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Abstract

Investigating cooperativity of interlocutors is
central in studying pragmatics of dialogue.
Models of conversation that only assume co-
operative agents fail to explain the dynamics
of strategic conversations. Thus, we investigate
the ability of agents to identify non-cooperative
interlocutors while completing a concurrent
visual-dialogue task. Within this novel setting,
we study the optimality of communication
strategies for achieving this multi-task ob-
jective. We use the tools of learning theory
to develop a theoretical model for identify-
ing non-cooperative interlocutors and apply
this theory to analyze different communica-
tion strategies. We also introduce a corpus
of non-cooperative conversations about im-
ages in the GuessWhat?! dataset proposed by
De Vries et al. (2017). We use reinforcement
learning to implement multiple communica-
tion strategies in this context and find that
empirical results validate our theory.

1 Introduction

A robust dialogue agent cannot always assume a
cooperative conversational counterpart when de-
ployed in the wild. Even in goal-oriented settings,
where the intent of an interlocutor may seem to
be granted, bad actors and disinterested parties are
free to interact with our dialogue systems. These
non-cooperative interlocutors add harmful noise to
data, which can elicit unexpected behaviors from
our dialogue systems. Thus, the need to study non-
cooperation increases daily as we build and deploy
conversational systems which interact with peo-

ple from different demographics, political views,
and intents, continuously learning from the col-
lected data. Examples include Amazon Alexa,
task-oriented systems that help patients recover-
ing from injuries or can teach a person a new
language, and systems that help predict deceptive
behaviors in courtrooms. To effectively commu-
nicate in the presence of unwanted behaviors like
bullying (Cercas Curry and Rieser, 2018), sys-
tems need to understand users’ strategic behaviors
(Asher and Lascarides, 2013) and be able to iden-
tify non-cooperative actions. Designing agents
that learn to identify non-cooperative interlocu-
tors is challenging since it requires processing
the context of the dialogue in addition to mod-
eling the choices that interlocutors make under
uncertainty—choices which typically affect their
ability to complete tasks unrelated to identifying
non-cooperation as well. In light of this, we ask:

What communication strategies are ef-
fective for identifying non-cooperative
interlocutors, while also achieving the
goals of a distinct dialogue task?

To answer this question, we appeal to a sim-
ple non-cooperative version of the visual dialogue
game Guess What?! (De Vries et al., 2017). See
Figure 1 for an example. The game consists of
a multi-round dialogue between two players: a
question-player and an answer-player. Both have
access to the same image whereas only the answer-
player has access to an image-secret; that is, a
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Figure 1: (Example) The question-player’s objective
is to identify a secret goal-object (the dining table).
The answer-player, who may be cooperative or non-
cooperative, gives binary responses to the question-
player’s queries. In this example, the answer-player
is non-cooperative and leads the question-player to
an incorrect object (the orange). This is a real ex-
ample produced by autonomous agents (described in
Section 5).

particular goal-object for the question-player to
recognize. The question-player’s goal is to ask
the answer-player questions which will reveal the
secret. A cooperative answer-player then provides
good answers to assist in this goal. In the original
game, the answer-player is always cooperative.
Our modified game instead allows the answer-
player to be non-cooperative with some non-zero
probability. Unlike a cooperative answer-player, a
non-cooperative answer-player will not necessar-
ily act in assistance to the question-player, and in-
stead, may attempt to reveal an incorrect secret or
otherwise hinder information exchange. In exper-
iments, the specific strategies we study are learned
from human non-cooperative conversation. The
question-player, importantly, does not know if
answer-player is non-cooperative. At the end of
the dialogue, the question-player’s final objective
is not only to identify the goal-object, but also to
determine if the conversation takes place with a
cooperative or non-cooperative answer-player.

We propose a formal theoretical model for ana-
lyzing communication strategies in the described
scenario. We frame the question-player’s objec-
tive in terms of two distinct classification tasks
and use tools from the theory of learning algo-
rithms to analyze relationships between these tasks.
Our main theoretical result identifies circumstances
where the question-player’s performance in iden-
tifying non-cooperation correlates with performance
in identifying the goal-object. Building on this, we
provide a mathematical definition of the efficacy

of a non-cooperative player which is based on
the conceptual idea that cooperation is necessary
to make progress in dialogue. Our analysis con-
cludes that when the answer-player is effective in
this sense, the question-player can gather useful
information for both the object identification task
and the non-cooperation identification task by se-
lecting a communication strategy based only on
the former objective.

To test the assumptions of our theoretical
model as well as the value of the aforementioned
communication strategy in practice, we imple-
ment this strategy using reinforcement learning
(RL). Our experiments validate our theory. As
compared to heuristically justified baselines, the
communication strategy motivated by our theory
yields consistently better results. To conduct this
experiment, we have collected a novel corpus
of non-cooperative Guess What?! game instances
which is publicly available.1 Throughout experi-
mentation, we provide a qualitative and quanti-
tative analysis of the non-cooperative strategies
present in our corpus. These results, in particular,
demonstrate that non-cooperative autonomous agents
that utilize dialogue history can better deceive
question-players. This contrasts the observation of
Strub et al. (2017) that cooperative answer-players
do not use this information.

In total, our work is positioned at the inter-
section of two foci: detection of non-cooperative
dialogue and modeling of non-cooperative dia-
logue. Unlike many detection works, we consider
detection in context of interaction. Additionally,
while many modeling works consider the intent
of conversational agents and construct strategies
for non-cooperative dialogue based on this, our
strategies are motivated purely from a learning
theoretic argument. As we are aware, a theoreti-
cal description similar to ours has not been given
before.

2 Related Works

The view that conversation is not necessarily co-
operative is not novel, but the argument can be
made that it has lacked sufficient investigation in
the dialogue literature (Lee, 2000). Game theo-
retic investigations of non-cooperation are plenti-
ful, perhaps beginning with work of Nash (1951).

1https://github.com/anthonysicilia/modeling
-non-cooperation-TACL2022.
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Concepts from this space, such as the stochas-
tic games introduced by Shapley (1953), have
been used to model dialogue (Barlier et al., 2015)
when non-cooperation between parties is allowed.
Pinker et al. (2008) also consider a game-theoretic
model of speech. In fact, even the dialogue game
we consider in this text can be modeled through
game-theoretic constructs; for example, a Baye-
sian Game (Kajii and Morris, 1997). Whereas
game theory focuses primarily on analysis of strat-
egies, studying non-cooperation in dialogue re-
quires both the learning of strategies and the
learning of utterance meaning. Aptly, our use of
the theory of learning algorithms (rather than game
theory) is suited to handle both of these. While
we are first to use learning theory, efforts to char-
acterize non-cooperation in dialogue, learn non-
cooperative strategies in autonomous agents, and
detect non-cooperation in dialogue are not absent
from the literature (Plüss, 2010; Georgila and
Traum, 2011a; Shim and Arkin, 2013; Vourliotakis
et al., 2014). We discuss these topics in detail in
the following.

