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Abstract

The bi-encoder design of dense passage re-
triever (DPR) is a key factor to its success
in open-domain question answering (QA), yet
it is unclear how DPR’s question encoder
and passage encoder individually contributes
to overall performance, which we refer to as
the encoder attribution problem. The problem
is important as it helps us identify the fac-
tors that affect individual encoders to further
improve overall performance. In this paper,
we formulate our analysis under a probabilis-
tic framework called encoder marginalization,
where we quantify the contribution of a sin-
gle encoder by marginalizing other variables.
First, we find that the passage encoder con-
tributes more than the question encoder to in-
domain retrieval accuracy. Second, we demon-
strate how to find the affecting factors for each
encoder, where we train DPR with different
amounts of data and use encoder marginaliza-
tion to analyze the results. We find that pos-
itive passage overlap and corpus coverage of
training data have big impacts on the passage
encoder, while the question encoder is mainly
affected by training sample complexity under
this setting. Based on this framework, we can
devise data-efficient training regimes: for ex-
ample, we manage to train a passage encoder
on SQuAD using 60% less training data with-
out loss of accuracy.

1 Introduction

Attribution analysis, or credit assignment, con-
cerns how individual components of a system con-
tribute to its overall performance (Minsky, 1961).
In this paper, we are interested in the encoder
attribution problem of dense passage retrievers
(DPR) (Karpukhin et al., 2020; Zhan et al., 2020b)
for open-domain question answering (Voorhees and
Tice, 2000; Chen et al., 2017). DPR leverages a
bi-encoder structure that encodes questions and
passages into low dimensional vectors separately.
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Figure 1: Encoder marginalization. Here, “*” denotes
the target encoder we want to evaluate, where we use
the Q-encoder of DPR trained on NQ as an example.
The Q-encoder is evaluated on NQ-test data and paired
with different P-encoders, and the final contribution is
determined by averaging across the scores of different
encoder pairings.

Follow-up work has proposed various methods
to further improve and analyze DPR (Xiong et al.,
2021; Luan et al., 2021; Mao et al., 2021; Gao and
Callan, 2021). However, most of these methods
only test the bi-encoder model in tandem, leaving
two questions unanswered:

(1) What are the individual contributions of each
encoder of DPR?

(2) How to find the affecting factors for each en-
coder in different QA datasets?

The first problem, which we refer to as encoder
attribution, is important as it helps us understand
which part of the DPR model might go wrong and
identify possible sources of error in the data for
the second problem. Therefore, it is important to
separately inspect individual encoders of DPR.

In this paper, we perform an encoder attribu-
tion analysis of DPR under a probabilistic frame-
work, where we model the evaluation function for
DPR’s predictions as a probabilistic distribution.
The core component of our method is called en-
coder marginalization, where we target one en-
coder and marginalize over the other variables. We
then use the expectation under the marginalized
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distribution as the encoder’s contribution to the
evaluation score. The marginalization can be ap-
proximated using Monte-Carlo, as illustrated in
Fig. 1, where encoders trained from different do-
mains are used as empirical samples, which will be
discussed in Section 3.2.

For question (1), we introduce a technique we
call encoder marginalization to compare the ques-
tion encoder and passage encoder of the same DPR
(Section 5.2). We find that in general, the passage
encoder plays a more important role than the ques-
tion encoder in terms of retrieval accuracy, as re-
placing the passage encoder generally causes a
larger accuracy drop.

For question (2), we perform a case study where
we analyze DPR’s individual encoders under a data
efficiency setting. We evaluate different DPR mod-
els trained with different amounts of data. Under
this setting, we find that positive passage overlap
and corpus coverage of the training data might be
the affecting factors for the passage encoder, while
the question encoder seems to be affected by the
sample complexity of training data. Based on the
discovery of these affecting factors, we develop a
data-efficient training regime, where we manage to
train a passage encoder on SQuAD using 60% less
training data with very little drop in accuracy.

Our work makes the following four main contri-
butions:

• To our knowledge, we are the first to perform
an encoder attribution analysis for DPR under a
probabilistic framework.

• We find that the passage encoder plays a more
important role than the question encoder in terms
of in-domain retrieval accuracy.

• Under a data efficiency setting, we identify that
passage encoders are affected by positive pas-
sage overlap and corpus coverage of the training
data, while question encoders are sensitive to the
training sample complexity.

