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Abstract
Annotating abusive language is expensive, lo-
gistically complex and creates a risk of psycho-
logical harm. However, most machine learning
research has prioritized maximizing effective-
ness (i.e., F1 or accuracy score) rather than data
efficiency (i.e., minimizing the amount of data
that is annotated). In this paper, we use sim-
ulated experiments over two datasets at vary-
ing percentages of abuse to demonstrate that
transformers-based active learning is a promis-
ing approach to substantially raise efficiency
whilst still maintaining high effectiveness, es-
pecially when abusive content is a smaller per-
centage of the dataset. This approach requires
a fraction of labeled data to reach performance
equivalent to training over the full dataset.

1 Introduction

Online abuse, such as hate and harassment, can
inflict psychological harm on victims (Gelber and
McNamara, 2016), disrupt communities (Mohan
et al., 2017) and even lead to physical attacks
(Williams et al., 2019). Machine learning solu-
tions can be used to automatically detect abusive
content at scale, helping to tackle this growing prob-
lem (Gillespie, 2020). An effective model is one
which makes few misclassifications, minimizing
the risk of harm from false positives and negatives:
false negatives mean that users are not fully pro-
tected from abuse while false positives constrain
free expression. Most models to automatically de-
tect abuse are trained to maximize effectiveness
via “passive” supervised learning over large la-
beled datasets. However, although collecting large
amounts of social media data is relatively cheap
and easy, annotating data is expensive, logistically
complicated and creates a risk of inflicting psy-
chological harm on annotators through vicarious
trauma (Roberts, 2019; Steiger et al., 2021). Thus,
an efficient model, which achieves a given level of
performance with few labeled examples, is highly
desirable for abusive content detection.
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Figure 1: Transformers-based active learning beats fully-
supervised baseline with 1.5% of the 20,000 examples.

Our central objective is to demonstrate how to
maximize efficiency and effectiveness when train-
ing abuse detection systems, and in this paper, we
focus on active learning (AL). AL is an iterative
human-in-the-loop approach that selects entries for
annotation only if they are ‘informative’ (Lewis
and Gale, 1994; Settles, 2009). While AL has
shown promise for abusive language dataset cre-
ation (Charitidis et al., 2020; Mollas et al., 2020;
Rahman et al., 2021; Bashar and Nayak, 2021;
Abidin et al., 2021), there are several open ques-
tions about the most appropriate configuration and
use. In particular, only one paper uses transformers-
based AL for abusive language detection (Ein-Dor
et al., 2020) to our knowledge, although the ben-
efits of AL for other classification tasks is clear
(Schröder et al., 2022; Ein-Dor et al., 2020; Yuan
et al., 2020). Pre-trained transformer models have
been widely adopted for abuse detection, but while
they can be fine-tuned on relatively few examples
for specific tasks (Devlin et al., 2018; Qiu et al.,
2020), they are still commonly used with large
datasets (e.g. Mozafari et al., 2019; Mutanga et al.,
2020; Isaksen and Gambäck, 2020; Koufakou et al.,
2020). Our first subquestion asks, RQ1.1: What
effect do model pre-training and architecture have
on efficiency and effectiveness? To answer RQ1.1,
we evaluate transformers- and traditional-based AL
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in a simulated setup using two already-labeled abu-
sive language datasets.

One challenge in abusive language detection is
class imbalance as, although extremely harmful,
abuse comprises a small portion of online content
(Vidgen et al., 2019). Prior AL work primarily uses
datasets at their given class imbalances and thus
has not disentangled how class imbalance versus
linguistic features affect the design choices needed
for efficient AL. This is a problem given that most
abusive language datasets do not reflect the imbal-
ance actually observed in the wild. Our second
subquestion addresses this issue, RQ1.2: What ef-
fect does class imbalance have on efficiency and
effectiveness? To answer RQ1.2, we artificially-
rebalance the datasets at different percentages of
abuse.

