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Abstract
Proactively identifying misinformation spread-
ers is an important step towards mitigating
the impact of fake news on our society. Al-
though the news domain is subject to rapid
changes over time, the temporal dynamics of
the spreaders’ language and network have not
been explored yet. In this paper, we analyze
the users’ time-evolving semantic similarities
and social interactions and show that such pat-
terns can, on their own, indicate misinforma-
tion spreading. Building on these observations,
we propose a dynamic graph-based framework
that leverages the dynamic nature of the users’
network for detecting fake news spreaders. We
validate our design choice through qualitative
analysis and demonstrate the contributions of
our model’s components through a series of
exploratory and ablative experiments on two
datasets.

1 Introduction

With the popularity of social media platforms con-
stantly increasing, the dissemination of false on-
line information becomes a major hurdle, having
catastrophic effects on our society (McKay and
Tenove, 2021). It is essential to address this issue
early on; to efficiently and rapidly identify misin-
formation spreaders and spurious accounts which
are likely to propagate posts from unreliable news
sources. To this end, we introduce an early warn-
ing model that distinguishes authors who have re-
peatedly shared news from unreliable sources in
the past, from those that share news from reliable
sources. We use the terms ‘misinformation spread-
ers’ and ‘real news spreaders’ for each user class,
respectively. In this paper, the term misinformation
is used as an umbrella term that covers misinforma-
tion, disinformation, partisan news and satirical
content. Figure 1 depicts examples of the posting
activity for each user class.

Recently, significant attention has garnered to-
wards graph representational learning methods (Wu

et al., 2021) due to their advances in various NLP
domains. Kim and Ko (2021) use a graph-based ap-
proach to model the semantic relationship between
sentences in a document for fake news detection.
Rath et al. (2021) apply graph neural networks
to explore the social network of misinformation
spreaders and show that interpersonal trust plays
a significant role in differentiating them from real
news spreaders. Such graph approaches are able to
model user-to-user relationships and therefore pro-
vide a promising underexplored research direction
for identifying misinformation spreaders.

The impact of time on fake news prediction
has made the task even more challenging, as the
content-based differences of news sources change
due to the highly dynamic nature of the news topics
(Horne et al., 2019). Most of the fake news detec-
tion methods that use static features need to be con-
tinuously updated with new annotated data to stay
relevant (Kwon et al., 2017). We argue that this hy-
pothesis can be generalized for detecting misinfor-
mation spreaders. Similarly to feature-based meth-
ods, existing graph modeling approaches are not
specifically designed for learning the time-evolving
similarities of the users’ interactions. Addressing
these limitations of existing research, we propose
an approach accounting for the temporal dynamics
of user-to-user relationships instead. We introduce
a model that extracts features from users’ content
similarities and social interactions and models the
temporal evolution of these connections in order
to identify misinformation spreaders. In addition,
our study aims to answer the following research
questions:
RQ1: Do the users’ semantic similarities and
social interactions fluctuate over time?
RQ2: Are temporal relationships indicative of
misinformation spreading behavior?

For the first exploration, we formulate the prob-
lem as a binary classification task, with a potential
for a more fine-grained approach in the future. We
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Figure 1: Examples of the user classes.

first build dynamic linguistic and social graphs,
which are constructed based on the users’ posting
behaviour within consecutive time-windows. Sub-
sequently, the generated temporal graph represen-
tations are treated as a sequence of features for the
final classification. To the best of our knowledge,
dynamic graph modelling has not been utilized
for identifying misinformation spreaders in other
works. We conduct a series of exploratory analyses
in the user-to-user relationships. Through abla-
tive experiments, we show the effectiveness of our
model’s components for profiling misinformation
spreaders. Our contributions are as follows:
• We provide a comprehensive qualitative and

quantitative analysis of the users’ temporal se-
mantic and social similarities and investigate the
different types of dynamic graph connections.

• We develop a dynamic graph neural network
framework for (a) predicting the users’ future
misinformation spreading behavior, (b) predict-
ing the behavior of unseen users, and (c) pre-
dicting misinformation spreading behavior in a
zero-shot scenario.

• We show that our proposed dynamic framework
outperforms the baseline content-based models
as well as the static graph model.

• We release our code to encourage future research.

2 Background and Related Work

While user profiling approaches have been investi-
gated for various tasks, it wasn’t until after the PAN
2020 competition (Bevendorff et al., 2020) that the
problem of misinformation spreaders identification
gained the attention of the research community.
Most recent studies are focused on analyzing emo-
tional signals (Giachanou et al., 2021), personality
and linguistic patterns (Mu and Aletras, 2020; Gi-

achanou et al., 2020). These methods rely on the
assumption that the content, and therefore the fea-
tures that are extracted, remains constant over time.
While static linguistic patterns have proven to be
useful features for misinformation spreader detec-
tion, none of the current methods explore temporal
aspects of their behavior. Our model utilizes the
users’ contextualized content embeddings as user
(node) representations and simultaneously lever-
ages their content similarities over time and social
interactions dynamically (via edges in the temporal
graph).

In the context of user modelling, graph repre-
sentational learning approaches (Kipf and Welling,
2016; Veličković et al., 2018; Chami et al., 2019)
have made significant advances in enhancing NLP
models for various tasks (Mishra et al., 2019;
Chopra et al., 2020; Sawhney et al., 2021; Kacu-
paj et al., 2021; Plepi and Flek, 2021). Rath et al.
(2020, 2021) identified misinformation spreaders
by extracting features from a network that is built
based on interpersonal trust metrics. Despite their
success, a limitation of the existing approaches is
that they do not account for the temporal dynamics
of the semantic and social connections.