• Our framework enables the development of data-
efficient training regimes where we are able to
use up to 60% less training data.

2 Background and Related Work

Attribution analysis It is also known as credit
assignment and has long been discussed in vari-
ous areas and applications. In reinforcement learn-
ing (Sutton and Barto, 1998), the accumulated re-

ward from the environment needs to be distributed
to the agent’s historical decisions (Sutton, 1984;
Harutyunyan et al., 2019; Arumugam et al., 2021).
In investment (Binay, 2005), it is used to explain
why a portfolio’s performance differed from the
benchmark. Attribution analysis has also been used
in NLP (Mudrakarta et al., 2018; Jiang et al., 2021)
and CV (Schulz et al., 2020) to interpret models’
decisions. Therefore, attribution analysis is an im-
portant topic for understanding a system’s behavior,
especially for black-box models like deep neural
networks (Goodfellow et al., 2016).

Retrieval for QA First-stage retrieval aims to ef-
ficiently find a set of candidate documents from
a large corpus. Term-matching methods such as
BM25 (Robertson and Zaragoza, 2009; Lin et al.,
2021) have established strong baselines in the first-
stage retrieval of various QA tasks (Chen et al.,
2017; Yang et al., 2019; Min et al., 2019). Re-
cently, retrievers based on pre-trained language
models (Devlin et al., 2019; Liu et al., 2019) also
make great advancements (Seo et al., 2019; Lee
et al., 2019; Guu et al., 2020; Khattab and Za-
haria, 2020). Particularly, dense passage retrievers
(DPR) (Karpukhin et al., 2020; Zhan et al., 2020b)
set a milestone by encoding questions and passages
separately with a bi-encoder design. Based on DPR,
multiple works on compression (Yamada et al.,
2021; Izacard et al., 2020; Ma et al., 2021), hard-
negative mining (Xiong et al., 2021; Zhan et al.,
2021), multi-vector encoding (Luan et al., 2021;
Lee et al., 2021b), and QA pre-training (Lu et al.,
2021; Gao and Callan, 2021) expand the boundary
of dense retrieval.

Other Analyses of DPR BEIR investigates
DPR’s transferability to multiple domains and re-
trieval tasks (Thakur et al., 2021), while Mr.TYDI

evaluates DPR pre-trained on English for retrieval
in a multi-lingual setting (Zhang et al., 2021).
Lewis et al. (2021) find that most of the test an-
swers also occur somewhere in the training data
for most QA datasets. Liu et al. (2021) observe
that neural retrievers fail to generalize to compo-
sitional questions and novel entities. Sciavolino
et al. (2021) also find that dense models can only
generalize to common question patterns.

2.1 Open-Domain Question Answering

Open-domain question answering requires finding
answers to given questions from a large collection
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of documents (Voorhees and Tice, 2000). For exam-
ple, the question “How many episodes in Season
2 Breaking Bad?” is given and then the answer
“13” will be either extracted from the retrieved
passages or generated from a model. The goal of
open-domain question answering is to learn a map-
ping from the questions to the answers, where the
mapping could be a multi-stage pipeline that in-
cludes retrieval and extraction, or it could be a
large language model that generates the answers di-
rectly given the questions. In this paper, we mainly
discuss the retrieval component in a multi-stage
system, which involves retrieving a set of candi-
date documents from a large text corpus. Based on
the type of corpus, we could further divide open-
domain question answering into textual QA and
knowledge base QA. Textual QA mines answers
from unstructured text documents (e.g., Wikipedia)
while the other one searches through a structured
knowledge base. We will mainly focus on textual
QA in this paper.

2.2 Dense Passage Retrieval

Given a corpus of passages C = {d1, d2, · · · , dn}
and a query q, DPR (Karpukhin et al., 2020) lever-
ages two encoders ηQ and ηD to encode the ques-
tion and passages separately. The similarity be-
tween the question q and passage d is defined as
the dot product of their vector output:

s = ETq Ed, (1)

where Eq = ηQ(q) and Ed = ηD(d). The similar-
ity score s is used to rank the passages during re-
trieval. Both ηQ and ηD use a pre-trained BERT
model (Devlin et al., 2019) for initialization and its
[CLS] vector as the representation.