Modeling Non-Cooperative Dialogue. One of
the earliest works on non-cooperation—specific to
dialogue—is that of Jameson et al. (1994), which
considers strategic conversation for advantage in
commerce. Similarly, Traum et al. (2008) focus
on negotiation and Georgila and Traum (2011b)
focus on learning negotiation strategies (i.e., argu-
mentation) through reinforcement learning (RL).
More recently, Efstathiou and Lemon (2014) con-
sider using RL to teach agents to compete in a
resource-trading game and Keizer et al. (2017)
use deep RL to model negotiation in a similiar
game. In most of these, the intent of interlocutors
is assumed and utilized in model design. In the last,
strategies are learned from data similarly to our
work, but objectives for learning are not motivated
by learning-theoretic analysis as in ours.

Detecting Non-Cooperative Dialogue. The
work of Zhou et al. (2004) presents an early ex-
ample of automated deception detection which
focuses on indicators arising from the used lan-
guage. Plüss (2014) also focus on how (more
general) non-cooperative dialogue can be iden-
tified at a linguistic level. Besides linguistic
cues, several works employ additional features
in identification of deception. These include
physiological responses (Abouelenien et al.,

2014), human micro-expressions (Wu et al.,
2018), and acoustics (Levitan, 2019). There are
also many novel scenarios for detection of dece-
ption including talk-show games (Soldner et al.,
2019), interrogation games (Chou and Lee, 2020),
and news (Conroy et al., 2015; Shu et al., 2017).

Other Visual Dialogue Games. As Galati and
Brennan (2021) observe, conversation involving
multiple media for information transfer (instead of
a single medium) typically leads to increased un-
derstanding between interlocutors. Thus, visual-
dialogue is a particularly interesting setting for
investigating both cooperation and non-cooperation.
Appropriately, cooperative visual-dialogue games
(Das et al., 2017; Schlangen, 2019; Haber et al.,
2019) are a growing area of study. We extend,
in particular, the cooperative game Guess What?!
proposed by De Vries et al. (2017) to explicitly
allow for non-cooperation. Whereas visual-dialogue
research often focuses on mechanisms to improve
task success, our work is more broadly interested
in an analysis of human communication strate-
gies within a non-cooperative, multi-task setting.

Related Learning Theoretic Work. Classifi-
cation of non-cooperative examples is similar to
detection of adversarial examples; see Serban
et al. (2018) for a survey. Still, most learning-
theoretic work only discusses models which are
robust to adversaries; for example, see Feige et al.
(2015), Cullina et al. (2018), Attias et al. (2019),
Bubeck et al. (2019), Diochnos et al. (2019),
and Montasser et al. (2020) to name a few. In
contrast, we focus on detection. Additionally, our
theoretical results are more broad and do not
explicitly model adversarial intent. Identifying
non-cooperation in dialogue is also related to
detecting distribution shift in high-dimensional,
distribution-independent settings (Gretton et al.,
2012; Lipton et al., 2018; Rabanser et al., 2019;
Atwell et al., 2022) as well as learning to gen-
eralize in presence of such distribution shift
(Ben-David et al., 2010; Ganin and Lempitsky,
2015; Zhao et al., 2018, 2019; Schoenauer-Sebag
et al., 2019; Johansson et al., 2019; Germain
et al., 2020; Sicilia et al., 2022). This connec-
tion is a strong motivation for our theoretical work,
but we emphasize our results are not a trivial ap-
plication of existing theory.
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3 Dataset

In this section, we first describe our modified
version of the GuessWhat?! game. Then, we de-
scribe the data acquisition process as well as
the non-cooperative dataset used in this study.
The dataset will be made publicly available upon
publication.

3.1 Proposed Dialogue Game

As noted, our proposed dialogue game is a mod-
ification of the cooperative two-player visual-
dialogue game GuessWhat?! (De Vries et al.,
2017). Distinctly, our version incorporates non-
cooperation.

Initialization. An image is randomly selected
and an object within this image is randomly cho-
sen to be the goal-object. With some probability,
the game instance is designated as a cooperative
game. Otherwise, the game is non-cooperative.

Players. Unlike the original GuessWhat?!
game, there are three (not two) player roles: the
question-player, the cooperative answer-player,
and the non-cooperative answer-player. For co-
operative game instances (decided at initializa-
tion), the cooperative answer-player is put in play.
Otherwise, the non-cooperative answer-player is
put in play. The question-player always plays and
does not know whether the answer-player is
cooperative or non-cooperative. To start, all ac-
tive players are granted access to the image. The
question-player asks yes/no questions about the
image and objects within the image. At the end of
dialogue, the question-player will use the gath-
ered information to guess both the unknown goal-
object and the (cooperation) type of the active
answer-player.2 Unlike the question-player, the
active answer-player has knowledge of the game’s
goal-object and responds to the question-player’s
queries with yes, no, or n/a (not applicable).

Objectives. The question-player’s goals are al-
ways to identify both the goal-object and the
presence of non-cooperation if it exists (i.e., if
the non-cooperative answer-player is in play).
The cooperative answer-player’s goal is to reveal
the goal-object to the question-player by an-
swering the yes/no questions appropriately. The
non-cooperative answer-player’s goal is instead

2This is done simultaneously, so knowledge of the
correctness of one guess cannot inform the other guess.

images objects words (+3) questions

Ours 2.7K 2.8K 2.3K (1K) 8.1K
GW 67K 134K 19K (6.6K) 277K

Table 1: Count of unique images, objects, words,
and questions within the non-cooperative games
collected. (+3) gives count of words with at least
3 occurences. First row is our proposed dataset.
Second (GW) reports computed stats on the orig-
inal GuessWhat?! corpus.

to lead the question-player away from this goal
object; that is, to ensure the question-player does
not correctly guess this object. There is no spe-
cific way in which this misleading must be done
(e.g., there is not always an alternate object).
Instead, during data collection, participants are
simply instructed to deceive the question-player.

Gameplay. The question-player and active
answer-player converse until the question-player
is ready to make a guess or a pre-specified max-
ium number of dialogue rounds have transpired.3

The question-player is then presented with a list
of possible objects and must guess which of
these was the secret goal-object. In addition, the
question-player must guess whether the answer-
player was cooperative or non-cooperative.

3.2 Data Collection

Collection. We developed a web application
to collect dialogue from human participants tak-
ing the role of a non-cooperative answer-player.
Participants were native English speakers re-
cruited via an online crowd-sourcing platform and
paid $15 per hour according to our institution’s
human subject review board. Participants were
asked to deceive an autonomous question-player
pre-trained to identify the goal-object only. For
pre-training, we used the original Guess What?!
game corpus and supervised learning setup
(De Vries et al., 2017; Strub et al., 2017). Par-
ticipants received an image and a crop that indi-
cated the goal-object. Both of these are randomly
sampled from the original Guess What?! game cor-
pus. They were tasked with leading the question-
player away from this goal object by answering
questions with yes, no, or n/a. Dialogue persisted
until the question-player made a guess.