In addressing these questions, we find that more
data is not always better and can actually be worse,
showing that effectiveness and efficiency are not
always in tension with one another. With exten-
sive pre-training and greater model complexity, a
transformers-based AL approach achieves high per-
formance with only a few hundred examples. Cru-
cially, we show that the value of transformers-based
AL (relative to random sampling) is larger for more
imbalanced data (i.e., data that more closely reflects
the real-world). For 5% abuse, the performance of
a transformers-based AL strategy over 3% of a
20k dataset can even surpass the F1 of a model
passively trained over the full dataset by 5 percent-
age points (Fig. 1). In §4 we describe caveats of
our findings and implications for future research in
abusive language detection.1

2 Methods

2.1 Active Learning Set-Up

AL typically consists of four components: 1) a
classification model, 2) pools of unlabeled data U
and labeled data L, 3) a query strategy for identi-
fying data to be labeled, and 4) an ‘oracle’ (e.g.,
human annotators) to label the data. First, seed
examples are taken from U and sent to the oracle(s)
for labeling. These examples initialize the classi-
fication model. Second, batches of examples are
iteratively sampled from the remaining unlabeled
pool, using a query strategy to estimate their ‘infor-
mativeness’ to the initialized classification model.2

1Code at ActiveTransformers-for-AbusiveLanguage.
2Note that batch-mode active learning is a common ap-

plication in both research and industry, given its more practi-

Table 1: Summary of source datasets (in gray) and their
artificially-rebalanced versions.

Train† Test∗

Dataset Imbalance abuse non-abuse abuse non-abuse

wiki 12% 10,834 81,852 2,756 20,422
wiki50 50% 10,000 10,000 2,500 2,500
wiki10 10% 2,000 18,000 500 4,500
wiki5 5% 1,000 19,000 250 4,750

tweets 32% 28,955 61,041 3,160 6,840
tweets50 50% 10,000 10,000 2,500 2,500
tweets10 10% 2,000 18,000 500 4,500
tweets5 5% 1,000 19,000 250 4,750

Notes: † Train is used as the unlabeled pool (n = 20,000)
∗ Test is used for held-out evaluation (n = 5,000)

Each queried batch is labeled and added to L. Fi-
nally, the classifier is re-trained over L.3

2.2 Dataset Selection and Processing

AL is path-dependent—i.e., later decisions are de-
pendent upon earlier ones; so, experimenting in
real-world settings is prohibitively costly and risky
to annotator well-being. To reproduce the pro-
cess without labeling new data, we use existing
labeled datasets but withhold the labels until the
model requests their annotation. We examined a
list of publicly available, annotated datasets for
abusive language detection4 and found two that
were sufficiently large and contained enough abu-
sive instances to facilitate our experimental ap-
proach. The wiki dataset (Wulczyn et al., 2017)
contains comments from Wikipedia editors, labeled
for whether they contain personal attacks. A test
set is pre-defined; we take our test instances from
this set. The tweets dataset (Founta et al., 2018)
contains tweets which have been assigned to one
of four classes. We binarize by combining the abu-
sive and hate speech classes (=1) and the normal
and spam classes (=0) to allow for cross-dataset
comparison (Wiegand et al., 2019; Ein-Dor et al.,
2020). A test set is not pre-defined; so, we set aside
10% of the data for testing that is never used for
training.

To disentangle the merits of AL across class im-
balances, we construct three new datasets for both
wiki and tweets that have different class distribu-
tions: 50% abuse, 10% abuse and 5% abuse. This
creates 6 datasets in total (see Tab. 1). To control

cal application to annotation workflows and model retraining
times (Settles, 2009, p. 35).

3We train from scratch to avoid overfitting to previous
iterations (Ein-Dor et al., 2020; Hu et al., 2018).

4https://hatespeechdata.com

https://github.com/HannahKirk/ActiveTransformers-for-AbusiveLanguage
https://hatespeechdata.com
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dataset size and ensure we have sufficient positive
instances for all imbalances, we assume that each
unlabeled pool has 20,000 examples.5 We experi-
ment with multiple AL strategies to select 2,000 ex-
amples for annotation as early experiments showed
further iterations did not affect performance.6

2.3 Experimental Setup
We use 2 model architectures, 2 query strategies
and 6 artificially-rebalanced datasets, giving 24 ex-
periments each of which we repeat with 3 random
seeds. Each experiment uses the same sized unla-
beled pool, training budget and test set (see Tab. 1).
In figures, we present the mean run (line) and stan-
dard deviation (shaded). For transformers-based
AL, we use distil-roBERTa (dBERT), which per-
forms competitively to larger transformer models
(Sanh et al., 2019), also in an AL setting (Schröder
et al., 2022). For traditional AL without pre-
training, we use a linear support vector machine
(SVM) as a simple, fast and lightweight baseline.7