Training As pointed out by Karpukhin et al.
(2020), training the encoders such that Eq. (1) be-
comes a good ranking function is essentially a met-
ric learning problem (Kulis, 2012). Given a specific
question q, let d+ be the positive context that con-
tains the answer a for q and {d−1 , d−2 , ...d−k } be the
negative contexts, the contrastive learning objective
with respect to q, d+, and {d−i }ki=1 is:

L(q, d+, d−1 , d
−
2 , ...d

−
k )

=− log
exp(ETq Ed+)

exp(ETq Ed+) +
k∑
i=1

exp(ETq Ed−i
)

. (2)

The loss function in Eq. (2) encourages the repre-
sentations of q and d+ to be close and increases the
distance between q and d−.

Retrieval/Inference The bi-encoder design en-
ables DPR to perform an approximate near-
est neighbour search (ANN) using tools like
FAISS (Johnson et al., 2021), where the representa-
tions of the corpus passages are indexed offline. It
is typically used in first-stage retrieval, where the
goal is to retrieve all potentially relevant documents
from the large corpus. Therefore, we consider top-
k accuracy as the evaluation metric in this paper,
following Karpukhin et al. (2020).

Let R be an evaluation function (e.g., top-k ac-
curacy) for first-stage retrieval. Given a question-
answer pair (q, a) and a corpus C, we use ηQ and
ηD to encode questions and retrieve passages sepa-
rately. We define the evaluation score r0 given the
above inputs to be:

r0 = R(q, a, C, ηQ, ηD) (3)

For simplicity’s sake, in the rest of the paper, we
will omit the answer a and corpus C as they are
held fixed during evaluation.

3 Methods

3.1 Encoder Marginalization

In this section, we propose a simple probabilistic
method to evaluate the contributions of encoders
ηQ and ηD, as well as to compare the same type of
encoder across different datasets. The core idea is
called encoder marginalization, where marginaliza-
tion simply means summing over the probability of
possible values of a random variable.

Typically, the evaluation function R in Eq. (3)
outputs a deterministic score r0. However, we
could also view r0 as a specific value of a continu-
ous random variable r ∈ R sampled from a Dirac
delta distribution p(r | q, ηQ, ηD):

p(r | q, ηQ, ηD)
.
= δ(r − r0)

=

{
+∞, r = r0

0, r 6= r0,

s.t.,
∫ +∞

−∞
δ(r − r0)dr = 1 (4)

where r0 = R(q, a, C, ηQ, ηD). Again, the answer
a and corpus C are omitted for simplicity’s sake.
The expectation of the evaluation score r under the
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Dirac delta distribution δ(r − r0) is:

Ep(r|q,ηQ,ηD) [r] =

∫ +∞

−∞
r · δ(r − r0)dr

= r0 (5)

which is the score of the evaluation function in
Eq. (3). This is also known as the sifting property1

of the Dirac delta distribution (Mack, 2008), where
the delta function is said to “sift out” the value at
r = r0. The reason for such a formalization is that
now we can evaluate the contribution of a single
encoder to the evaluation score r by marginalizing
the other random variables.

The contribution of an individual encoder ηQ or
ηD to score r on a question q can be evaluated by
marginalizing the other encoder of p(r | q, ηQ, ηD)
in Eq. (4). We assume that the question q is sampled
from the training data distribution for learning ηQ
and ηD. Let’s take the question encoder ηQ as an
example. The distribution of r after marginalizing
over ηD is:

p(r | q, ηQ) =

∫

ηD

p(r | q, ηQ, ηD)p(ηD)dηD

≈ 1

K

K∑

i=1

p(r | q, ηQ, η(i)D )

=
1

K

K∑

i=1

δ(r − r(i)0 ) (6)

where the superscript (i) means the tagged random
variables belong to the ith out of K QA dataset
(e.g., η(i)D means the passage encoder trained on the
ith QA dataset). The second to the last step uses
the Monte-Carlo approximation, where we use η(i)D
sampled from a prior distribution p(ηD), which
will be discussed in Section 3.2.

The integration step in Eq. (6) assumes indepen-
dence between q, ηD, and ηQ. Although during the
training of DPR, ηD and ηQ are usually learned
together, the two encoders do not necessarily need
to be evaluated together during inference. For ex-
ample, a question encoder trained on NQ could
be paired with a passage encoder trained on Cu-
rated and tested on the Trivia QA dataset, without
assuming any dependency. Therefore, we assume
here no prior knowledge about how ηD and ηQ
are trained, but rather highlight their independence
during evaluation to validate Eq. (6).
1This property requires the sifted function g(r) (in this case,
g(r) = r) to be Lipschitz continuous.