3For data collection, no question limit is set. Experiments
in Section 5 follow Strub et al. (2017) and set the max to 5.
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Figure 2: Our new non-cooperative dataset. Left shows distribution of objects in the collected games. All 80
objects in the original GuessWhat?! corpus occur. Right shows distribution of question-counts per dialogue.

Figure 3: Original GuessWhat?! dataset. Left shows distribution of objects in original games. Right shows
distribution of question-counts per dialogue with 114 outliers larger than 27 removed for improved visualization.

Dataset. We collected 3746 non-cooperative di-
alogues. Dataset statistics are shown in Table 1,
while visualization of the object and dialogue-
length distributions are shown in Figure 2. Com-
pared to the original Guess What?! corpus, both
dialogue-length and object distributions are sim-
ilar. For objects, this is expected as these are
uniformly sampled from the original corpus. We
see 16 of our 20 most likely objects are shared
with the 20 most likely of the original Guess-
What?! object distribution, and further, the first
4 objects have identical ordering (see Figure 3).
Differences here are simply attributed to random-
ness and the increasing uniformity as likelihood
of an object decreases. For dialogue length, one
might expect non-cooperative dialogue to be
longer. Instead, the distributions are both right-
skew with an average near 5 (i.e., 4.99 in our
dataset and 5.11 in the original GuessWhat?! cor-
pus). The primary difference is that the original
corpus has more outliers, which is most probably
a result of the increased sample size. We likely
observe consistency between our non-cooperative
corpus and the original corpus because the
question-player—who controls dialogue length—
is autonomous and trained on a cooperative
corpus. Hence, this and other aspects of our non-
cooperative corpus may be influenced by pre-
conditioning the question-player for cooperation.
This issue is mitigated in our experiments (Section 5)
where the question-player is also trained on simu-
lated non-cooperative dialogue. Also note, while

the size of our collected dataset is smaller than
the original cooperative corpus, we only use our
data to train an autonomous, non-cooperative
answer-player. When a larger sample is required
(e.g., when training the question-player via RL),
we use simulated non-cooperative data generated
by the pre-trained, non-cooperative answer-player,
which is a standard technique in the literature
(Strub et al., 2017).

Besides the statistics shown in Table 1 and
Figure 2, we also point out the question-player
succeeded at identifying the goal-object in only
19% of the collected games. Comparatively, on an
autonomously generated and fully cooperative test
set, comparably trained question-players achieve
52.3% success (Strub et al., 2017). This indicates
that the deceptive strategies employed by the hu-
mans were effective at fooling the question-player
to select the wrong goal-object. More detailed
analysis of the strategies used by the partici-
pants is given in Section 5; these strategies are
self-described by the participants and also auto-
matically detected for a simple case. Finally, we
also computed the answer distribution on the col-
lected corpus: answers were 46% yes, 52% no,
and 2% n/a.

4 A Theoretical Model

This section formally models the objectives of
the question-player as two distinct learning tasks.
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We use results from the theory of learning algo-
rithms to give a relationship between these tasks
in Thm 4.1. We then use Thm 4.1 to analyze com-
munication strategies in Section 4.3.

4.1 Setup

As described in Section 3, the question-player
has two primary objectives: identification of the
goal-object and identification of non-cooperation.
To do so, the question-player is granted access to
the image and may also converse with an answer-
player. In the end, the question-player guesses
based on this evidence (i.e., the image features and
dialogue history). Mathematically, we encapsu-
late the question player’s guess as a learned hy-
pothesis (i.e., function) from the game features
to the set of object labels or the set of coopera-
tion labels.

Key Terms. We write Y to describe the finite
set of object labels and Z = {CP, NC} for the
set of cooperation labels; CP denotes cooperation
and NC denotes non-cooperation. In relation to the
example in Figure 1, Y might contain labels for
the orange, apple, cups, and dining-table. In the
same example, the cooperation label would be NC
to indicate a non-cooperative answer-player. We
use X to denote the feature space which contains
all possible game configurations. For example,
each X ∈ X might capture the dialogue history,
the image, and particular features of the image
pre-extracted for the question-player (i.e., which
objects are contained in the image at which lo-
cations). With this notation, the question-player’s
learned hypotheses may be described as an object
identification hypothesis o : X → Y and a coop-
eration identification hypothesis c : X → Z . The
question-player learns these functions by exam-
ple. In particular, we assume the question-player
is given access to a random sequence of m ex-
amples S = (Xi, Yi, Zi)

m
i=1 independently and

identically distributed according to an unknown
distribution Pθ over X × Y × Z . To abbrevi-
ate, we write S

iid∼ Pθ and assume all samples
are of size m for simplicity. The distribution Pθ

is dependent on the question-player’s communi-
cation policy πθ, which we assume is uniquely
determined by the real-vector θ. Later, this al-
lows us to select communication strategies using
common reinforcement learning algorithms.

We emphasize that the dependence of Pθ on
πθ distinguishes our setup from typical scenarios

in learning theory. Besides learning the hypothe-
ses o and c, the question-player can also select
the communication policy πθ. This policy im-
plicitly dictates the distribution over which the
question-player learns, and thus, can either im-
prove or hurt the player’s chance at success. As
in reality, neither we nor the learner have knowl-
edge of the mechanism through which changes to
the communication policy πθ modify the distri-
bution Pθ. Our only assumption is that changing
πθ does not modify the probability of coopera-
tion. That is, there is a constant pNC ∈ (0, 1) such
that for all πθ

Pr(Z = NC) = pNC; (X,Y, Z) ∼ Pθ. (1)

This agrees with the description in Section 3
where the game instance is designated coopera-
tive or non-cooperative prior to dialogue. With a
random sample S, an unbiased estimate for pNC is

p̂S
def
= 1

m

∑
i
1[Zi = NC] (2)

where 1 is the indicator function.

Error. To measure the quality of the question-
player’s guesses, we report the observed error-rate
on the sample S = (Xi, Yi, Zi)

m
i=1. In particular,

the empirical object-identification error for any
hypothesis o : X → Y is defined

ôerS(o)
def
= 1

m

∑m

i=1
1[o(Xi) �= Yi]. (3)

Similarly, the cooperation identification error for
any hypothesis c : X → Z is defined

ĉerS(c)
def
= 1

m

∑m

i=1
1[c(Xi) �= Zi]. (4)

In some cases, we instead restrict the sample
over which we compute the empirical object-
identification error. Specifically, we restrict to
cooperative game instances and write

ôerS(o | CP) def
= ôerS′(o) (5)

where S′ = ((Xi, Yi) | Zi = CP) is the sample
S with each triple where Zi �= CP removed. The
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case ôerS(o | NC) is defined similarly. Based on
these, we further define the cooperation gap

ΔS(o)
def
= p̂S · ôerS(o|NC)− (1− p̂S) · ôerS(o|CP). (6)

This gap describes observed change in (weighted)
object-identification error induced by change in
cooperation. We often expect Δ to be positive.4

Finally, recall S iid∼ Pθ and Pθ is unknown, so
in practice, we can only report the observed er-
ror discussed above. Still, we are typically more
interested in the true or expected error for fu-
ture samples from Pθ. This quantity tells us how
the question-player’s hypotheses generalize be-
yond the random samples we observe. Precisely,
the expected cooperation-identification error of
a hypothesis c : X → Z is defined

cerθ(c)
def
= E[ĉerS(c)] = Pr(c(X) �= Z) (7)

where (X,Y, Z) ∼ Pθ. The true (or expected)
object-identification error is similarly defined.