We argue that the users’ characteristics and in-
teractions change dynamically over time due to the
dynamic nature of the news cycle, therefore tempo-
ral graphs are more suitable to model the evolution
of the user-to-user relationships (Wu et al., 2021).
Our hypothesis, inspired by Bahns et al. (2017),
is that both the social and the content similarity
patterns of misinformation spreaders differ from
those of other users.

The concept of temporal graphs has been around
for some years (Rossi et al., 2020; Seo et al., 2016;
Han et al., 2014) with numerous applications (Guo
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et al., 2019; Li et al., 2018; Yan et al., 2018). The
most relevant to our work is the model proposed by
Sawhney et al. (2020), leveraging signals from fi-
nancial data, social media, and inter-stock relation-
ships via a graph neural network in a hierarchical
temporal fashion. We draw inspiration from these
approaches and propose a dynamic temporal graph
for misinformation spreader detection.

3 Datasets

FACTOID Dataset (Reddit). We utilized the
FACTOID dataset published by (Sakketou et al.,
2022), which includes a sufficient amount of user
history, and, more importantly, simultaneous infor-
mation on the users’ social behavior (Pardo et al.,
2020). To the best of our knowledge, this is the
only dataset that contains a sufficient amount of
social connections to build dense temporal graphs.
FACTOID contains a total of 3.3M posts authored
by 4.1K users, with 73.8% of the users being “real
news spreaders” while the rest 26.2% being misin-
formation spreaders, determined by the factuality
of the news sources they link to. The data cov-
ers the period before and after the US elections
(from January 2020 to April 2021), making it an
ideal dataset for investigating temporal relation-
ships since this time period includes significant
events regarding the political scene.

Twitter Dataset. To generalize our content simi-
larity dynamics findings, we utilize in addition the
Twitter dataset released by Mu and Aletras (2020).
Since the dataset contained the labels and the user
IDs, we re-crawled the users’ posting history. After
filtering the users whose handles were deleted or
had insufficient data, the resulting dataset contained
3.5K users and 2.6M posts with roughly 40:60 class
distribution of fake and real news spreaders respec-
tively. Since there are practically no social interac-
tions between the users in this dataset, we report
results only with the semantic similarity graphs.
We split the dataset into train (70%), development
(20%) and test (10%) as in the original paper.

FACTOID Twitter

Total number of posts 3,354,450 2,626,176
Total number of users 4,150 3,541
# of misinformation spreaders 3,064 1,455
# of real news spreaders 1,086 2,086

Table 1: Summary of dataset statistics for FACTOID
and Twitter.

4 Temporal Graph Construction

4.1 Encoding Users

Each user ui is associated with a posting historyHi.
We partition the complete posting time period in
equal discrete time frames τ , containing the users’
posts that were posted within these time frames.

User2Vec. We adopt User2Vec (Amir et al.,
2016) to compute each user’s representation Eiτ ∈
R200 based on their corresponding historical posts
within the time frame τ , by optimizing the condi-
tional probability of texts given the author.

UBERT. In addition, we use Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019) to en-
code each user’s individual historical posts, and
we obtain each user’s temporal historical encoding
Eiτ ∈ R768 by averaging over the posting history
length within a corresponding time frame τ .

4.2 Individual Graph construction

We model the user’s temporal relationships by con-
structing a sequence of graphs G1,G2, . . . ,GT cor-
responding to each time frame τ . Each graph Gτ
is comprised by a set of user nodes Vτ that have
posted at least once within the time frame τ and a
set of edges Eτ between these users. We construct
the following types of graphs.

Semantic graph. The user embeddings Eiτ rep-
resent each user’s context within the time period
τ . Users with semantically similar content are
close in the vector space (Reimers and Gurevych,
2019) since they have similar context encoding.
To construct the users’ semantic graphs Gsemτ =
(Vτ , Esemτ ), we calculate all the pairwise cosine
similarities between the users’ embeddings within
a time period τ ; cos(Eiτ , E

j
τ ). We form connec-

tions between two users only if their cosine simi-
larity is above a high threshold θ, representing the
semantic similarity between two users.

Social graph. On Reddit, users engage in various
discussions with their peers. Social science argues
that like-minded people tend to interact more with
each other (Bahns et al., 2017), therefore, for the
FACTOID dataset, we are able to construct the so-
cial graph Gsocτ = (Vτ , Esocτ ) in a way that captures
the users’ social interactions with each other. We
define as social interaction the replies and men-
tions in a post thread. For each thread of posts,
we connect all the chain of replies to the root (i.e.
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the original post) of the conversation and all men-
tions/replies to each other. Next, these post connec-
tions are translated to user connections in the social
graph (Appendix A.2). In the Twitter dataset, the
social connections are too few therefore we were
unable to build dense temporal graphs.

4.3 Temporal Analysis of Graphs

To answer the RQ1, we wish to monitor the tem-
poral evolution of the users’ semantic similarities
and social interactions between different groups
of users over time and associate those temporal
fluctuations to the political landscape. We group
the users by their credibility label (misinforma-
tion spreaders, real news spreaders) and define
three different edge types: (1) edges between mis-
information spreaders (‘m2m’), (2) edges between
real news spreader (‘r2r’) and (3) edges between
misinformation spreaders and real news spreaders
(‘m2r’). We partition the users’ total posting pe-
riod (from the start of January 2020 until the end
of April 2021) to 16 monthly time periods, and
we compute the connections’ percentage within
each time period for all edge types. The connec-
tions’ percentage can be interpreted as the normal-
ized edge count of a particular edge type during a
time period τ (see Appendix A.4 for more details).
For the temporal semantic graphs, an increase in
this metric essentially shows an increase in the
language usage similarity between different user
groups. Correspondingly, for the social graphs, an
increase would show that two user groups engage
in discourse and share opinions in a thread.
Can we detect different temporal relationship pat-
terns depending on the users’ credibility?