As for the contribution of ηQ, according to the
expectation of Dirac delta distribution in Eq. (5),
the expectation of r under the marginalized distri-
bution in Eq. (6) is:

Ep(r|q,ηQ)[r] =

∫ +∞

−∞
r · p(r | q, ηQ)dr

≈
∫ +∞

−∞
r · 1

K

K∑

i=1

p(r | q, ηQ, η(i)D )dr

=
1

K

K∑

i=1

∫ +∞

−∞
r · δ(r − r(i)0 )dr

=
1

K

K∑

i=1

r
(i)
0 (7)

which corresponds to the in-domain encoder
marginalization in Fig. 1. In this way, we manage
to calculate the contribution of a question encoder
ηQ to the evaluation score r given a question q.

3.2 Encoder Prior Distribution, Sampling,
and Approximation

In the previous section, we define the contribu-
tion of a single encoder for DPR using encoder
marginalization. However, to approximate the ex-
pectation under the marginalized distribution in
Eq. (6), we need to sample the encoder ηD from
a prior distribution p(ηD). In practice, we do not
have access to p(ηD) but instead, we need to train
ηD on specific datasets as empirical samples.

In addition, we cannot consider every possible
function for the encoder. Therefore, we need to
put constraints on the encoder prior distribution,
so that p(ηD) becomes p(ηD | Φ) that implicitly
conditions on some constraints Φ. In this paper,
Φ could represent, for example, model structures,
training schemes, optimizers, initialization, and so
on. The (sampled) encoders we run in the exper-
iments are initialized with the same pre-trained
language model (e.g., bert-base-uncased) and
optimized with the same scheme (e.g., 40 epochs,
Adam optimizers. . . ), to ensure the constraints we
put are consistent for different DPR models.

In practice, we use empirical samples such as
DPRs pre-trained on different QA datasets for ap-
proximation in Eq. (7). Although the sample size
is not big enough as it is very expensive to train
DPR and encode a large textual corpus, the sam-
ples themselves are statistically meaningful as they
are carefully fine-tuned for the domains we want
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Datasets Train Dev Test

Natural Questions 58,880 8,757 3,610
TriviaQA 60,413 8,837 11,313
WebQuestions 2,474 361 2,032
CuratedTREC 1,125 133 694
SQuAD 70,096 8,886 10,570

Table 1: The number of questions in each QA dataset
from Karpukhin et al. (2020). The “Train” column de-
notes the number of questions after filtering.

to evaluate, instead of using models with randomly
initialized weights.

4 Experimental Setup

We follow the DPR paper (Karpukhin et al., 2020)
to train and evaluate our dense retrievers. We re-
produce their results on five benchmark datasets
using Tevatron2 (Gao et al., 2022), a toolkit for
efficiently training dense retrievers with deep neu-
ral language models. Our reproduced results have
only a maximum difference of ∼2% compared to
their numbers. We report the top-20 and top-100
accuracy for evaluation.

Datasets We train individual DPR models on five
standard benchmark QA tasks, as shown in Tbl. 1:
Natural Questions (NQ) (Kwiatkowski et al., 2019),
TriviaQA (Trivia) (Joshi et al., 2017), WebQues-
tions (WQ) (Berant et al., 2013), CuratedTREC
(Curated) (Baudiš and Šedivỳ, 2015), SQuAD-1.1
(SQuAD) (Rajpurkar et al., 2016). We use the data
provided in the DPR3 repository to reproduce their
results. We evaluate the retriever models on the
test sets of the aforementioned datasets. For re-
trieval, we chunk the Wikipedia collection (Guu
et al., 2020) into passages of 100 words as in Wang
et al. (2019), which yields about 21 million samples
in total. We follow Karpukhin et al. (2020) using
BM25 (Robertson and Zaragoza, 2009; Lin et al.,
2021) to select the positive and negative passages
as the initial training data for DPR.

Models and Training During training, each
question is paired with 1 positive passage, 1 hard
negative retrieved by BM25, and 2× (B − 1) in-
batch negatives where B is the batch size. We op-
timize the objective in Eq. (2) with a learning rate
of 1e-05 using Adam (Kingma and Ba, 2015) for

2https://github.com/texttron/tevatron
3https://github.com/facebookresearch/DPR

40 epochs. The rest of the hyperparameters remain
the same as described in Karpukhin et al. (2020).

