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Abstract

The Shared Task on Natural Language Premise
Selection (NLPS) asks participants to retrieve
the set of premises that are most likely to be use-
ful for proving a given mathematical statement
from a supporting knowledge base. While pre-
vious editions of the TextGraphs shared tasks
series targeted multi-hop inference for expla-
nation regeneration in the context of science
questions (Thayaparan et al., 2021; Jansen and
Ustalov, 2020, 2019), NLPS aims to assess the
ability of state-of-the-art approaches to operate
on a mixture of natural and mathematical lan-
guage and model complex multi-hop reasoning
dependencies between statements. To this end,
this edition of the shared task makes use of a
large set of approximately 21k mathematical
statements extracted from the PS-ProofWiki
dataset (Ferreira and Freitas, 2020a). In this
summary paper, we present the results of the
1st edition of the NLPS task, providing a de-
scription of the evaluation data, and the partic-
ipating systems. Additionally, we perform a
detailed analysis of the results, evaluating vari-
ous aspects involved in mathematical language
processing and multi-hop inference. The best-
performing system achieved a MAP of 15.39,
improving the performance of a TF-IDF base-
line by approximately 3.0 MAP.1

1 Introduction

The articulation of mathematical language repre-
sents a core feature of human intelligence, requir-
ing complex reasoning capabilities and abstraction
as well as a correct evaluation of the semantics
of mathematical structures and its internal com-
ponents (Greiner-Petter et al., 2019). Moreover,
mathematical language consists in a combination
of words and symbols, which act following dif-
ferent rules and alphabets, but preserving, at the
same time, mutual dependencies that are necessary

1Data and code available online: https:
//github.com/ai-systems/tg2022task_
premise_retrieval.

Figure 1: Given a mathematical statement s, that
requires a mathematical proof, and a collection of
premises P , the task of Natural Language Premise Se-
lection (NLPS) consists in retrieving the premises in P
that are most likely to be useful for proving s (Ferreira
and Freitas, 2020a).

for the comprehension of mathematical discourse
(Ganesalingam, 2013).

These features provide a unique set of opportu-
nities for the evaluation of state-of-the-art models
in Natural Language Processing (NLP) (Ferreira
and Freitas, 2020a,b; Welleck et al., 2021). To en-
courage new lines of research at the intersection
of natural language and mathematics, we propose
the 1st Shared Task on Natural Language Premise
Selection (NLPS).

The NLPS task asks participants to retrieve the
premises that are most likely to be useful for prov-
ing a given mathematical statement from a support-
ing knowledge base (see Figure 1). Specifically,
NLPS is designed to assess the capabilities and be-
haviours of state-of-the-art approaches in dealing
with a mixture of natural language and mathemati-
cal text along with the modelling of complex multi-
hop dependencies between statements. To this end,
this edition of the shared task makes use of a large
set of approximately 21k mathematical statements
extracted from the PS-ProofWiki dataset (Ferreira
and Freitas, 2020a).

In this summary paper, we present the results of

https://github.com/ai-systems/tg2022task_premise_retrieval
https://github.com/ai-systems/tg2022task_premise_retrieval
https://github.com/ai-systems/tg2022task_premise_retrieval
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the 1st edition of the Natural Language Premise
Selection task, providing a detailed description of
the evaluation data, and the participating systems.
Moreover, we perform a detailed analysis of the be-
haviour of the participating systems, evaluating var-
ious aspects involved in mathematical language pro-
cessing (i.e., the ability to deal with an increasing
number of mathematical elements) and multi-hop
inference. The best performing system achieved
a MAP of 15.39, improving the performance of a
TF-IDF baseline by approximately 3.0 MAP, while
still leaving a large space for future improvements.

2 Natural Language Premise Selection

Given a mathematical statement s that requires a
mathematical proof, and a collection (or a knowl-
edge base) of premises P = {p1, p2, . . . , pNp},
with size Np, the task of Natural Language
Premise Selection (NLPS) consists in retrieving
the premises in P that are most likely to be useful
for proving s.