For active data acquisition, we try three AL strate-
gies; LeastConfidence, which selects items close to
the decision boundary (Lewis and Gale, 1994), is
presented in the paper while the other strategies are
in the Appendix.8 For comparison, we randomly
sample items from the unlabeled pool at each it-
eration. Alongside model and query strategy, AL
requires an initial seed size, seed acquisition strat-
egy and batch size. We experimentally determined
the best values for these parameters: an initial seed
of 20 examples selected via a keyword-heuristic
(Ein-Dor et al., 2020) and batches of 50 examples.9

2.4 Evaluation
As a baseline, we use the passive macro-F1 score
over the full dataset of 20,000 entries (F120k).
For each AL strategy, we measure efficiency on
the held-out test set as the number of examples
needed to surpass 90% of F120k, which we call
N90.10 For effectiveness, we use the maximum F1
score achieved by each AL strategy, which we call
F1AL.

5The wiki dataset has 10,834 abusive entries; so, at 50%
abuse, the upper limit on a rebalanced pool is 21,668.

6AL experiments are implemented in the Python
small-text library (Schröder et al., 2021)

7Appendix A presents details of model training.
8We also test GreedyCoreSet (Sener and Savarese, 2017)

and EmbeddingKMeans (Yuan et al., 2020), but LeastConfi-
dence outperformed them.

9We present pilot experiments in Appendix B and C.
10To fairly compare models, we calculate N90 relative to

best F120k (achieved by dBERT in all cases).

Table 2: Efficiency and effectiveness of each classifier
(transformers vs SVM) with LeastConfidence sampling.

Dataset Classifier F120k
† F1AL N90

wiki50 dBERT 0.920 0.920 170
SVM 0.875 0.836 1570

wiki10 dBERT 0.859 0.866 170
SVM 0.809 0.810 320

wiki5 dBERT 0.807 0.855 220
SVM 0.785 0.780 170

tweets50 dBERT 0.939 0.938 170
SVM 0.931 0.926 220

tweets10 dBERT 0.904 0.902 220
SVM 0.893 0.901 170

tweets5 dBERT 0.844 0.856 300
SVM 0.825 0.830 170

Notes:†global metric from passive training over full, re-balanced dataset

3 Results

Efficiency & Effectiveness For each dataset, we
find active strategies that need just 170 examples
(0.8% of the full dataset) to reach 90% of pas-
sive supervised learning performance (see Tab. 2).
When training over the full dataset, dBERT al-
ways outperforms SVM, models have worse per-
formance on more imbalanced datasets, and wiki
is harder to predict than tweets (Tab. 2). In all
cases, LeastConfidence outperforms the random
baseline, and the gain is larger for lower percent-
ages of abuse: for wiki10 and wiki5, N90 is lower
by 150 and 100 examples, respectively. AL can
even outperform passive supervised learning over
the full dataset, showing there is no efficiency–
effectiveness trade-off. For the majority of datasets,
dBERT with LeastConfidence over 2,000 exam-
ples matches or surpasses the F1 score of a model
trained passively over the whole dataset (F1AL ≥
F120k in Tab. 2). For wiki5, it is 5 percentage
points (pp) higher (Fig. 1).

The Effect of Pre-Training We find AL has a
bigger impact for SVM than dBERT, shown by
the larger gap to the random baselines (Fig. 2).
With its extensive pre-training, dBERT achieves
high performance with few examples, even if ran-
domly selected. Nonetheless, an AL component
still enhances dBERT performance above the ran-
dom baseline especially with imbalanced data (as
found by Schröder et al., 2022; Ein-Dor et al.,
2020), requiring 150 and 100 fewer examples for
N90, and raising F1 score by 2pp and 4pp, for
wiki5 and wiki10 respectively.

Train Distribution To assess why AL is more
impactful with imbalanced data, we evaluate the
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Figure 2: The contribution of pre-training vs active
data acquistion.
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Figure 3: Label imbalance during training (dBERT).

distribution of the labeled pool at each iteration
(Fig. 3). The random baseline tends to the original
distribution as expected but the LeastConfidence
strategy actively selects abusive examples from the
pool and tends toward a balanced distribution.