5 Results and Analysis

5.1 Generalization of Tandem Encoders

This section aims to show the generalization ability
of DPR’s bi-encoder evaluated in tandem. Tbl. 2
shows the zero-shot retrieval accuracy of different
DPR models and BM25 on five benchmark QA
datasets. Each row represents one model’s accu-
racy on five datasets and each column represents
the accuracy of five different models on one dataset.
Normally, the in-domain DPR model is expected
to outperform the other DPR models trained using
data from other domains, which is the situation we
observe for most datasets, such as NQ, Trivia, and
SQuAD. However, for Curated, the DPR trained
on NQ and Trivia has better zero-shot retrieval ac-
curacy than the in-domain one. We suspect it is
because NQ and Trivia have much larger training
data than Curated, as shown in Tbl. 1, which poten-
tially covers some similar questions in Curated.

Moreover, BM25 outperforms all DPR mod-
els on SQuAD as SQuAD mainly contains entity-
centered questions which are good for term-
matching algorithms. Besides, the SQuAD dataset
is mainly for machine-reading comprehension and
therefore a passage could be used to answer multi-
ple questions, which could cause potential conflicts
in representation learning (Wu et al., 2021).

In the following sections, we will perform en-
coder attribution analysis to examine DPR’s each
encoder individually.

5.2 In-Domain Encoder Marginalization

This section aims to answer the question (1) “What
are the individual contributions of each encoder
of DPR?” from Section 1. To analyze the contribu-
tions of a single encoder on a specific QA dataset,
we compare the marginalized top-20 retrieval ac-
curacy of the encoder using in-domain encoder
marginalization shown in Fig. 1 and Eq. (7).

Fig. 2 shows the in-domain encoder marginaliza-
tion results relative to the tandem DPR results. The
blue bars show the question encoder’s contributions
where we target the question encoder and marginal-
ize over the passage encoders, and vice versa for the
orange bars (passage encoder) on five datasets. We
further divide those results by the in-domain DPR’s
top-20 accuracy, which is normalized to 100% (the
horizontal line in Fig. 2). We do not compare across
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Encoder
Test set

NQ Trivia WQ Curated SQuAD Average

BM25 62.9/78.3 62.4/75.5 76.4/83.2 80.7/89.9 71.1/81.8 70.7/81.7

DPR-NQ 79.8/86.9 73.2/81.7 68.8/79.3 86.7/92.7 54.5/70.2 72.6/82.2
DPR-Trivia 66.4/78.9 80.2/85.5 71.4/81.7 87.3/93.9 53.0/69.2 71.7/81.8
DPR-WQ 54.9/70.0 66.5/78.9 76.0/82.9 82.9/90.8 49.3/66.2 65.9/77.8
DPR-Curated 68.5/72.7 66.5/77.7 65.5/77.5 84.0/90.7 51.3/67.5 67.2/77.2
DPR-SQuAD 56.6/72.3 71.0/81.7 64.3/77.0 83.3/92.4 61.1/76.0 67.3/80.0

Table 2: Zero-shot evaluation of DPR’s bi-encoder in tandem. Top-20/Top-100 retrieval accuracy (%) on five
benchmark QA test sets is reported. Each score represents the percentage of questions that have at least one correct
answer in the top-20/100 retrieved passages.

different datasets, but rather compare the question
encoder and the passage encoder for each domain.
We can see that in general, the passage encoder (or-
ange bars) contributes more to the top-20 accuracy
compared to the question encoder (blue bars) on
all five datasets. Moreover, for the Curated dataset,
marginalizing the out-of-domain question encoders
even improves the marginalized accuracy of the
passage encoder of Curated.

Overall, we can see that the passage encoder
plays a more vital role compared to the question
encoder in terms of in-domain retrieval accuracy,
which makes sense as the passage encoder needs
to encode the entire corpus (in our case, 21M pas-
sages), while the question sets are much smaller.