A mathematical statement can be a definition,
an axiom, a theorem, a lemma, a corollary or a
conjecture. Premises are composed of universal
truths and accepted truths. Definitions and axioms
are universal truths since the mathematical commu-
nity accepts them without proof. Accepted truths
include statements that need a proof before being
adopted. Theorems, lemmas and corollaries are
such types of statements. These statements were,
at some point, framed as a conjecture before they
were proven. As such, they can be grounded on past
mathematical discoveries, referencing their own
supporting premises (i.e., the background knowl-
edge that was used to prove the conjecture). This
network structure of available premises can be used
as a foundation in order to predict new ones. The
relationship between these statements can be lever-
aged to build models that can better perform infer-
ence for mathematical text (Ferreira and Freitas,
2020b,a).

The NLPS task can be particularly challenging
for existing Information Retrieval systems since
it requires the ability to process both natural lan-
guage and mathematical text (Ferreira and Freitas,
2020a; Ferreira et al., 2022). Moreover, as shown
in the example in Figure 2, the retrieval of certain
premises necessitates complex multi-hop inference
(Ferreira and Freitas, 2020b).

Statement Type Data Split

KB Train Dev Test All (Unique)

Definitions 7,077 0 0 0 7,077
Lemmas 252 134 70 69 252
Corollaries 161 113 57 57 275
Theorems 8,715 5,272 2,652 2,636 14,003

Total 16,205 5,519 2,778 2,763 21,746

Table 1: Types of mathematical statements present in
PS-ProofWiki. The table shows the number divided by
the data split. The last columns shows the total unique
entries for each mathematical type.

3 Training and Evaluation Data

PS-ProofWiki (Ferreira and Freitas, 2020a) has a
total of 21,746 different entries, composed of defini-
tions, lemmas, corollaries and theorems, as shown
in Table 1. Note that only the Knowledge Base
contains definitions since definitions do not contain
proofs and, consequently, do not have premises.
However, definitions are often used as premises
playing a fundamental role in the NLPS task. There
also exists an intersection between the KB and the
training set. Accordingly, we include the last col-
umn to account for all unique entries in the dataset.

Figure 3 presents a histogram with the frequency
of the different number of premises. We can ob-
serve that the statements usually have a small num-
ber of premises, with 9, 640 (Around 87% of the
entries in the Train/Dev/Test set) statements con-
taining between one and five premises. The highest
number of premises for one theorem is 72.

Similarly, the histogram in Figure 4 shows the
frequency of the dependencies between statements,
reporting how many times each statement is used as
a premise. A total of 4,236 statements is connected
to between one and three dependants. On aver-
age, the statements contain a total of 289 symbols
(characters and mathematical symbols).

The dataset provides a specific semantic mod-
elling challenge for natural language processing as
it requires specific tokenisation and the modelling
of specific discourse structures tailored towards
mathematical text, such as encoding mathemati-
cal elements along with natural language, and en-
coding the relationship between conjectures and
premises.

4 System Descriptions and Performance

Following the previous editions of the TextGraphs
Shared Tasks on Multi-Hop Inference for Explana-
tion Regeneration (Thayaparan et al., 2021; Jansen
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Figure 2: Example of premises requiring multi-hop inference.

Figure 3: Distribution of the number of premises in
the ProofWiki corpus. Log transformation is applied to
facilitate visualisation for the y axis.

and Ustalov, 2020, 2019), we frame Natural Lan-
guage Premise Selection (NLPS) as a ranking
problem. To this end, the participating systems
have been evaluated using Mean Average Precision
(MAP) at K, with K = 500. Specifically, the top
500 premises retrieved for supporting a given math-
ematical statement are compared against the gold
premises in the corpus via MAP.

The competition has been organised on Co-
daLab (Pavao et al., 2022),2 with a total of four
teams submitting their solutions to the leaderboard
(Tran et al., 2022; Trust et al., 2022; Kovriguina
et al., 2022; Dastgheib and Asgari, 2022). Table 2

2https://codalab.lisn.upsaclay.fr/
competitions/5692

Figure 4: Number of times a statement is referred as
a premise. Log transformation is applied to facilitate
visualisation for the y axis.

presents the overall results of the evaluation phase
(test-set). In general, the shared task attracted a
diverse set of submissions adopting methods span-
ning from state-of-the-art Transformers (Vaswani
et al., 2017) to lexical-based approaches. All the
participating systems improved the performance of
a TF-IDF baseline, with the best performing sys-
tem (IJS) achieving a MAP score of 15.39. How-
ever, the relatively low performances of the sys-
tems demonstrate that the task is still challenging
for existing models, leaving large space for future
improvements.