4.1.1 Applicability to Distinct Contexts

While we have specified our discussion above
to promote understanding, one of the benefits
of our theoretical framework is that it is fairly
general. In fact, the reader may be concerned
that our discussion above lacks precise defini-
tions of seemingly important terms; that is, the
feature space X and the communication policy
πθ. These components are intentionally left ab-
stract because our theoretical results make no
assumptions on the mechanism through which πθ
influences Pθ (i.e., except Eq. (1)). Further, our
results make no assumptions on how the game
configurations are represented in the feature space
X . This space could correspond to any set of di-
alogues with/without some associated data (e.g.,
images). Lastly, the only assumptions on the label
spaces are that Y is finite and Z is binary. In
this sense, our theoretical discussion is applica-
ble to very general scenarios beyond the simple
visual-dialogue game considered. We emphasize
some examples later in Section 6.

4Delta is negative when the object-identification error is
higher on cooperative examples than non-cooperative exam-
ples (for simplicity, this assumes p̂S = 0.5). In practice, we
rarely expect cooperation to lead to worse performance.

4.2 Bounding Cooperation Identification
Error

To motivate our main result, we informally ob-
serve that identifying non-cooperation is essen-
tially a problem of identifying distribution-shift.
Specifically, we are interested in differences be-
tween the two dialogue distributions induced by
cooperative and non-cooperative answer-players,
respectively. Luckily, there is a rich literature on
the topic of distribution-shift. We take insight,
in particular, from the work of Ben-David et al.
(2007, 2010) which measures shift using the sym-
metric difference hypothesis class. For a set of
hypotheses O ⊆ {o | o : X → Y}, this class
contains hypotheses characteristic to disagree-
ments in O:

OΔO def
= {x 	→ NC[o(x) �= o′(x)] | o, o′ ∈ O} (8)

where NC[·] acts like an indicator function, re-
turning NC for true arguments and CP otherwise.
Using this class, we identify a relationship
between the true error when identifying non-
cooperation cerθ and the observed object-
identification errors ôerS(·| CP) and ôerS(·| NC)
against the cooperative and non-cooperative
answer-player, respectively. While a more tradi-
tional learning-theoretic bound would relate cerθ
to the empirical observation ĉerS for the same
task, our novel bound reveals a connection to the
seemingly distinct task of object-identification.
Later, this relationship is useful for analyzing how
the question-player’s communication policy con-
trols the data-distribution so that both objectives
are improved. Proofs of all result are provided in
Section 4.4.

Theorem 4.1. Define O as above and take C to be
sufficiently complex so that OΔO ⊆ C. Let d be
the VC-Dimension of C. Then for any δ ∈ (0, 1),
with probability at least 1− δ, for all o, o′ ∈ O,

cerθ(ĉ) ≤ p̂S + ôerS(o)−ΔS(o
′) + C (9)

where C = (4 +
√

d log(2em/d))/(δ
√
2m),

S
iid∼ Pθ, and ĉ ∈ argminc∈C ĉerS(c).

Remarks. Notice, one sensible choice of o and
o′ is to pick o which minimizes the observed
object-identification error and o′ which maxi-
mizes ΔS ; this produces the tightest bound on
the expected cooperation-identification error. We
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leave these hypotheses unspecified because later
we must make limiting assumptions on the prop-
erties of o and o′ (e.g., Prop. 4.1). Greater
generality here makes our results more broadly
applicable. Besides this, we also observe that C
goes to 0 as m grows. Ultimately, we ignore C
in interpretation, but point out that bounds based
on the VC-Dimension (as above) are notoriously
loose for most Pθ. As we are primarily inter-
ested in these bounds for purpose of interpretation
and algorithm design, this is a non-issue. On
the other hand, if practically computable bounds
are desired, other (more data-dependent) tech-
niques may be fruitful; e.g., see Dziugaite and
Roy (2017).

Interpretation. As noted, the question-player
has some control over the distribution Pθ through
the communication policy πθ. So, Thm. 4.1 can
be interpreted to motivate indirect mechanisms
for controlling the cooperation-identification er-
ror cerθ(ĝ). Specifically, with respect to ôerS ,
we can infer that improving performance on
the object identification task should implicitly
improve performance on the separate task of
identifying non-cooperation. The term ΔS also
offers insight. It suggests certain non-cooperative
answer-players—whose actions induce a large
reduction in performance as compared to the coop-
erative answer-player—are easy to identify. Stated
more plainly, non-cooperative agents reveal them-
selves by their non-cooperation; this is true, in
particular, when their behavior causes large per-
formance drops. In Section 4.3, we formalize these
concepts further.

4.3 Analyzing Communication Strategies

In this section, we analyze methods for the
question-player to select the communication pol-
icy πθ. In recent dialogue literature, reinforce-
ment learning (RL) has proven successful in
teaching agents effective communication strate-
gies. For example, Strub et al. (2017) show this
to be the case in the fully cooperative version
of Guess What?!. Selecting an appropriate re-
ward structure is fundamental to any RL training
regime. To this end, we use Thm 4.1 to study
different reward structures. We consider, in par-
ticular, an episodic RL scenario where the dis-
count factor (often called γ) is set to 1 and the
only non-zero reward comes at the end of the

episode. So, the question-player holds a full dia-
logue with the answer-player, guesses the goal-
object and answer-player’s cooperation based on
this dialogue, and then receives a reward depen-
dent on whether the guesses are correct. Under
these assumptions, the question-player selects the
communication policy πθ to maximize:

J(θ) = E [ ρ(X,Y, Z) ] ; (X,Y, Z) ∼ Pθ

(10)

where ρ : X ×Y ×Z → R is the reward structure
to be decided. In particular, selection of θ can
often be achieved through policy gradient meth-
ods. Williams (1992) and Sutton et al. (1999) are
attributed with showing we can estimate ∇θJ(θ)
in an un-biased manner through Monte-Carlo es-
timation. In our implementation in Section 5, our
particular policy gradient technique is identical to
previous work on communication strategies for
the Guess What?! dataset (Strub et al., 2017).
Thus, we focus discussion on the reward struc-
ture ρ and understanding its role through a theo-
retical lens.

To select ρ, we first consider some obvious
choices without appealing to complex analysis.
Specifically, for c fixed, define ρ(X,Y, Z) =
1[c(X) = Z]. Then,

J(θ) = 1− cerθ(c). (11)

Thus, maximizing J(θ) is equivalent to mini-
mizing the cooperation-identification error. This
reward focuses only on identifying non-cooperation.
On the other hand, if ρ(X,Y, Z) = 1[o(X) = Y ]
for some fixed o, then

J(θ) = 1− oerθ(o) (12)

So, in this case, maximizing J(θ) minimizes the
expected object-identification error.