Out-of-domain Testing The high performance
of models trained on few examples raises a risk
that they are overfitting and may not generalize.
We take the models trained on each of the three
class imbalances for wiki and test them on their
equivalent tweets dataset, and vice versa. As with
in-domain results, models trained on wiki and ap-
plied to tweets reach F120k within few iterations.
The gap between LeastConfidence and the random
baseline is larger for out-of-domain evaluation ver-
sus in-domain (Fig. 4). A similar pattern occurs
for other imbalances (see Appendix D). This sug-
gests that our results for these two datasets are not
overfitting.

4 Discussion

In response to our central research objective, we
find strategies which are both effective and efficient,
requiring far fewer examples to reach performance
equivalent to passive training over the full dataset.
These results suggest that passive approaches may
be needlessly expensive and place annotators at
unnecessary risk of harm. For RQ1.1, we find that
coupling pre-trained transformers with AL is a suc-
cessful approach which leverages the benefits of
careful training data selection with the previously
demonstrated strong capabilities of pre-trained lan-
guage models for few-shot learning (Brown et al.,
2020; Gao et al., 2021; Schick and Schütze, 2021).
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Figure 4: Cross-dataset generalization (dBERT).

However, the compute required to fine-tune a new
transformer model in each iteration means AL may
have a large environmental footprint (Bender et al.,
2021). In some instances, SVMs with AL produce
competitive results and have smaller environmental
costs. For RQ1.2, we find transformers-based AL
is particularly valuable under more extreme class
imbalance because it iteratively balances the distri-
bution. Our findings are subject to some limitations,
which present avenues for future work.

How does data sampling, class labels and lin-
guistic diversity affect performance? We eval-
uate against two datasets with pre-existing labels,
which we simplify into a binary task. This bina-
rization was required to allow comparison across
datasets. The wiki dataset samples banned com-
ments and tweets samples with keywords and sen-
timent analysis. While these datasets were the only
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publicly-available datasets large enough for this
work, Wiegand et al. (2019) shows that they lack
diversity, contain numerous biases, and cover abuse
which is mostly explicit. This may make it easier
for models to learn the task and generalize in fewer
examples. Future work should evaluate the success
and generalizability of AL for fine-grained labels
and implicit abuse.

How does the number of model parameters af-
fect performance? For computational feasibility
and environmental concerns, we use distil-BERT
but future work could assess if larger transformers
models set higher baselines from passive training
over the full dataset.

Are certain AL strategies well-suited to abu-
sive language detection? We evaluate three
commonly-used AL strategies, finding that Least-
Confidence performs best, but none are tailored
explicitly to abusive language. Constrastive Active
Learning (Margatina et al., 2021) may be partic-
ularly useful: by finding linguistically similar en-
tries on either side of the decision boundary, it may
prevent overfitting to certain slurs, profanities or
identities.

Do the experimental findings generalize to real-
world settings? Our motivation for maximizing
efficiency is to reduce financial costs and risk of
harm to annotators, which we operationalize in
terms of the number of labeled examples they view.
In practice, costs are variable because entries which
are more ‘uncertain’ to the model may also be more
time-consuming, challenging or harmful for hu-
mans to label (Haertel et al., 2015). In a real-world
setting, the work of the human annotators must
be scaled up and down in response to labeling de-
mands, which may incur additional costs. Crowd-
sourced annotators can provide labels on demand
when a new batch of entries is launched. With an
expert annotation team, there may be a cost of pay-
ing annotators during re-training. Furthermore, it
is important to note that the scope and scale of real-
ized harm depends on both the total number of an-
notators as well as their identity, positionality and
working conditions. While our approach simulates
the labeling process with one groundtruth label,
we make no assumptions on how this groundtruth
is obtained—either via a single annotator or with
some aggregation function over multiple annotator
votes—so, our method is applicable to any number
or constitution of annotators. We only make the

light assumption that less exposure to harm is a
good thing—whether that is many people being ex-
posed a little less or few people being exposed a lot
less. Future work is needed beyond our simulated
set-up to calculate a more realistic cost-benefit ratio
of AL, both in terms of financial and psychological
costs.