Here, we summarize the key features of the mod-
els proposed by the participating teams:

https://codalab.lisn.upsaclay.fr/competitions/5692
https://codalab.lisn.upsaclay.fr/competitions/5692
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Team Name MAP

IJS (Tran et al., 2022) 15.39
UNLPS (Trust et al., 2022) 15.16
Kamivao (Kovriguina et al., 2022) 14.60
langml (Dastgheib and Asgari, 2022) 14.14

TF-IDF baseline 12.28

Table 2: Overall results of the 1st Shared Task on Natu-
ral Language Premise Selection (NLPS).

TF-IDF baseline. The shared task data distribu-
tion included a baseline that employs a term fre-
quency model (TF-IDF) (see, e.g. Manning et al.,
2008, Ch. 6). Specifically, the TF-IDF baseline
employs sparse vector representations in combina-
tion with cosine similarity to estimate how likely a
given premise in the knowledge base supports the
mathematical statements provided as input. This
baseline achieves a MAP score of 12.28.

IJS (Tran et al., 2022). The team investigates the
task of NLPS evaluating the impact of Transformer-
based contextual representations along with several
similarity metrics for retrieval. Specifically, the au-
thors propose a systematic evaluation of different
pre-trained Sentence-Transformers (Reimers and
Gurevych, 2019) using a bi-encoder architecture.
In order to rank the premises, the authors extract
the contextual representation from different Trans-
formers, computing the similarity scores to rank
how likely the sentences in the supporting knowl-
edge base are to be a part of the set of premises
for a given mathematical statement. The authors
observe that the best performance are obtained via
RoBERTa large (Liu et al., 2019) and Manhattan
distance achieving a MAP score of 15.39.

UNLPS (Trust et al., 2022). Similar to
IIJS, the team explore the usage of Sentence-
Transformers (Reimers and Gurevych, 2019), em-
ploying a bi-encoder architecture for addressing the
NLPS task. The team does not rely on fine-tuning
techniques but, instead, adopts pre-trained Trans-
formers to retrieve the most relevant premises via
a cosine similarity score. The team demonstrated
that employing the Sentence-Transformer SMPNet
model, which internally adopts a pre-trained MP-
Net (Song et al., 2020), yields a MAP score of
15.16.

Kamivao (Kovriguina et al., 2022). The team
proposes an approach based on a mixture of dense

retrieval and prompt-based methodology. Specifi-
cally, the proposed model combines a bi-encoder
based on a pre-trained Sentence-Transformer
(Reimers and Gurevych, 2019) (BERT (Devlin
et al., 2019) and MathBERT (Peng et al., 2021))
with a GPT3 model (Brown et al., 2020) which is
instructed to re-rank a set of candidate premises.
In the first stage, the model uses bi-encoders and
cosine similarity to retrieve a list of potentially
relevant premises, while in the re-ranking stage,
the authors adopt a prompt-based methodology to
construct specific instructions for GPT-3. This ap-
proach achieves a MAP score of 14.60.

Iangml (Dastgheib and Asgari, 2022). The
team proposes a method that relies on keywords
extraction and matching to select relevant premises.
The proposed approach employs a keyword extrac-
tor (Campos et al., 2020) to generate up to 20 key-
words for each sentence. The team proposes and
evaluates a range of similarity functions based on
the extracted keyworkds through the generation of
sparse embeddings. The embeddings are generated
using the fastText model (Joulin et al., 2017). The
scoring functions are then applied to re-rank the
top 500 premises retrieved by the TF-IDF base-
line. Their experiments show that the Jacardian
similarity scoring function yields the best MAP
performance of 14.14.