Figure 2 depicts the connections’ percentage on
the semantic graph and the social graph. For both
graphs, we can observe that the ‘m2r’ connections
percentage is consistently the lowest for all time
periods, indicating that on an aggregate level, mis-
information spreaders and real news spreaders do
not have as much context similarity to each other
and avoid socially interacting with each other. On
the other hand, misinformation spreaders seem to
be more densely connected with each other and
tend to exchange information regularly.
How do the users’ temporal semantic and social re-
lationships fluctuate based on the political scene?

Interestingly, we observe peaks in the connec-
tions’ percentage during January 2020 (event 1),
November 2020 (event 2) and January 2021 (event

Date Event Description

Feb 5 Trump is acquitted on the charges of abuse of
power and obstruction of Congress. (event 1)

Aug 11 Joe Biden chooses Senator Kamala Harris
(D-CA) as his running mate

Nov 3 2020 United States elections (event 2)

Jan 6 US Capitol is attacked by supporters of
Trump (event 3)

Table 2: Major political events1. These events are ref-
erenced in Figure 2.
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Figure 2: Connection percentage of per month for the
semantic (left) and social graphs (right). The events
shown in this Figure correspond to the events men-
tioned in Table 2.

3) for both graphs. The percentage fluctuations are
more obvious in the semantic graph compared to
the social graph, this is the first indication that the
temporal context similarities might be more useful
for the model compared to the social interactions.
We provide a list of pivotal political events in Ta-
ble 2 which evidently explain the increase in the
connections’ percentage and provide an intuition
behind the users’ behavior.

5 Neural Network Design

5.1 Graph Neural Network Layer
We utilize three different types of Graph Neural
Network (GNN) layers in order to demonstrate the
robustness and predictability of the users’ connec-
tions. The input to the GNN layer is a set of user
embeddings Eiτ for each time frame τ . The GNN
layer is shared across the time frames and produces
new representations Ẽiτ which are learned by uti-
lizing either the semantic or social graphs.

Graph Convolutional Neural Network. To em-
bed the nodes in our graph, we employ Graph
Convolutional Networks (GCN) (Kipf and Welling,
2016). GCN is a commonly used, powerful graph
embedding method that encodes both local graph
structure and features of the nodes, by using a layer-
wise propagation rule.
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Figure 3: Overview of the proposed framework. We first obtain the user embeddings for each time frame and
construct the temporal graphs. Next, we feed the graphs to a GNN to extract neighbourhood features. For each user,
we use a GRU with temporal attention to compute an overall representation of the user, which is finally forwarded
to a classification layer.

Graph Attention Network. As users have a dif-
ferent influence on one another, we need to focus
on users that have more relevant connections with
higher influence. To model the importance of the
influences of the neighbourhood to a node, we use
Graph Attention Networks (GAT) (Veličković et al.,
2018). GAT attends to the neighborhood of each
user and assigns an importance score to the con-
nections that contribute more to the detection of
misinformation spreaders.

Hyperbolic Graph Convolutional Neural Net-
works. Research has shown that GCNs often
do not generalize well to hierarchical, tree-like
networks such as the social graphs constructed
from social media threads (Chen et al., 2012b),
since they operate in the Euclidean space. Build-
ing on the scale-free nature of the users’ social
graphs, we utilize Hyperbolic Graph Neural Net-
works (HGCN) (Chami et al., 2019) which employ
graph convolutions in the hyperbolic space as op-
posed to the standard graph convolutions. The
HGCN layer projects the user embeddings in the
hyperbolic space to minimize distortions and learn
better representations.

5.2 Temporal Neural Network Layer

Temporal Encoding. We investigate the users’
behavior over a long time-period, and we wish to
encode the dynamic changes between the users’
interactions over time. We argue that simply com-
pressing the users’ semantic and social connections
into one static graph, would introduce too much
noise and the information regarding the temporal
fluctuations of the semantic and social relationships
would be lost. To this end, we model the sequential
dependencies through time for each user, with a
Gated Recurrent Unit (GRU) (Cho et al., 2014).
The GRU encodes the dynamic user graph repre-
sentations across the time axis, producing hidden
states for each time frame τ .

Temporal Attention and Network Optimiza-
tion. The GRU models the sequential dependen-
cies of the temporal graph user representation, how-
ever during the long time span of the users’ posting
activity, certain socio-political events, such the elec-
tion seasons, the release date of a new vaccine, etc.,
may cause the outburst of misinformation spread-
ing. Therefore, we wish to model the contributions
of these important time periods to the users’ overall
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representation. To this end, we employ an attention
mechanism (Bahdanau et al., 2016) to compute an
overall representation for the user with adaptive
weights over the aggregated GRU hidden states.

We formulate the author profiling problem as
a binary classification task to predict the class yi

of the user, where yi ∈ {misinformation spreader,
real news spreader}. The overall learned repre-
sentations for each user are forwarded into a linear
layer, and we use cross-entropy loss to calculate the
difference between the true and predicted labels.

6 Experimental Setup

To answer the RQ2, we need to investigate the
reliability of the temporal semantic and social con-
nections as features for identifying misinformation
spreaders in various scenarios.

Predicting future user behavior. We analyze
whether the past user behavior, represented through
temporal graphs, can be used to predict their future
user behavior. To this end, we use the whole set
of users in the training, validation and test, but
each set contains data from different time periods.
Specifically, the training set consists of 8 months
(Jan-Aug 20’), and the validation (Sep-Dec 20’)
and test sets (Jan-Apr 21’) 4 months each, resulting
in a consecutive 50:25:25 time split of the user’s
posting history. This stands for both datasets since
they were collected around the same time period.
We provide a visual depiction of this split in Ap-
pendix A.5 in Figure 8a.