We are exploring these questions in future work
but simultaneously encourage the community to
consider the need for efficiency in abusive language
detection because of the costs, complexities and
risk of harm to annotator well-being from ineffi-
cient data labeling.
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A Details of Dataset Processing and
Model Training

We use two English-language datasets which were
curated for the task of automated abuse detection
(Wulczyn et al., 2017; Founta et al., 2018). The
wiki dataset can be downloaded from https:
//github.com/ewulczyn/wiki-detox
and is licensed under Apache License, Version
2.0. The tweets dataset can be downloaded
with tweet ids from https://github.com/
ENCASEH2020/hatespeech-twitter.
These datasets cover two different domains:
Wikipedia and Twitter. Each dataset is cleaned by
removing extra white space, dropping duplicates
and converting usernames, URLs and emoji to
special tokens.

We fine-tune distil-roBERTa using the
transformers integration with the
small-text python package (Wolf et al.,
2019; Schröder et al., 2021). distil-roBERTa has
six layers, 768 hidden units, and 82M parameters.
We encode input texts using the distil-roBERTa
tokenizer, with added special tokens for usernames,
URLs and emoji. All models were trained
for 3 epochs with early stopping based on the
cross-validation loss, a learning rate of 2e − 5
and a weighted Adam optimizer. All other
hyperparameters are set to their small-text
defaults. In each active learning iteration, we
use 10% of each labeled batch for validation. As
a baseline to transformers-based AL, we use a
support vector machine with no pre-training which
we implement with sklearn. To encode a vector
representation of input texts, we use a TF-IDF
transformation fitted to the training dataset.

All experiments were run on the JADE-2 cluster
using one NVIDIA Tesla V100 GPU per experi-
ment. For transformer-models, it took on average
1.5 hours to run each experiment. For SVM, it took
less than a minute to run each experiment and these
can be easily be run on a CPU. We repeat each ex-
periment three times using three seeds to initialize
a pseudo-random number generator.

B Sampling with Keywords

We use a heuristic to weakly label examples from
the unlabeled pool to be selected for the initial seed.
Keywords are a commonly-used approach (e.g. see
Ein-Dor et al., 2020) and searching for text matches
is computationally efficient over a large pool of un-
labeled examples. However, the keyword heuristic

Table 3: The effect of varied keyword density thresholds
on F1, false positive rate (FPR) and false negative rate
(FNR).

K F1 FPR FNR
wiki

1.0% 76.0% 2.7% 52.8%
5.0% 69.0% 0.5% 71.8%

10.0% 91.0% 0.1% 87.4%
25.0% 49.0% 0.0% 98.4%

Tweets
1.0% 85.0% 4.5% 29.6%
5.0% 80.0% 2.9% 42.7%

10.0% 83.0% 0.9% 76.4%
25.0% 75.0% 0.2% 98.5%

only approximates the true label and can introduce
biases due to non-abusive use of offense and pro-
fanities. In our data, we rely on a keyword density
measure (K) which equals the number of keyword
matches over the total tokens in a text instance. We
then experiment with varied thresholds of K ∈
[1%, 5%, 10%, 25%] for a weak label of abusive
text. A higher threshold reduces false positives but
also decreases true positives. We find a threshold
of 5% best balances these directional effects. Mak-
ing predictions using a keyword heuristic with a
5% cut-off achieves an F1-score relative to the true
labels of 69% for wiki and 80% for tweets. Using
this threshold, examples are expected to be abu-
sive if the percentage of keywords in total tokens
exceeds 5%. We then sample equal numbers of
expected abusive and non-abusive examples from
the pool, reveal their true labels and initialize the
classifier by training over this seed.

C Additional Experimental Analysis

Table 4: The best AL parameters and performance for
each classifier (transformers vs SVM).