5.3 Affecting Factors for Encoders in QA
Training Data

In this section, our goal is to answer question (2),
“How to find the affecting factors for each encoder
in different QA datasets?” from Section 1. We will
use the data efficiency test as an example and show
how using encoder attribution in the data efficiency
test can help us locate possible affecting factors in
the dataset. Specifically, we will train DPR models
with different amounts of training data. The reason
we choose to change the size of the training data
is that data sizes often have a large influence on
a model’s generalization ability, which could help
reveal relevant affecting factors.

In-Domain Data Efficiency Test We train the
DPR model with different amounts of data and test
each encoder’s in-domain marginalization accuracy
with respect to the training data amount. Since it
is extremely resource-consuming to train different
DPR models and encode the entire Wikipedia cor-
pus into dense vectors, in this section, we mainly
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Figure 2: In-domain marginalized top-20 accuracy (%)
of each encoder relative to the in-domain DPR for each
dataset using Eq. (7). Each in-domain DPR’s top-20 ac-
curacy is normalized to 100%.

focus on NQ, Trivia, and SQuAD due to their rela-
tively large dataset sizes.

Fig. 3 shows the in-domain encoder marginaliza-
tion results for both question encoder and passage
encoder under a data efficiency setting, where we
uniformly sample 10%, 25%, 40%, 55%, 70%, 85%
of training data of each dataset to train DPR. We
use in-domain encoder marginalization to evaluate
each encoder’s accuracy with different amounts of
data. Specifically, to provide a fair comparison, we
use DPR’s encoders trained with 100% data as the
samples for all marginalization. For example, for
the question encoder trained with 10% data, it is
paired with five passage encoders of DPR trained
on five different domains with 100% data. This is
to ensure that the comparison between different
question encoders is not affected by different ways
of marginalization.
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Figure 3: In-domain encoder marginalization results un-
der a data efficiency setting. We train DPR on NQ,
Trivia, and SQuAD with different amounts of train-
ing data. The marginalized top-20/100 accuracy (%)
for each encoder is normalized. Note that the y-axis is
shared in each row. The horizontal line is the accuracy
of an encoder trained with 100% data.

As we can see, the accuracy of the question
encoder with respect to different training data
amounts (left column in Fig. 3) on three datasets
improves as the amount of training data increases.
For the passage encoder (right column in Fig. 3),
NQ’s and Trivia’s behave similarly to the question
encoder (blue and orange lines of the right column
in Fig. 3). However, the accuracy of SQuAD’s pas-
sage encoder (green line of the right column in
Fig. 3) shows non-monotonic behaviour with re-
spect to training data sizes in the [40%, 100%] inter-
val, where the accuracy first rises before 40% and
drops afterwards. This means that besides the train-
ing sample complexity, there are more affecting
factors that influence the accuracy of the passage
encoder, which we further analyze below.

Factor Analysis Based on the results in the previ-
ous section, we now propose two possible affecting
factors in the training data for the question encoder
and passage encoder: corpus coverage and positive
passage overlap, defined as follows:

• Corpus coverage: Number of distinct positive
passages in the training data (i.e., with different
texts and titles in Wikipedia corpus).

10 25 40 55 70 85 100
Percentage of full training data (%)

0.2

0.4

0.6

0.8

1.0
Normalized corpus coverage

10 25 40 55 70 85 100
Percentage of full training data (%)

Normalized unique coverage

NQ Trivia SQuAD

Figure 4: Dataset statistics for different amounts of data.
Left: Normalized corpus coverage. Right: Normalized
unique passage coverage. Note that the y-axis is shared
in both plots.

Dataset Coverage Overlap Unique

NQ 30,466 0.21 22,424
Trivia 42,473 0.14 34,910
SQuAD 3,247 0.68 738

Table 3: Corpus coverage and positive passage overlap,
as well as the unique passage coverage, which equals
corpus coverage × (1− positive passage overlap)1.3

for each dataset.

• Positive passage overlap: Ratio between the
number of positive passages that can answer
more than two training questions and the total
number of distinct positive passages.

In this paper, each question only has one positive
passage. We further define an intermediate statistic
called unique passage coverage:

• Unique passage coverage: Corpus coverage ×
(1− positive passage overlap)α.

where α is an empirical value and is used to adjust
the weight between the coverage and overlap.

Despite there being other statistics, we find these
statistics above reasonable to reflect the features
of each dataset, as well as the correlation with the
cross-domain marginalization.

