it using only the
Newsela training set. Finally, a comparison of the
Add, Keep, and Delete scores against BART con-
firms that our lexical constraint successfully im-
proves all of these operations.

Oracle Performance The last rows in Tables 3
and 4 show the proposed method with oracle lexi-
cal constraints created using reference sentences as
described in Section 2.2. The significantly higher
SARI scores indicate that the proposed method can
be further enhanced by improved constraint gener-
ation, in particular, by more precise edit operation
prediction.

Example Outputs Table 5 presents example out-
puts where the input of grade-5 was simplified to

6The highest PCC score of source in Newsela is due to the
positive correlation between grades of the source and reference
sentences.

grade-3. The proposed method successfully re-
placed preserved with kept owing to the lexical
constraints. By contrast, BART ended up preserv-
ing it in the output. Table 6 shows example outputs
where the input of grade-12 was simplified to the
grade-8, 5 and 2, respectively. These outputs indi-
cate that the proposed method can adjust sentence
structures while considering lexical complexities
according to the target levels.

4 Conclusion

We proposed a hybrid method for controllable
text simplification that takes both advantages of
translation- and edit-based methods using the flex-
ible lexically constrained decoding. The experi-
mental results showed that the proposed method
conducts high-quality controllable text simplifica-
tion on Newsela and Newsela-Auto. We expect that
the proposed method also works for text simplifica-
tion in general, i.e., the binary transformation from
complex to simple sentences. This investigation
is left for our future work. We will also explore
complex combinations of constraints allowed by
NeuroLogic decoding in the future.
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A Details Regarding the Fine-Tuning
Settings

Edit Operation Prediction Model We fine-
tuned the pre-trained BERT-Base, uncased model
for edit operation prediction. The batch size was 40,
and the optimizer used was AdamW (Loshchilov
and Hutter, 2019) with a learning rate of 1e−5 with
linear decay according to steps. We applied early
stopping with the patience of 3 epochs to maximize
the F1 score on the validation set.

Lexical Similarity Estimation Model We fine-
tuned RoBERTa-Large for lexical similarity esti-
mation. The batch size was 256, and the optimizer
used was AdamW with a learning rate of 2e − 5
with linear decay according to steps. The training
was terminated early with the patience of 7 epochs
to minimize the mean squared error in the valida-
tion set.
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