It is easy to see the trade-off between the two
choices discussed above. Each focuses distinctly
on a single objective of the question-player and it
is not clear how these two objectives can relate to
each other. To properly answer this, we appeal to
analysis. We first give some definitions.

Definition 4.1. We say a hypothesis o ∈ O
is α-improved by θ∗ relative to θ if J(θ∗) ≥
J(θ) + α for ρ(X,Y, Z) = 1[o(X) = Y ] and
α ≥ 0.
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Simply, Def. 4.1 formally describes when a
communication policy πθ∗ improves the question-
player’s ability to identify the goal-object. Next,
we define efficacy of an answer-player as a
property of the errors induced by this player’s
dialogue.

Definition 4.2. We say a non-cooperative answer-
player is effective with fixed parameter ε if for
all δ > 0 there is n such that for all θ, θ′ ∈ Θ,
o ∈ O, and m ≥ n, we have

Pr( |ôerT (o | NC)− ôerS(o | NC)| > ε) ≤ δ
(13)

where S
iid∼ Pθ, T iid∼ Pθ′ .

Def. 4.2 requires that the error of all question-
players converge in probability to the same O(ε)-
sized region when playing against an effective
answer-player. If a non-cooperative answer-player
is effective, then regardless of the communica-
tion strategy employed by the question-player,
we should not expect to observe large changes
in object-identification performance against the
non-cooperative opponent. Conceptually, this cap-
tures the following idea: Without cooperation, we
cannot expect interlocutors to make significant
headway. This assumption is inherently related to
an answer-player’s failure to abide by Gricean
maxims of conversation: Uninformative and de-
ceitful responses violate the maxim of relation and
quality, respectively. Instead of explicitly mod-
eling these violations, Def. 4.2 focuses on the
effect of violations—namely, failure to progress.
While violation of other Gricean maxims (i.e.,
quantity and manner) are less applicable to the
simple game we consider, the definition of non-
cooperation we give (as an observable effect) still
applies.

As alluded, when the non-cooperative answer-
player is effective, this non-cooperation is enough
to reveal the answer-player to the question-player.
The question-player may focus on communicat-
ing to identify the goal-object and this will reduce
all terms in the upper-bound of Thm. 4.1; subse-
quently, we expect this communication strategy
to be effective not only for identifying the goal-
object, but also for identifying non-cooperation.

Proposition 4.1. Let o, o′ ∈ O and θ∗, θ ∈ Θ.
Suppose the non-cooperative answer-player is ef-
fective and further suppose both o and o′ are
α-improved by θ∗ relative to θ with α > ε. Then,

for any δ > 0, there is n such that for all m ≥ n,
with probability at least 1− δ − γ we have

p̂T + ôerT (o)−ΔT (o
′)

≤ p̂S + ôerS(o)−ΔS(o
′) +O(C)

(14)

where S
iid∼ Pθ, T iid∼ Pθ∗ , γ = 2 exp

(
−mω2/2

)
,

ω = α− ε, and C = (2m)−
1
2

√
ln 6− ln δ.

Remarks. Notice, the result assumes the hy-
potheses o, o′ and policies πθ, πθ∗ are fixed
a priori to drawing S, T . Hence, the bound is only
valid for test sets independent from training. Re-
gardless, it is still useful for interpretation and this
style of bound produces tighter guarantees than
conventional learning-theoretic bounds; that is,
from both analytic and empirical perspectives, re-
spectively (Shalev-Shwartz and Ben-David, 2014;
Sicilia et al., 2021). Like Thm. 4.1, we also use
two hypotheses o, o′ ∈ O, but the result is easily
specified to the one hypothesis case by taking
o = o′ (albeit, this may loosen the bound). In any
case, the assumption is not unreasonable. A policy
πθ∗—optimized with respect to just one hypoth-
esis o—may also offer relative improvement for
other hypotheses distinct from o. For greater cer-
tainty, the term δ in the probability can be made
arbitrarily small provided a large enough sample.
Sensibly, the term γ indicates the probability is
also proportional to how much better the com-
munication mechanism πθ∗ is where ‘‘better’’ is
given precise meaning by comparing population
statistics for the objective J(·) viaα. At minimum,
we require α > ε, but ε should be small for suit-
ably effective answer-players anyway. Finally, we
again, safely ignore O(C) terms, which go to 0 as
m grows.

Interpretation. The takeaway from Prop. 4.1
is an unexpectedly sensible strategy for game suc-
cess: The question-player focuses communication
efforts only on identifying the goal-object. When
the non-cooperative agent is effective, this com-
munication strategy essentially reduces an up-
perbound on the true cooperation-identification
error. All the while, this strategy very obviously
assists the object-recognition task as well. We
again note the implication that non-cooperative
agents can reveal themselves by their non-
cooperation. The question-player need not expend
additional effort to uncover them by dialogue
actions.
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Comparison to Thm. 4.1. While Thm. 4.1 al-
ludes the interpretation given above—since the
object-identification error is shown to control co-
operation identification error in part—Prop. 4.1
distinguishes itself because it considers all terms
in the upperbound (not just ôer). This subtlety
is important. In particular, a priori, one cannot
be certain that improving the object-identification
error from S to T also improves the coopera-
tion gap Δ. Instead, it could be the case that Δ
decreases and the overall bound on cer is wors-
ened. Aptly, Prop. 4.1 isolates the circumstances
(i.e., related to Def. 4.2), which ensure this ad-
verse effect does not occur. It shows us, under
reasonable assumptions, the communication strat-
egy discussed in our interpretation controls the
whole bound in Thm. 4.1 and not just some part.
As noted, drawing inference from only a portion
of the bound can have unexpected consequences.
In fact, this is the topic of much recent work in
analysis of learning algorithms (Johansson et al.,
2019; Wu et al., 2019; Zhao et al., 2019; Sicilia
et al., 2022).

Comparison to Cooperative Setting. It is also
worthwhile to note that setting the reward as
ρ(X,Y, Z) = 1[o(X) = Y ] is also an appropriate
strategy in the distinct fully cooperative Guess
What?! game. The authors of the original Guess-
What?! corpus propose this reward exactly in their
follow-up work (Strub et al., 2017), which uses
RL to learn communication strategies in the fully
cooperative setting. Thus, the theoretical results
of this section are exceedingly practical. They
suggest, for effective non-cooperative agents, we
may sensibly employ the same techniques in both
the fully cooperative setting and the partially
non-cooperative setting. This is beneficial, be-
cause the nature of our problem anticipates we
will not know the setting in which we operate.