5 Detailed Analysis

In order to better evaluate and characterise the be-
haviour of the proposed systems beyond the ag-
gregated MAP score, we carried out an additional
analysis by partitioning the set of mathematical
statements according to different categories.

Specifically, we categorise the statements in the
test-set according to the total number of occurring
mathematical elements (e.g., equations, variables,
etc.) and the total number of gold premises. In par-
ticular, these categories allow for the evaluation of
the behaviour of the systems when (a) dealing with
a mixture of natural language and mathematical
text and (b) retrieving premises that require multi-
hop inference. The larger the number of premises
supporting a given mathematical statement, in fact,
the higher the number of inference steps that are
likely to be required in the NLPS task.

The results of this analysis are reported in Table
3 and Table 4.
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Team Name Overall 0–5 5–10 10–20 20+

IJS 15.39 13.89 17.37 13.95 9.36
UNLPS 15.16 13.53 17.43 14.03 10.08
Kamivao 14.60 13.58 16.07 13.73 7.46
langml 14.14 12.24 16.20 13.86 7.62

TF-IDF baseline 12.28 11.27 13.29 11.70 7.15

Table 3: MAP score by number of mathematical elements in a mathematical statement.

Team Name Overall 0–5 5–10 10–20 20+

IJS 15.39 15.96 13.37 10.92 5.89
UNLPS 15.16 15.67 13.33 10.57 5.40
Kamivao 14.60 15.05 12.84 10.03 6.76
langml 14.14 14.45 12.95 10.86 8.02

TF-IDF baseline 12.28 12.64 11.47 8.93 7.84

Table 4: MAP score by number of gold premises supporting a mathematical statement.

5.1 Number of Mathematical Elements

In order to count the number of mathematical el-
ements in a given statement, we create apposite
regular expressions leveraging the special charac-
ters used to write equations in LaTeX (e.g., “$”).
Subsequently, we recompute the performance of
the systems, grouping the statements in the test-set
by the number of occurring mathematical elements
(see Table 3).

Overall, the analysis reveals that the perfor-
mances significantly decrease for all the partici-
pating systems, including the TF-IDF baseline. In
addition, we observe that the second system in the
overall ranking (UNLPS) is actually the most ro-
bust when dealing with an increasing number of
mathematical elements. Since IJS and UNLPS em-
ploy a similar architecture based on pre-trained
Sentence-Transformers (Reimers and Gurevych,
2019), the difference in results might be attributed
to the specific model adopted in the experiments.
UNLPS, in fact, adopts a pre-trained MPNet (Song
et al., 2020) while IJS uses RoBERTa-large (Liu
et al., 2019). At the same time, the overall decrease
in performance confirms that additional work is
still required to make Transformer-based represen-
tations able to deal with a mixture of natural lan-
guage and mathematical text (Ferreira et al., 2022).

5.2 Number of Gold Premises

We perform a similar analysis by grouping the
mathematical statements in the test-set according

to the number of gold supporting premises. In
this case, we assume that the larger the number of
premises, the higher the probability of systems re-
quired to perform multi-hop inference for address-
ing the NLPS task (see Table 4).

Overall, a similar trend can be observed when
investigating the behaviours of the systems on state-
ments requiring an increasing number of support-
ing premises. The results in Table 4, in fact, show
that the performances substantially decrease as the
number of gold premises increases, with compa-
rable MAP scores across different systems when
considering a number of premises varying from
5 to 20. Surprisingly, when considering state-
ments with more than 20 premises, we observe
an almost entirely inverse ranking in the leader-
bord, with Iangml becoming the best perform-
ing system, outperforming more complex models
based on Transformers. Moreover, we observe
that with 20+ premises the top 3 participating sys-
tems achieve worse performance than the TF-IDF
baseline. These results indicate that pre-trained
Transformers are still not robust on multi-hop in-
ference in this context, and might suffer from a
phenomenon of semantic drift similar to what pre-
viously observed in scientific explanation regener-
ation tasks (Jansen and Ustalov, 2019; Valentino
et al., 2022, 2021).
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6 Related Work

Mathematical Language Processing. Several
areas of research apply Natural Language Process-
ing for domain-specific tasks, Mathematics being
one of these areas. One crucial task in this field
is solving mathematical word problems, where the
goal is to provide the answer to a mathematical
problem written in natural language (Zhang et al.,
2020; Kushman et al., 2014; Ran et al., 2019).
These problems are usually self-contained and are
structured in a didactic and straightforward manner,
not containing complex mathematical expressions.