Generalizing to unseen users. We examine
which types of relationships have the ability to
generalize to unseen users. In this setup we uti-
lize a user split, where we divide the users into a
train:validation:test sets of ratio 70:10:20 using all
of their posting history. This split is also visually
depicted in Appendix A.5 in Figure 8b.

Performance on unseen users in the future.
We also aim to test whether the temporal graph
features generalize on both unseen users and fu-
ture content, to this end we utilize the mixed split.
We split the users into a train:validation:test sets of
ratio 70:10:20, where the train set contains users
who have posted the first half (Jan-Aug 20’) of the
whole time period, while the validation and test
sets contain a different set of users who post on
the second half (Sep 20’-Apr 21’). With this setup,
we evidently demonstrate the reliability of the pro-
posed model of detecting misinformation spreaders

on unseen data. A visual depiction of this split is
provided in Appendix A.5 in Figure 8c.

7 Experimental Results

7.1 Performance results

Feature baselines First, we compare the pro-
posed model to simple, yet strong content-based
baselines by utilizing interpretable classifiers; Sup-
port Vector Machines (SVM), Logistic Regression
(LR), and Random Forest (RF) using the following
features:
ngrams: While word ngrams are considered as
simple features, they have been used successfully
in the past for identifying misinformation spread-
ers (Vogel and Meghana, 2020). In this case, we
utilized the word bi-grams.
statistical-emotional (StEm): We employ a feature
vector (n = 22) with standard statistical linguistic
variables (such as min, max, average number of
tokens and characters, lexical diversity, etc.) (Buda
and Bolonyai, 2020; Pardo et al., 2020). Addi-
tionally, we added 8 emotional dimensions to this
baseline feature (Fersini et al., 2020; Mohammad
and Turney, 2013).
UBERT: We use the SBERT embeddings of the
documents averaged over the whole time frame as
feature vectors.
U2V: We also utilized the User2Vec embeddings
to represent the users as feature vectors.

Table 3 shows the accuracy results of the base-
line models compared to the dynamic graph models
on the FACTOID and Twitter datasets. Note that
we utilized both the social and the semantic graph
and two initialization methods for the FACTOID
dataset - in this table we report the best performing
variant (for all variants see Table 4). For the Twit-
ter dataset, we experiment only with the semantic
graph since there are no social connections between
users, and we obtained the temporal graphs with
UBERT. We observe that all the proposed mod-
els significantly outperform all baseline models for
both datasets. For the FACTOID dataset, the best
performing dynamic graph model showed higher
macro F1-score compared to the baseline models in
all splits, which was on average 10.47% higher on
the time split, 15.3% on the user split and 14.08%
on the mixed split. For the Twitter dataset, the best
performing dynamic graph model showed on aver-
age 8% better performance on the time split, 10.8%
on the user split and 16.8% on the mixed split.

The results on both datasets validate our claim
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FACTOID Twitter
Time Split User Split Mixed Split Time Split User Split Mixed Split

SVM LR RF SVM LR RF SVM LR RF SVM LR RF SVM LR RF SVM LR RF
ngrams 43.6 56.4 55.4 43.4 58.4 59.5 42.5 42.5 57.6 73.9 75.2 76.9 61.7 65.5 66.6 52.37 42.6 64.81
StEm 52.5 51.6 56.8 49.1 54.9 60.6 54.1 52.1 60.3 61.4 60.8 70.2 59.4 57.3 63.9 43.0 43.5 63.6
UBERT 42.5 47.9 56.1 53.9 58.6 49.7 42.3 45.7 54 62.6 77.3 71.9 64.1 64.7 64.3 36.2 59.4 65.8
U2V 47.6 52.1 61.3 50.2 55.1 56.5 46.4 53.0 59.6 - - - - - - - - -
DyGAT 64.56∗ 63.59 63.22 78.2∗ 67.30 69.2∗

DyGCN 64.18 65.75 64.23∗ 66.9 65.60 66.1
DyHGCN 64.24 66.75∗ 58.58 67.7 73.90∗ 65.3

Table 3: Baseline experimental results on the FACTOID and Twitter datasets. Bold indicates the best macro
F1-score. All results are in percentages. We show that the DyGNN framework outperforms all baselines for each
split in both datasets. The results with the asterisk (∗) are statistically significant based on the Wilcoxon signed
rank test (p = 0.001) compared to all the baseline methods.

Semantic Social
Time User Mixed Time User Mixed

U
B

E
R

T DyGAT 64.56∗ 57.26 60.46 62.91 61.66 63.12
DyGCN 63.57 58.67 61.60 64.18 61.08 59.44
DyHGCN 55.39 66.75 55.25 56.38 62.02 58.58

U
2V

DyGAT 63.03 63.59 62.88 63.50 63.01 63.22∗

DyGCN 62.28 65.75 64.23∗ 62.76 64.21 61.35
DyHGCN 42.51 42.52 47.39 64.24∗ 66.09∗ 56.10

Table 4: Comparative analysis of two embedding
methods for semantic graph construction and DyGNN
initialization (social graph). Reported macro F1-score
for the FACTOID dataset. All results are in percent-
ages. Bold indicates best result. The results with the
asterisk (∗) are statistically significant based on the
Wilcoxon signed rank test (p = 0.001) compared to
the second best performing method.

that the specific language features become quickly
outdated, while temporal semantic similarities and
social interactions are more robust and constitute a
better tool for (a) predicting future behavior (time
split), (b) predicting the behavior of unseen users
(user split), and (c) identifying misinformation
spreaders on unseen data (mixed split).