Best AL Combinations∗ Metrics
Dataset Classifier Seed Cold Batch Query F120k

† F1AL N90

wiki50 dBERT 20 Random 50 LC 0.920 0.922 170
SVM 20 Random 50 LC 0.875 0.838 1520

wiki10 dBERT 20 Heuristic 50 LC 0.859 0.866 170
SVM 20 Heuristic 50 LC 0.809 0.810 320

wiki5 dBERT 20 Heuristic 50 LC 0.807 0.855 220
SVM 20 Heuristic 50 LC 0.785 0.780 170

tweets50 dBERT 20 Random 50 LC 0.939 0.938 170
SVM 20 Random 50 LC 0.931 0.926 220

tweets10 dBERT 20 Heuristic 50 LC 0.904 0.902 220
SVM 20 Random 50 LC 0.893 0.901 170

tweets5 dBERT 200 Heuristic 50 LC 0.844 0.856 300
SVM 20 Heuristic 50 LC 0.825 0.830 170

Notes: † global metric from passive training over the full dataset
∗ calculated by averaging the rank performance on F1AL, N90

Tab. 4 shows the best parameters for each dataset
and each classifier. In Fig. 6, we present the learn-
ing curve and comparisons of each experimental

https://github.com/ewulczyn/wiki-detox
https://github.com/ewulczyn/wiki-detox
https://github.com/ENCASEH2020/hatespeech-twitter
https://github.com/ENCASEH2020/hatespeech-twitter
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variable for both datasets and classifiers. In each
panel of Fig. 6, we vary one parameter whilst hold-
ing all others fixed. This allows us to evaluate the
impact of one variable, ceteris paribus. Namely,
the reference values are those reported in the main
paper: seed size of 20 selected by heuristics-based
sampling and a batch size of 50 queried by Least-
Confidence strategy.

Seed and Batch Size We test two choices for
seed size (20, 200), and three choices for batch
size (50, 100, 500). We find AL is more efficient
with smaller seeds and batch sizes. The F1 score
achieved with a seed of 20 and four AL iterations
of 50 (|L| = 220) exceeds that reached with a seed
of 200 and 0 iterations (|L| = 200) by 55pp for
wiki50, 4pp for wiki10, and 10pp for wiki5. Batch
sizes of 100 and 500 are less efficient than 50, with
700–1,100 and 150–200 more examples needed for
N90, respectively.

Seed Acquisition Strategy (Cold) We evaluate
two choices to select the examples for the seed. (1)
Random: Seed examples are randomly selected.
Depending on the class distribution of the unla-
beled pool (which, in real world settings, is un-
known) only non-abusive content might be iden-
tified. For datasets expected to be approximately
balanced, a randomly-selected seed has a high prob-
ability of including both class labels. (2) Heuris-
tics: Seed examples are selected using keywords
(n = 652), taken from the abusive language lit-
erature (Davidson et al., 2017; ElSherief et al.,
2018a,b; Gabriel, 2018). For wiki50, random-
and heuristics-based initialization achieve equiv-
alent N90. However, with a seed of 20, a third
of randomly-initialized experiments fail on wiki10
and all experiments fail for wiki5. This shows that
when the data is imbalanced, a random seed is sub-
optimal because both class labels are not observed.

Query Strategy In addition to LeastConfidence
(LC), we evaluate two further strategies coupled
with dBERT: 1) GreedyCoreSet is a data-based
diversity strategy which selects items representa-
tive of the full set (Sener and Savarese, 2017) and
2) EmbeddingKMeans is a data-based diversity
strategy which uses a dense embedding represen-
tation (such as BERT embeddings) to cluster and
sample from the nearest neighbors of the k cen-
troids (Yuan et al., 2020). On our datasets, these
two strategies are high performing in terms of the
maximum F1 score they achieve over 2,000 exam-

ples, but take longer to learn and are less efficient
than LeastConfidence.

D Generalizability of Performance

In the main paper, we present the results of cross-
dataset generalization with 5% abuse. In Fig. 5,
we demonstrate the equivalent results for all class
imbalances and both datasets. In general, tweets
is harder to predict than wiki, so we see a larger
change in performance when training on tweets
and evaluating on wiki. For 50% and 10% abuse,
performance is similar across test sets. For 5%
abuse, there is a larger difference especially for the
random baseline. However, in all cases, the perfor-
mance of the LeastConfidence strategy generalizes
well to out-of-domain testing, at least for these two
datasets which are similar in their proportion of
explicit abuse (Wiegand et al., 2019).
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Figure 5: Cross-dataset generalization (dBERT) for 50%
and 10% abuse.
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Figure 6: Learning curves per dataset-class imbalance pair showing the effect of isolated experimental variables on
traditional (SVM) and transformers-based (dBERT) active learning.