Some contributions focus on the representation
of mathematical text and mathematical elements.
Zinn (2004) proposes a representation for mathe-
matical proofs using Discourse Representation The-
ory. Similarly, Ganesalingam (2013) introduces a
grammar for representing informal mathematical
text, while Pease et al. (2017) presents this style
of text using Argumentation Theory. Such explicit
representations are relevant for representing the
reasoning process behind mathematical thinking.
However, it is still not possible to accurately extract
these representations at scale. Representations of
mathematical elements are often used in the con-
text of Mathematical Information Retrieval, used,
for example, for obtaining a particular equation
or expression, given a specific query. Tangent-
CFT (Mansouri et al., 2019) is an embedding model
that uses the subparts an expression or equation,
to represent its meaning. This type of representa-
tion (Fraser et al., 2018; Zanibbi et al., 2016) often
removes the expression for its original discourse,
losing the textual context that can help to find a
semantic representation. In this work, we focus on
creating a representation that can integrate both of
these aspects, natural language and mathematical
elements. Similar to our work, Yuan et al. (2020)
uses self-attention for mathematical elements in
order to generate headlines for mathematical ques-
tions. Other relevant tasks for NLP applied to Math-
ematics include typing variables according to its
surrounding text (Stathopoulos et al., 2018), obtain-
ing the units of mathematical elements (Schubotz
et al., 2016) and generating equations on a given
topic (Yasunaga and Lafferty, 2019).

Premise Selection. Premise selection is a well-
defined task in the field of Automated Theorem
Proving (ATP), where proofs are encoded using
a formal logical representation. Given a set of

premises P , and a new conjecture c, premise selec-
tion aims to predict those premises from P that will
most likely lead to an automatically constructed
proof of c, where P and c are both written using
a formal language. (Alemi et al., 2016) is one of
the first models to use Deep Learning for premise
selection in ATPs. Ferreira and Freitas (2020a)
proposed an adaptation of this task, focusing on
mathematical text written in natural language. A
model based on Graph Neural Networks has been
previously introduced for this task (Ferreira and
Freitas, 2020b), however, the authors do not take
into account the differences between mathematical
and natural language terms, representing all state-
ments homogeneously. The premise selection task
can also be seen as an explanation reconstruction
task, where premises are considered explanations
for mathematical proofs.

Multi-Hop Natural Language Inference. The
proposed NLPS task is related to previous work
on Multi-Hop Inference and Explanation Regen-
eration as the set of premises retrieved by a given
model can be interpreted as an explanation support-
ing the mathematical statement provided as input
(Thayaparan et al., 2020; Xie et al., 2020; Valentino
et al., 2022). Previous editions of the shared tasks
series have focused on evaluating multi-hop infer-
ence in the context of science question answer-
ing (Thayaparan et al., 2021; Jansen and Ustalov,
2020, 2019). In this work, instead, we aim to assess
the multi-hop inference capabilities of NLP mod-
els in a context requiring the articulation of both
natural language and mathematical expressions.

7 Conclusion

Our shared task on Natural Language Premise Se-
lection (NLPS) attracted a total of four partici-
pating teams, allowing for the evaluation of a di-
verse set of solutions ranging from Transformers
to lexical-based approaches. The participating sys-
tems have all contributed to improving the perfor-
mance of a TF-IDF baseline. The best-performing
team, IJS, presented an approach based on pre-
trained Sentence-Transformers, which has been
shown to achieve a MAP score of 15.39. Given the
challenges involved in the task, supported by the
relatively low performance of state-of-the-art ap-
proaches, we hope this work will encourage future
research in the field, exploring NLPS as a bench-
mark for testing complex inference capabilities and
exploring the limit of AI and NLP models.
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