Comparison of dynamic graph models. Ta-
ble 4 shows the performance results on the three dif-
ferent experimental setups (see Appendix A.6.1 for
more detailed results). We analyze the results of the
dynamic graph models, based on the utilized graph
type (semantic and social), initialization method
(UBERT and User2Vec) and graph neural network
type (GAT, GCN and HGCN).
Comparing graph types. We observe that the
model obtains a slightly better performance by uti-
lizing the semantic similarity graphs compared to
utilizing the social graphs for all three setups. Fig-
ure 2 shows that the percentage of temporal connec-
tions is higher, and fluctuates more, on the semantic

graphs compared to the social graphs. This may
represent users sharing similar opinionated news re-
garding the same event, with patterns changing for
a new event, while social connections stay similar.
Comparing initialization methods. When UBERT
and User2Vec are used in the social graphs, they
simply act as initialization vectors, since the so-
cial graph construction does not depend on the
embedding method. When the models use the so-
cial graphs, User2Vec initialization produces better
results than UBERT in all setups, despite its lower
dimensionality. This performance is expected since
User2Vec yields better results than UBERT when
it is utilized as a baseline method (Table 3).

The semantic similarity graphs, on the other
hand, differ when constructed with UBERT or with
User2Vec. In the time split evaluation setup, the
semantic graph model achieves the best perfor-
mance with UBERT, while in the mixed split, the
best performance is obtained with User2Vec. This
is likely due to UBERT particular suitability for
capturing meaningful user similarities even with a
small amount of user history, since SBERT (from
which we obtain UBERT) is tailored for produc-
ing sentence embeddings comparable using cosine-
similarity. User2Vec requires a significant amount
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Semantic Social
Time User Mixed Time User Mixed

DyGNN 64.56∗ 66.75 64.23∗ 64.24∗ 66.09∗ 63.22∗

no temporal 55.14 53.53 60.24 62.64 59.37 56.54
no attention 62.27 66.78∗ 61.97 61.01 64.51 56.32

Table 5: Ablation study - temporal dynamics. In
this study we remove the temporal component (keeping
simple “static” GNN approach) and the attention. Re-
sults show that both components play a significant role
to the model’s performance. Bold indicates the best
macro F1-score. All results are in percentages. The
results with the asterisk (∗) are statistically significant
based on the Wilcoxon signed rank test (p = 0.001).

of documents in order to obtain high-quality user
representations however, it leads to a stronger gen-
eralizability on unseen data.
Comparing dynamic graph neural networks. We
observe that the hyperbolic DyHGCN obtains the
best performing results in 3/6 combinations of split
and graph type. However, it performs poorly when
it utilizes the User2Vec semantic graphs. Figure
4 shows the average hyperbolicity of the dynamic
graphs for each month. As is known, high hy-
perbolicity values indicate a tree-like structure of
the network Chen et al. (2012a); Aparicio et al.
(2015). Due to the lower posting activity during the
last months, and thus higher sparsity of the topics
represented by one user, users are more dissimi-
lar, resulting in fewer edges. This in turn leads to
lower hyperbolicity during this time period, which
explains the DyHGCN’s poor performance with
User2Vec semantic graphs. The social graph shows
high hyperbolicity for all months, therefore Dy-
HCGN achieves superior performance when utiliz-
ing the social graphs. DyGAT and DyGCN obtain
the best performance once, but in contrast to Dy-
HGCN, they both achieve results within a certain
range which is neither too low nor too high.
Discussion. In conclusion, based this comparative
analysis, dynamic semantic similarity graphs lead
to better results than dynamic social graphs, and
given a large amount of user history, User2Vec is
preferred for constructing these. In addition, the
use of DyHGCN is recommended only when the
hyperbolicity of the graph is high, alternatively,
DyGAT or DyGCN provide comparable results.

7.2 Ablation Study - Temporal Components

We perform an ablation study on the components
of the best performing dynamic graph model to
demonstrate the effect of each layer on the overall
performance, namely the temporal attention and

the temporal graphs:
No attention. We remove the temporal attention
layer from our dynamic graph model. Intuitively,
this component should focus on the time periods
with high misinformation spreading activity and
highest differences between user groups.
No temporal dynamics. We average each user’s
representations across all time frames to obtain a
single user representation, and remove the dynamic
part of our model by merging all the graphs con-
structed for every discrete time frame. Specifically,
we construct a single graph that includes all the
user connections from all time periods and replace
the GRU layer, with a linear layer. This model cap-
tures the overall semantic and social interactions
of the users over their whole posting timeline, and
could also be considered as a graph-based baseline.

Table 5 shows the ablative results over the com-
ponents of the best performing dynamic graph mod-
els for all setups. We observe that removing the
temporal information has a significant detrimental
effect on the performance in all cases, which is on
average 7.53%. This demonstrates the strong pre-
dictive power of temporal patterns in semantic and
social relationships for identifying misinformation
spreaders and validates our proposed framework
for dynamically modeling the users’ semantic and
social graphs. In addition, except for the seman-
tic graph on the user split, adding the temporal
attention over the users’ timeline increases signifi-
cantly the performance, reinforcing our hypothesis
that the similarity of language use during important
socio-political events is strongly indicative of mis-
information spreading. We have seen that for the
semantic graph using the user split, the attention
weights through different time slots are the same.
Due to this reason, the overall user representation
is just a simple average of the GRU states. One rea-
son why this is happening, is because the temporal
attention is not capturing temporal patterns of the
users, that can generalize to unseen ones.

7.3 Error Analysis
We conducted an analysis of users that consistently
get the same prediction by at least half of the GNN
models. We identify two groups of users; consis-
tently correctly classified, and consistently misclas-
sified. The following error analysis is based on the
results obtained on the FACTOID dataset on the
user split, however similar results were observed
for the rest of the splits.

Approximately 72% of the consistently misclas-
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sified users are misinformation spreaders, which
can be attributed to the class imbalance decreasing
the recall.