Motivating a Mixed Objective. As a final note,
we remark on how this result may be applied to
properly motivate a reward which, a priori, can
only be heuristically justified. Specifically, a very
reasonable suggestion would be to combine the
rewards in Eq. (11) and Eq. (12) via convex sum.
Prior to our theoretical analyses, it is unclear that
the two strategies would be complementary. In-
stead, the objectives could be competing, and so,
this mixed strategy could lead to sub-par perfor-
mance on both tasks. In light of this, our theoretical

results help to understand this heuristic more for-
mally. They suggest the two strategies are, in fact,
complementary and outline the assumptions nec-
essary for this to be the case. In contrast, empirical
analyses can be much more specific to the data
used, among other factors. This, in general, is a
key differentiation between the analysis we have
provided here and the oft-used appeal to heuristics.

4.4 Proofs
Here, we provide proof of all theoretical results.
We first remind the reader of some key definitions
for easy reference:

Pr(Z = NC) = pNC; (X,Y,Z) ∼ Pθ ;

p̂S
def
= 1

m

∑
i
1[Zi = NC];

ôerS(o)
def
= 1

m

∑m

i=1
1[o(Xi) �= Yi];

ĉerS(c)
def
= 1

m

∑m

i=1
1[c(Xi) �= Zi];

ôerS(o | CP) def
= ôerS′ (o), S′ = ((Xi, Yi) | Zi = CP);

ΔS(o)
def
= p̂S · ôerS(o|NC)− (1− p̂S) · ôerS(o|CP).

(15)

See Section 4.1 for additional definitions and
context.

Theorem 4.1.
Claim. Define O as above and take C to be
sufficiently complex so that OΔO ⊆ C. Let d be
the VC-Dimension of C. Then for any δ ∈ (0, 1),
with probability at least 1− δ, for all o, o′ ∈ O,

cerθ(ĉ) ≤ p̂S + ôerS(o)−ΔS(o
′) + C (16)

where C = (4+
√

d log(2em/d))/(δ
√
2m), S iid∼

Pθ, and ĉ ∈ argminc∈C ĉerS(c).

Proof. For any c ∈ C and δ ∈ (0, 1), we have

Pr (cerθ(c) ≤ ĉerS(c) + C) ≥ 1− δ. (17)

This is a standard VC-bound; for example,
Thm. 6.11 in Shalev-Shwartz and Ben-David
(2014). Thus, it suffices to show that for any
sample S of size m and any choice of hypotheses
o, o′ ∈ H, we have

ĉerS(ĉ) ≤ p̂S + ôerS(o)−ΔS(o
′). (18)

Notice first, by choice of ĉ, for any c ∈ C we have

ĉerS(ĉ) ≤ ĉerS(c). (19)

By definition of OΔO and its relation to C, for
any choice of o, o′ ∈ O, there is some c′ ∈ C such
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that c′(X) = NC[o(X) �= o′(X)] for all X . Recall,
NC[·] acts like an indicator function, returning NC

for true arguments and CP otherwise. Thus,

ĉerS(ĉ) ≤ ĉerS(c
′)

= p̂S − 1

m

∑
i∈{k|Zk=NC}

1[o(Xi) �= o′(Xi)]

+
1

m

∑
j∈{k|Zk=CP}

1[o(Xj) �= o′(Xj)].

(20)

The equality follows by applying the definition of
c′, appropriately grouping terms, and then using
the fact: 1[o(Xi) = o′(Xi)] = 1 − 1[o(Xi) �=
o′(Xi)]. Now, the triangle inequality for classi-
fication error (Crammer et al., 2007; Ben-David
et al., 2007) tells us for any (X,Y ) ∈ X × Y
and any o, o′ ∈ O we have

1[o′(X) �= Y ]− 1[o(X) �= Y ] ≤ 1[o(X) �= o′(X)]

≤ 1[o(X) �= Y ] + 1[o′(X) �= Y ].
(21)

Applying these bounds to the result of Eqn. (20)
and re-arranging terms completes the proof.

Proposition 4.1.
Claim. Let o, o′ ∈ O and θ∗, θ ∈ Θ. Suppose the
non-cooperative answer-player is effective and
further suppose both o and o′ are α-improved by
θ∗ relative to θ with α > ε. Then, for any δ > 0,
there is n such that for all m ≥ n, with probability
at least 1− δ − γ we have

p̂T + ôerT (o)−ΔT (o
′)

≤ p̂S + ôerS(o)−ΔS(o
′) +O(C)

(22)

where S
iid∼ Pθ, T iid∼ Pθ∗ , γ = 2 exp

(
−mω2/2

)
,

ω = α− ε, and C = (2m)−
1
2

√
ln 6− ln δ.

We first give a Lemma.

Lemma 4.1. Let o ∈ O and θ, θ∗ ∈ Θ. For any
ε ≥ 0, suppose o is α-improved by θ∗ relative to θ
with α > ε. Then,

Pr (ôerT (o) ≥ ôerS(o)− ε) ≤ exp(−m
2 (α− ε)2)

(23)

where S
iid∼ Pθ, T iid∼ Pθ∗ .

Proof. Given samples S iid∼ Pθ and T
iid∼ Pθ∗ with

S = (Xi, Yi, Zi)i and T = (X∗
i , Y

∗
i , Z

∗
i )i define

U =
1

m

m∑
i=1

ρ(Xi, Yi, Zi)− ρ(X∗
i , Y

∗
i , Z

∗
i ).

(24)

Then, E[U ] = J(θ) − J(θ∗) and application of
Hoeffding’s inequality yields

Pr(U ≥ −ε) ≤ exp
(
−m

2 (J(θ
∗)− J(θ)− ε)2

)
(25)

To finish, apply J(θ∗)−J(θ)−ε ≥ α−ε > 0.

Now, we proceed with the proof of Prop. 4.1.

Proof. We begin by bounding the probability of a
few events of interest. First,

Pr(ôerT (o) ≥ ôerS(o)− ε) ≤ γ

2
(26)

as well as

Pr (ôerT (o
′) ≥ ôerS(o

′)− ε) ≤ γ

2
(27)

by two applications of Lemma 4.1. Second, by
Hoeffding’s Inequality, for any δ ∈ (0, 1) we
know with C = (2m)−

1
2

√
ln 6− ln δ

Pr (|p̂T − pNC| ≥ C) ≤ δ

3
(28)

and
Pr (|p̂S − pNC| ≥ C) ≤ δ

3
. (29)

Third, by assumption on the non-cooperative
agent, we know we may pick large enough samples
S and T so

Pr(|ôerT (o | NC)− ôerS(o | NC)| > ε) ≤ δ

3
.