Tbl. 3 shows the corpus coverage and positive
passage overlap measures that we defined on three
QA datasets, where we collect the aforementioned
statistics for the training data of each dataset. We
can see that despite having the most training data,
SQuAD also has the largest positive passage over-
lap. Fig. 4 (right column) shows that the unique
passage coverage of SQuAD (green line) also be-
haves similarly to the in-domain marginalization
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P-encoder NQ Trivia WQ Curated SQuAD Average

SQuAD-100% 63.3/77.1 73.5/82.4 65.2/76.7 79.5/90.6 61.1/76.0 68.5/80.5
SQuAD-40% 62.8/76.4 72.8/82.3 65.9/77.4 81.3/91.1 62.3/76.8 69.2/80.8

Table 4: Top-20/100 (%) accuracy of passage encoders trained on all of SQuAD and 40% of SQuAD, paired with
the question encoder trained on each domain and tested on each domain’s test set. With only 40% of data, a better
balance between the corpus coverage and positive passage overlap is achieved on SQuAD, and therefore these
passage encoders are even better overall than the ones trained with 100% of SQuAD data.

results of SQuAD’s passage encoder (Fig. 3, right
column), which rises as the data amount increases
and then drops after 40% of training data.

To further verify the robustness of the passage
encoder trained with only 40% of training data of
SQuAD, we test its passage encoder on five QA
test sets and pair it with the in-domain question
encoder trained with 100% data. Tbl. 4 shows the
comparison between the passage encoders trained
with full SQuAD and 40% of SQuAD, respectively.
We can see that with only 40% of training data, the
passage encoders manage to achieve similar and in
some cases even higher accuracy compared to the
ones trained with all data. Therefore, this analysis
provides evidence leading us to believe that the
unique passage coverage measure, which is related
to the corpus coverage and positive passage overlap
of the training data, indeed influences the passage
encoder strongly.

5.4 Impact of Passage Encoders

In the previous sections, we manage to identify
the importance of the passage encoder and its af-
fecting factors such as positive passage overlap
and corpus coverage of the training data. We find
that our discoveries are consistent with some pre-
vious work’s conclusions. For example, Zhan et al.
(2021, 2020a); Sciavolino et al. (2021) all find that
it is sufficient to achieve reasonable retrieval accu-
racy by just fine-tuning the question encoder with
a fixed passage encoder, which demonstrates the
importance of a robust passage encoder in domain
adaptation and hard-negative mining.

However, how to learn such a robust passage
encoder is challenging as pre-training DPR on a
single QA dataset will introduce biases. Multi-task
dense retrieval (Maillard et al., 2021; Li et al., 2021;
Metzler et al., 2021) uses multiple experts learned
in different domains to solve this problem. These
solutions are effective but not efficient as they build
multiple indexes and perform searches for each ex-
pert, requiring a lot of resources and storage space.

Another solution is to build a question-agnostic
passage encoder so that the model is not biased
towards particular QA tasks. DensePhrases (Lee
et al., 2021a,b) pioneers this direction by building
indexes using phrases instead of chunks of pas-
sages for multi-granularity retrieval. By breaking
passages into finer-grained units, DensePhrases in-
deed improve the generalization of dense retrieval
in different domains with query-side fine-tuning.
However, similar to multi-task learning, it is not
efficient as the phrase index can be enormous for a
corpus like Wikipedia. Although techniques such
as product quantization (Gray and Neuhoff, 1998)
can be applied to improve efficiency, it comes at
the cost of effectiveness.

Overall, it is desirable to have a robust passage
encoder for efficient dense retrieval according to
previous work and our analysis, but challenges still
remain in the effectiveness-efficiency trade-off.

6 Conclusions

We propose an encoder attribution analysis of DPR
using encoder marginalization to individually eval-
uate each encoder of DPR. We quantify the contri-
bution of each encoder of DPR by marginalizing
the other random variables under a probabilistic
framework. We find that the passage encoder plays
a more important role compared to the question en-
coder in terms of top-k retrieval accuracy. We also
perform a case study under the data efficiency set-
ting to demonstrate how to find possible affecting
factors in the QA datasets for individual encoders.
We identify that passage encoders are affected by
positive passage overlap and corpus coverage of the
training data, while question encoders are sensitive
to the training sample complexity. Our framework
is also very general and can be applied to other
methods based on bi-encoders for encoder attribu-
tion analysis, but one needs to pay attention to the
choice of the encoder prior distribution to ensure
the marginalization is appropriate.
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