It is harder to identify users that are borderline
fake news spreaders. Table 6 shows, for the cor-
rectly classified and misclassified fake news (FNS)
and real news spreaders (RNS), the average number
of fake and real news posts, average science and
factual level provided in Sakketou et al. (2022) and
the average no. of months of active posting. The
science level of each user ∈ [−1, 1] is the normal-
ized weighted average of non-scientific (-1) and
scientific (1) articles and the factual level ∈ [−3, 3]
is the normalized weighted average factuality of
the news domains, manually labeled by journalists
from very low (-3) to very high (3). 2

fake
posts

real
posts

science
level

factual
level

activity
(months)

correctly
classified

FNS 9.66 39.45 0.13 0.59 12.99
RNS 0.29 9.95 0.70 1.76 12.57

mis-
classified

FNS 3.76 22.88 0.16 0.83 11.21
RNS 0.60 22.67 0.42 1.59 12.37

Table 6: Error analysis. Correctly classified fake
news spreaders (FNS) post more often than misclassi-
fied ones, and post more consistently over time.

As we can see, the misclassified FNS have
posted a considerably lower number of fake news
on average compared to the correctly classified
FNS. While they also posted a lower number of
real news posts, their (annotated) factual level is
quite high - the source quality plays a role. For
the correctly classified FNS, high number of real
news combined with low factual level indicates
that the real news sources these users are posting
are borderline credible - their credibility level is
only ‘mostly factual’(+1), whereas the credibility
level of the fake news sources is from ‘low’(-2)
to ‘very low’(-3). The correctly classified RNS
tend to post significantly more scientific articles
and articles with higher factuality on average than
the misclassified RNS. Overall, correctly classified
users of both classes post more consistently over
the months compared to the misclassified users.

Since our data heuristics might include wrongly
labeled posts and, by extension, users, we manu-
ally labeled 210 posts of consistently misclassified

2When embedding the users, we erased the URLs from
the text, so that no information about the number of links,
or the names of the domains was leaked in the user embed-
dings, therefore none of the models could have had any prior
knowledge of these factors.

Mislabeled as fake news
(...) These pieces rely on discredited sources who have ped-
dled debunked theories about Dominion’s supposed ties to
Venezuela (...) These statements are completely false and have
no basis in fact. (...) [link to non-credible source posting fake
news]

Mislabeled as real news
The CCP (Chinese Communist Party) controls Google from
within. Change my mind. [link to credible source posting real
news]

Table 7: Mislabeled news posts.

users. In this small sample we found that approx-
imately 14% of the posts were wrongly labeled,
however less than 1% of the users would obtain
a different label because of these posts. We show
two examples of mislabeled posts in Table 7.

8 Conclusion

In this study we proposed a dynamic graph neural
network framework that generates temporal graph
representations from the users’ semantic similari-
ties and social interactions through time.

Our extensive experiments and ablation study
demonstrated that the temporal graphs are more
efficient than content-based models or simple static
graphs for predicting (a) the future misinforma-
tion spreading behavior, (b) the behavior of unseen
users, and (c) misinformation spreading behavior
in a zero-shot scenario. These results indicate that
a model utilizing temporal user relationships is
more robust and more efficient for misinformation
spreader detection compared to topic-sensitive or
time-agnostic models, e.g. talking about Trump
doesn’t make one a misinformation spreader and it
is quite normal near election time.

Through exploratory experiments, we analyzed
the various aspects of the framework in order to
provide an insight into its usability. These experi-
ments showed that dynamic semantic similarities
lead to better results than the social ones. The abla-
tion study on the components of the model revealed
that the temporal modelling of the users’ seman-
tic similarities and social interactions significantly
contributes to identifying misinformation spread-
ers effectively. Our error analysis indicated that
the misclassified fake news spreaders tend to post
a very low number of fake news posts and a high
number of real news posts from highly credible
sources. Yet, the proposed framework is applicable
as a human moderator-assistance tool for identify-
ing users that post fake news more consistently.
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Ethical Considerations and Limitations

Ethical considerations. The ability to automati-
cally approximate personal characteristics of online
users in order to improve natural language classi-
fication algorithms requires us to consider a range
of ethical concerns. Use of any user data for per-
sonalization shall be transparent, and limited to
the given purpose (Hewson and Buchanan, 2013).
Any user-augmented classification efforts risk in-
voking stereotyping and essentialism, as the algo-
rithm labels people as misinformation spreaders
or not. Such stereotypes can cause harm even if
they are accurate on average differences (Rudman
and Glick, 2012). These can be emphasized by the
semblance of objectivity created by the use of an
algorithm (Koolen and van Cranenburgh, 2017).

We acknowledge that our research could be used
in order to identify gullible individuals that are
susceptible to fake news, which enables malicious
parties to promote their propaganda. However, the
intended use of this research is to limit the misin-
formation spread by addressing this problem at its
origin, therefore our data and the code implementa-
tion provided in this work, should only be used for
research purposes.

Other limitations. Automatically labelled
datasets should be utilized with caution since
they might include wrongly labeled posts and, by
extension, wrongly labeled users. For example,
a number of posts contained multiple links from
mixed sources (credible and non-credible). In
this paper, we utilized the same labeling method
of such posts as Sakketou et al. (2022), where
a post is considered misinformation when there
is at least one non-credible news source cited.
This includes cases where the number of real
news sources overcomes the number of fake news
sources within one post. We argue that the ratio of
the non-credible to credible news sources posted
in one post should be considered as a labeling
threshold instead. More specifically, if more than
half the sources within one post are non-credible,
only then should it be labeled as misinformation.