(30)

Applying Boole’s inequality bounds the probabil-
ity that any one of these events holds by δ + γ.
Considering the complement event yields a lower
bound on the probability that every one of these
events fails to hold. Specifically, the lower bound
is 1− δ − γ. Thus, it is sufficient to show

p̂T + ôerT (o)−ΔT (o
′)

≤ p̂S + ôerS(o)−ΔS(o
′) +O(C)

(31)

under assumption of the complement event. To
this end, assume the complement. Then, we have
directly that

p̂T + ôerT (o) ≤ p̂S + ôerS(o) + 2C − ε
(32)

So, in the remainder, we concern ourselves with
showing −ΔT (o

′) ≤ −ΔS(o
′) + ε+O(C). First

note that for T it is always true that

ôerT (o
′) = p̂T · ôerT (o′|NC)

+ (1− p̂T ) · ôerT (o′|CP).
(33)
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A similar equation holds for S. Then, ôerT (o′) ≤
ôerS(o

′)− ε by assumption, so expanding,

(1− p̂T ) · ôerT (o′|CP)− p̂S · ôerS(o′|NC)
≤ (1− p̂S)ôerS(o

′|CP)− p̂T ôerT (o
′|NC)− ε.

(34)

We also assume |p̂S−pNC| ≤ C and |pNC−p̂T | ≤
C, so applying to both sides of Eq. (34) yields

(1− p̂T ) · ôerT (o′|CP)− p̂T · ôerS(o′|NC)
≤ (1− p̂S) · ôerS(o′|CP)− p̂S · ôerT (o′|NC)

− ε+ 2C · (ôerT (o′|NC) + ôerS(o
′|NC))

≤ (1− p̂S) · ôerS(o′|CP)− p̂S · ôerT (o′|NC)
− ε+ 4C

(35)

Finally, the fact |ôerS(o′|NC)− ôerT (o
′|NC)| ≤ ε

may be applied to both sides of Eq. (35) to attain

(1− p̂T ) · ôerT (o′|CP)− p̂T · ôerT (o′|NC)
≤ (1− p̂S) · ôerS(o′|CP)− p̂S · ôerS(o′|NC)

− ε+ 4C + (p̂S + p̂T )ε

≤ (1− p̂S) · ôerS(o′|CP)− p̂S · ôerS(o′|NC)
+ 4C + ε.

(36)

5 Experimentation

In this section, we empirically study the communi-
cation strategies just discussed in a theoretical con-
text. We also give insights on the non-cooperative
strategies found in the collected data.

5.1 Implementation
Our implementation makes use of the existing
framework of De Vries et al. (2017). The pri-
mary difference in the game we consider is the
included possibility that the answer-player is non-
cooperative. As such, many of our model compo-
nents are based on those proposed by the dataset
authors (De Vries et al., 2017; Strub et al., 2017).

Question-Player. The question-player consists
of: a hypothesis o which predicts the goal-object
given the object categories, object locations, and
the dialogue-history; a hypothesis cwhich predicts
cooperation given the same information; and the
communication policy πθ which generates dia-
logue given the image5 and the current dialogue-

5The image is processed by a VGG network and these
features initialize the LSTM state in Figure 4.

history. Each is modeled by a neural-network.
Architectures of o and the policy πθ are identical
to the guesser model and questioner model de-
scribed by Strub et al. (2017). We give an over-
view of the architectures in Figure 4 as well.

Answer-Player. The cooperative answer-player
is modeled by a neural-network with binary output
dependent only on the goal-object and the most
immediate question. Strub et al. (2017) demon-
strate—in the cooperative case—that additional
features do not improve performance. On the other
hand, non-cooperative behaviors may require more
complex modeling. We explore different features
for the network modeling the non-cooperative
answer-player. During experimentation, we con-
dition on various combinations of the full (and
immediate) dialogue-history, the image, and the
goal-object. The architectures in both cases are
based on the oracle model described by Strub
et al. (2017) with the addition of an LSTM that
allows conditioning on the full dialogue-history.
See Figure 4 for an overview.

Training. As noted, o is assumed fixed before
considering the task of c. In practice, we achieve
this through supervised learning (SL) by training
o on human games in the Guess What?! (GW)
corpus. Similarly, the cooperative answer-player
is trained via SL on the GW corpus. The non-
cooperative answer-player uses our novel corpus
of non-cooperative games (see Section 3). Fol-
lowing Strub et al. (2017), we pre-train the com-
munication policy πθ using SL on the GW cor-
pus. In some cases, πθ is then taught a specific
communication strategy by fine-tuning with RL
on simulated dialogue. Dialogue is simulated by
randomly sampling Z ∼ Bernoulli(pNC), drawing
an image-object pair uniformly at random from
the GW corpus, and allowing the current policy
πθ and the already trained answer-player indi-
cated by Z to converse 5 rounds. The hypothesis c
is trained simultaneously on simulated dialogue
during the RL phase of πθ via SL. We do so
because c is assumed to minimize sample error
in Thm 4.1. While simultaneous gradient meth-
ods only approximate this goal, it is more in line
with assumptions than fixing c a priori. In gen-
eral, hyper-parameters are fixed for all exper-
iments and are detailed in the code, which is
publicly available. When possible, we follow the
parameter choices of Strub et al. (2017). As an
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Figure 4: Architecture used in our implementation. Object categories and words are represented using one-hot
encoding so an embedding is learned for each object/word. Locations are represented by assigning a common
coordinate-system to all images and reporting the object center’s image-relative coordinates.

Figure 5: The first three communication strategies (top to bottom in the legend) correspond to using RL with the
objective described by Eq. (11), Eq. (12), or an average of both. Respectively, the last two strategies correspond
to using no RL to learn a strategy (i.e., supervised learning only) or to making predictions at random. For
object-identification error, parentheses indicate the subset of examples on which the error rate is computed.
For non-cooperation detection, the error rate is computed on all samples. Overall, results validate our theoret-
ical argument.

exception, we shorten the number of epochs in
the RL phase to 10. Recall, the new network
c is trained in this phase as well. For c, the
learning rate is 1e-4. The new non-cooperative
answer-players are trained similarly to the co-
operative answer-players (i.e., as in Strub et al.,
2017) but we remove early-stopping to avoid the
need for a validation set. Our non-cooperative cor-
pus is thus used in its entirety for training since all
trained agents are evaluated on novel generated
dialogue (see Section 5.2). When training with the
GW corpus, we use the original train/val split.

Comparison. Despite some slight deviations
from the original Guess What?! training setup,
we point out that our fully cooperative results
are fairly similar. In Figure 5, we show error-
rate on simulated, cooperative, test dialogues
for our question-player trained solely on object-
identification; the precise error-rate is 48.8%. For
the most similar training and testing setup used by
Strub et al. (2017), the question-player achieves
an error-rate of 46.7%.

5.2 Results

We report error for cooperation-identification and
object-identification. We use a sample S which
has simulated dialogue (see Training) between
our trained question- and answer-players using
about 23K image-object pairs sampled from the
GW test set. The objects/images are fixed for all
experiments, but dialogue will of course change
depending on the question-player. Each data-point
in the figures corresponds to a single run using
a specified percentage of cooperative examples;
that is, the answer-player’s type is selected by
sampling Bernoulli(pNC) and setting pNC as the
desired %.