We acknowledge that there is a very thin line

separating real news spreaders and misinformation
spreaders, however in future works a new class
of “potential misinformation spreaders” could be
introduced for the users that are on the fence.
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A Appendix

A.1 Dataset
A.1.1 Analysis of the linguistic differences
To get an intuition for the actual linguistic differ-
ences between the two user groups of misinfor-
mation spreaders and real news spreaders, we ex-
tracted the learned token weights from the SVM
model in order to study the predictiveness of the
tokens for each class (Guyon et al., 2002). The
most predictive tokens are shown in Table 8. It
can be seen that there’s a tendency for misinforma-
tion spreaders to reference politically left-leaning
groups as “liber”, “dem”, “left” or “blm” (referring
to the Black Lives Matter movement), while real
news spreaders use the terms “fascist” and “repub-
lican” with higher frequency.

Label Tokens

Misinformation
Spreaders

china, video, come, offici, blm, corrupt,
media, away, liber, order, new, trump’s,
seem, wrong, kill, left, dem, riot

Fact Checkers
public, first, week, understand, trial,
fascist, republican, war, one, forced-birth,
health, pleas, power, let, shock, view, service

Table 8: Top-ranked tokens for each label.

A.2 Social graph construction
Figure 5 shows the transformation of the thread
structure into a social graph.

Figure 5: Transforming a post/reply tree in social me-
dia into a social graph network.

A.3 Temporal Analysis of Nodes
Centrality. Figure 6 depicts the graph centrality
normalized by the number of posts. This metric
helps in identifying important nodes in a graph. We
can see that, in the linguistic graph, the centrality of
the misinformation spreaders and real news spread-
ers follows a similar pattern but fluctuates a lot over
time. Interestingly, there’s an obvious increase in
the centrality of both classes during August, right
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Figure 6: Approximated (k=1000) graph centrality nor-
malized by post amount calculated for all time spans
for the semantic (left) and social (right) graph.

after former President Trump announced the pos-
sibility of postponing the US elections (see Table
2). This increase is more obvious in the misinfor-
mation spreaders, meaning that they are discussing
a particular topic more extensively compared to
the real news spreaders. In the social graph, we
observe a great difference in the values of cen-
trality between misinformation spreaders and real
news spreaders. This metric shows that misinfor-
mation spreaders are gathered in the center of the
graph, while real news spreaders are in the periph-
ery of the graph and are not that densely connected
to each other. This essentially indicates that mis-
information spreaders form a densely connected
“community” and marginalize real news spreaders.
The centrality of the misinformation spreaders de-
creases over time, while in the case of real news
spreaders it fluctuates but still stays within a spe-
cific range. This apparent dynamically changing
behavior of the nodes supports our choice of tem-
poral modelling of the graphs.

Homophily. In Figure 7, we show the amount of
homophily observed for both semantic and social
graphs, which is defined as the percentage of edges
that connect users with the same label. Interest-
ingly, we observe that in the semantic graph the
homophily follows different patterns in misinfor-
mation spreaders and real news spreaders, and it
is fluctuating over time. In the social graph, the
misinformation spreaders have consistently higher
homophily than real news spreaders, which means
that they tend to interact and exchange opinions
more with each other compared to real news spread-
ers. These results complement the edge analysis
from Section 4.3 which shows that users from the
same credibility group tend to socially interact
more with each other, which is more apparent in
misinformation spreaders.



102

Jan
 20

'
Fe

b 2
0'

Ma
r 2

0'
Ap

r 2
0'

Ma
y 2

0'
Jun

 20
'

Jul
 20

'
Au

g 2
0'

Se
p 2

0'
Oc

t 2
0'

No
v 2

0'
De

c 2
0'

Jan
 21

'
Fe

b 2
1'

Ma
r 2

1'
Ap

r 2
1'

0.0

0.1

0.2

0.3

0.4

Ho
m

op
hi

ly
Real news 
spreaders

Misinformation 
spreaders

Jan
 20

'
Fe
b 2

0'
Ma

r 2
0'

Ap
r 2
0'

Ma
y 2

0'
Jun

 20
'

Jul
 20

'
Au
g 2

0'
Se
p 2

0'
Oc
t 2
0'

No
v 2

0'
De
c 2

0'
Jan

 21
'

Fe
b 2

1'
Ma

r 2
1'

Ap
r 2
1'

0.0

0.1

0.2

0.3

0.4

0.5

Ho
m
op
hi
ly

Real news 
spreaders

Misinformation 
spreaders

Figure 7: Amount of homophily observed through time
for both semantic (left) and social graph (right).

A.4 Connections’ percentage

We define the connections’ percentage of a certain
edge type as ρedge type = r

(τ)
edge type/R

(τ)
edge type, where

r
(τ)
edge type is the number of edges (of that edge type)

that exist between two users during the time period
τ and R(τ)

edge type is the number of all possible con-
nections (of that edge type) at the time period τ ,
computed as follows:

R
(τ)
m2m = N (τ)

m (N (τ)
m − 1)/2

R
(τ)
r2r = N (τ)

r (N (τ)
r − 1)/2

R
(τ)
m2r = (N (τ)

m +N (τ)
r )(N (τ)

m +N (τ)
r − 1)/2

where N
(τ)
m is the number of misinformation

spreaders and N
(τ)
r is the number of real news

spreaders that have posted at least one post at time
period τ .

A.5 Training Setup

We use the pretrained model
‘all-mpnet-base-v2’ from SBERT3,
which achieved the best performance on various
challenging similarity datasets (Cer et al., 2017).
This model has max length set to 512, uses mean
pooling and has the output dimension db = 768.
The users’ historical representations are obtained
as described in Section 4.1 For each post in the
user history, we masked the links so that the cosine
similarity is not attributed based on the links. We
run experiments with δ ∈ 15, 30, 60, 360 (δ is
the number of days spanned by each that each
time period τ ). In each sample, we randomly
sample n ∈ 200, 400, 800, 1200 users, and we
build a subgraph of those users for each discrete
time window. In the semantic graph, we connect
users with each other based on the hyperparameter
θ ∈ [0, 1] (as defined in Section 4.2). We find

3https://www.sbert.net/docs/pretrained_models.

html

(a) Time split. Splitting the time periods in order to predict
future user behavior.

(b) User split. Splitting the users in order to predict the
behavior of unseen users.

(c) Mixed split. Splitting the users and the time periods in
order to predict the behavior of unseen users in the future.

Figure 8: Visual demonstration of the (a) Time split, (b)
User split and (c) Mixed split.

out that our model works best with the following
hyperparameters: n = 200, δ = 30, θ = 0.8. For
the models initialized with User2Vec embeddings,
we use the dimensions dg = 100 for our graph
layer and dr = 50 for our GRU sequential layer.
On the other hand, for the models initialized
with UBERT embeddings we use the dimensions
dg = 256 for our graph layer and dr = 128 for our
GRU sequential layer. We use Adam optimizer
(Kingma and Ba, 2015) with learning rate 5e− 5,
weight decay 1e− 2, and train the model for 100
epochs using early stopping with patience 20 on
the validation set. We run each experiment with
5 random seeds and report the mean result on
the test set in Tables 3, 4 and 5. DyGAT model
using User2Vec embeddings as initialization has
116K parameters, while DyGCN and DyHGCN
have 55K parameters. On the other hand, DyGAT

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
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Semantic graph
Time Split User Split Mixed Split

F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall

U
B

E
R

T DyGAT 49.64 45.09 55.22 33.44 40.46 28.49 43.18 40.09 46.77
DyGCN 46.55 45.52 47.63 36.8 41.06 33.33 44.44 41.9 47.31
DyHGCN 45.97 34.3 69.65 52.45 48.2 57.53 44.81 33.88 66.13

U
2V

DyGAT 47.85 42.89 54.11 42.86 54.1 35.48 44.44 45.98 43.01
DyGCN 41.47 49.56 35.65 52.09 45.9 60.22 49.77 44.17 56.99
DyHGCN 0 0 0 0 0 0 10.38 42.31 5.91

Table 9: Reported F1-score, Precision and Recall on the fake news spreader class for the FACTOID dataset utilizing
the semantic graph. All results are in percentages. Bold indicates the best macro F1-score on both classes.

Social graph
Time Split User Split Mixed Split

F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall

U
B

E
R

T DyGAT 47.14 43.07 52.05 41.42 46.05 37.63 46.43 44.17 48.92
DyGCN 44.97 51.28 40.04 39.5 47.37 33.87 39.89 40 39.78
DyHGCN 47.39 35.25 72.29 51.99 40.18 73.66 32.71 53.01 23.66

U
2V

DyGAT 57.24 41.84 90.61 43.24 48.98 38.71 48.36 42.92 55.38
DyGCN 41.85 51.54 35.23 48.9 44.84 53.76 44.05 41.63 46.77
DyHGCN 46.74 47.74 45.78 54.47 45.07 68.82 46.21 34.78 68.82

Table 10: Reported F1-score, Precision and Recall on the fake news spreader class for the FACTOID dataset
utilizing the social graph. All results are in percentages. Bold indicates the best macro F1-score on both classes.

using UBERT embeddings as initialization has 1M
parameters, while DyGCN and DyHGCN have
427K parameters. Our experiments for each model
take around 1 hour to run on NVIDIA A100-PCIE
40GB GPU. Our implementation, the annotated
dataset, and the results are publicly available to
facilitate reproducibility and reuse.

A.6 Detailed Experimental Results

A.6.1 Comparison of the graph types

Tables 9 and 10 show the F1-score, Precision and
Recall on the fake news spreader class for the
FACTOID dataset utilizing the semantic and so-
cial graphs respectively. Given the same combi-
nation of setups, i.e different splits, GNN and em-
bedding initialization, we qualitatively compared
the results obtained by utilizing the semantic and
social graphs. We report the findings regarding the
cases with the best macro F1-scores (in bold).

In the time split, for the DyGAT+UBERT model,
we observed that the results are not significantly
different when comparing the utilization of seman-
tic and social graphs. In the same split, for the
DyHGCN+User2Vec model, we note that 24.99%
of the users were classified differently by the se-
mantic and social models, this difference is ex-

pected since the difference between the F1-scores
obtained by each graph type is more than 20%.
When the semantic graph is utilized, we observe
that DyHGCN+User2Vec fails to recognize any of
the misinformation speaders, however it achieves
an impressively high performance with the social
graph. This result is justified due to the low hyper-
bolicity values of the semantic User2Vec graph as
mentioned in Section 7.1.

In the user split, for the DyHGCN+UBERT
model, we note that 32.54% of the users were clas-
sified differently from the semantic and social mod-
els, even though the difference between their macro
F1-scores is only 4%. By utilizing the semantic
graph, the model yields to a worse Recall for the
fake news spreader class, but higher Recall for the
real news spreader class. In the same split, for the
DyHGCN+User2Vec model, we note that 39.72%
of the users were classified differently, however
this difference is expected since the F1-scores ob-
tained by the semantic and social models have more
than 20% difference between them. Once more we
observe a staggering difference between the F1-
scores obtained from semantic and social models,
with the social model achieving the highest score.

In the mixed split, for the DyGCN+User2Vec
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model, we note that 27.55% of the users were clas-
sified differently. We observe that the model ob-
tains higher recall on the fake news spreader class
when the semantic relationships are utilized, in-
stead of the social ones. In the same split, for the
DyHGCN+UBERT model, we observe that 7.82%
of the users were calculated differently. By uti-
lizing the social graph, the model achieves higher
Recall on the fake news spreader class.