Human Non-Cooperative Strategies. Between
qualitative analysis of this data and conversations
with the workers, we determined three primary hu-
man strategies for deception: spamming, absolute
contradiction, and alternate goal objects. When
spamming, participants would answer every ques-
tion with the same answer; for example, always
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answering no. Absolute contradiction was when
participants determined the correct answer to the
question-player’s query and then provided the
negation of this. Finally, alternate goal objects
describes the strategy of selecting an incorrect
object in the image and providing answers as
if this object was the correct goal. Of these,
spamming is fairly easy to automatically detect;
namely, by searching for games where all an-
swers are identical. We find 19% of the collected
non-cooperative dialogues contain entirely spam
answers. This, of course, does not account for
mixed strategies within a game, but it does indicate
the dataset is not dominated by the least com-
plex strategy. Lastly, we remind the reader, some
non-cooperative strategies directly describe viola-
tions of Gricean maxims. In particular, absolute
contradiction and alternate goal objects violate
the maxim of quality, while spamming violates the
maxim of relevance. Due to the answer-player’s
simple vocabulary and the greater control given
to the question-player (i.e., in directing conver-
sation topic and length), the maxims of manner
and quantity are difficult for the answer-player to
violate. So, it is expected observed strategies do
not violate these maxims.

Modeling Human Non-Cooperation. We
further studied strategies in the autonomous
non-cooperative answer-players. Notice, besides
spamming, the human strategies may require
knowledge of the full dialogue history as well
as other objects in the image. We tested whether
the autonomous answer-player utilized this infor-
mation by training multiple answer-players with
different information access: The first produced
answers conditioned only on the goal-object and
the most immediate question (1), the next two
were also conditioned on the full dialogue-history
(2) or the full image (3), and the last was condi-
tioned on all of these features (4). We paired these
non-cooperative answer-players with a question-
player whose communication strategy focused
on the object-identification task; that is, using
Eqn. (12). Answer-players 2, 3, and 4 induced an
object-identification error outside a 95% confi-
dence interval6 of answer-player 1. In contrast,

6An upper bound on true error induced by the 1st
answer-player is 0.749 with confidence 95% (Hoeffding
Bound ≈ 10K samples). The sample error of the 2nd, 3rd,
and 4th answer-player are, respectively, 0.756, 0.757, and
0.752.

Strub et al. (2017) found that cooperative answer-
players only needed access to the goal-object and
the most immediate question to perform well. This
result indicates the complexities inherent to de-
ception and suggests that distinct strategies were
learned when non-cooperative answer-players had
access to more information. In the remainder, we
focus on non-cooperative answer-player 2 with
access to the full dialogue history. Our interpre-
tation for answer-players 1, 3, and 4 is largely
similar.

Empirical Validity of Def. 4.2. Our next obser-
vation concerns the formal definition of effective
given in Section 4 Def. 4.2. While the limiting
property required by the definition is not easy
to measure empirically, we observe in Figure 5
that the object-identification error on non-
cooperative examples is relatively stable across
question-player communication strategies. This
fact—that the non-cooperative answer-player ex-
hibits behavior consistent with an effective answer-
player—points to the validity of our theory.
Recall, an effective answer-player is assumed in
Prop. 4.1.

Empirical Validity of Proposition 4.1. Finally,
the primary conclusion of our theoretical anal-
ysis was that communication strategies which
focus only on the object-identification task should
be effective for both object-identification and
cooperation-identification. Figure 5 confirms this.
Selecting a communication strategy based on
improving object-identification improves object-
identification as expected. Further, on the
potentially opposing objective of identifying non-
cooperation, this strategy is also effective. It far
improves over a random baseline and also im-
proves over the baseline which uses no RL-based
strategy. On the other hand, the communication
strategy which focuses only on the identification
of non-cooperation fails at the opposing task of
object-identification. This strategy performs al-
most as badly as a random baseline when the per-
cent of non-cooperative examples is large and is
also consistently worse than the baseline which
uses no RL. The mixture of both strategies seems
to achieve good middle ground. Recall, while
this strategy may be heuristically intuited, our
theoretical results formally justified this strategy
as well.

1097



6 Conclusion

Combining tools from learning theory, reinforce-
ment learning, and supervised learning, we model
partially non-cooperative communicative strate-
gies in dialogue. Understanding such strategies
is essential when building robust agents capable
of conversing with parties of varying intent.
Our theoretical and empirical findings suggest
non-cooperative agents may sufficiently reveal
themselves through their non-cooperative commu-
nicative behavior.

Although the dialogue game studied is simple,
the results have ramifications for more complex
dialogue systems. Our theoretical results, in par-
ticular, are not limited in this sense and may apply
to designing communication strategies in distinct
contexts. As noted in Section 4.1.1, the limited
assumptions we make facilitate this. For example,
classifying intents and asking the right clarifica-
tion questions is crucial to decision making in
dialogue (Purver et al., 2003; DeVault and Stone,
2007; Khalid et al., 2020). Our theory is directly
applicable to this setting and could be applied
to inform learning objectives for any dialogue
agent that asks clarification questions to make a
classification. A real-world example of this is the
online-banking setting studied by Dhole (2020), in
which the dialogue agent asks clarification ques-
tions to decide the type of account a user would
like to open. If we suppose some users may be
non-cooperative in this context, our theoretical
setup is satisfied: there is some feature space (the
dialogues), the label space of user-intents is finite,
users are labeled with a binary indicator of co-
operation, and the dialogue agent can control the
distribution over which it learns by asking clari-
fication questions. Our theoretical results should
apply to many similar dialogue systems that can
ask clarification questions or other types of ques-
tions. The only stipulations are that the theoretical
setup is satisfied (e.g., in the manner just shown)
and that our proposed assumptions on the nature
of non-cooperative dialogue still hold (i.e., see
Section 4.3, Def. 4.2).

To promote continued research, the collected
corpus as well as our code are publicly available.7

7https://github.com/anthonysicilia/modeling
-non-cooperation-tacl2022.

7 Ethical Considerations

We have described a research prototype. The
proposed dataset does not include sensitive or per-
sonal data. Our human subject board approved our
protocol. Human subjects participated voluntarily
and were compensated fairly for their time. The
publicly available dataset is fully anonymized.

The proposed architecture relies on pretrained
models such as word or image embeddings so any
harm or bias associated with these models may be
present in our model. We believe general methods
that propose to mitigate harms can resolve these
issues.
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Ndiaye, Ralph Schäfer, Joep Simons, Thomas
Weis, and Detlev Zimmermann. 1994. Co-
operating to be noncooperative: The dialog
system pracma. In Annual Conference on Arti-
ficial Intelligence, pages 106–117. Springer.
https://doi.org/10.1007/3-540-58467
-6 10

Fredrik D. Johansson, David Sontag, and Rajesh
Ranganath. 2019. Support and invertibility
in domain-invariant representations. In The

22nd International Conference on Artificial
Intelligence and Statistics, pages 527–536.
PMLR.

Atsushi Kajii and Stephen Morris. 1997. The ro-
bustness of equilibria to incomplete informa-
tion. Econometrica: Journal of the Econometric
Society, pages 1283–1309. https://doi
.org/10.2307/2171737

Simon Keizer, Markus Guhe, Heriberto
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