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Abstract

Finding word boundaries in continuous speech
is challenging as there is little or no equivalent
of a ‘space’ delimiter between words. Popu-
lar Bayesian non-parametric models for text
segmentation (Goldwater et al., 2006, 2009)
use a Dirichlet process to jointly segment sen-
tences and build a lexicon of word types. We
introduce DP-Parse, which uses similar prin-
ciples but only relies on an instance lexicon of
word tokens, avoiding the clustering errors that
arise with a lexicon of word types. On the Zero
Resource Speech Benchmark 2017, our model
sets a new speech segmentation state-of-the-art
in 5 languages. The algorithm monotonically
improves with better input representations,
achieving yet higher scores when fed with
weakly supervised inputs. Despite lacking a
type lexicon, DP-Parse can be pipelined to a
language model and learn semantic and syn-
tactic representations as assessed by a new
spoken word embedding benchmark. 1

1 Introduction

One of the first tasks that infants face is to learn the
words of their native language(s). To do so, they
must solve a word segmentation problem, since
words are rarely uttered in isolation but come up
in multi-word utterances (Brent and Cartwright,
1996). Segmenting utterances into word or sub-
word units is also an important step in NLP
applications, where an input string of orthographic
symbols is tokenized into words or sentence piece
before being fed to a language model. While many
writing systems use white spaces that make (ba-
sic) tokenization a relatively simple task, others
do not (e.g., Chinese) and turn tokenization into

1Our open-source implementation of DP-Parse: https://
gitlab.cognitive-ml.fr/ralgayres/dp-parse.

a challenging machine learning problem (Li and
Yuan, 1998). A similar situation arises for ‘text-
less’ language models based on units derived from
raw audio (Lakhotia et al., 2021), which, like in-
fants, do not have access to isolated words or
word-separating symbols.

The most successful approach to unsupervised
word segmentation for text inputs is based on non-
parametric Bayesian models (Goldwater et al.,
2006, 2009; Kawakami et al., 2019; Kamper
et al., 2017b; Berg-Kirkpatrick et al., 2010;
Eskander et al., 2016; Johnson et al., 2007;
Godard et al., 2018) that jointly segment utterances
and build a lexicon of frequent word forms using
a Dirichlet process. The intuition is that frequent
word forms function as anchors in a sentence,
enabling the segmentation of novel words (like
‘dax’ in ‘did you see the dax in the street?’). Such
models are tested on phonemized texts obtained
by converting text into a stream of phonemes af-
ter removing spaces and punctuation marks. Even
though phonemized text may seem a reasonable
approximation of continuous speech, such mod-
els have given disappointing results when applied
directly to speech inputs. Since the direct compar-
ison between speech-based and text-based models
was introduced in 2014 by Ludusan et al. (2014),
the gap of performance between these two types
of inputs as documented in three iterations of the
Zero Resource Speech Challenge focused on word
segmentation has remained large (Versteegh et al.,
2016; Dunbar et al., 2020). We attribute these dif-
ficulties to two major challenges posed by speech
compared to text inputs: acoustic variability and
temporal granularity, which we address in our
contribution.

The first and most important challenge is acous-
tic variability. In text, all tokens of a word are
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represented the same. In speech, each token of
a word is different, depending on background
noise, intonation, speaker voice, speech rate, and
so forth. Text-inspired speech segmentation algo-
rithms (Kamper et al., 2017b) apply a clustering
step to word tokens in order to get back to word
types. We believe that this step is unnecessary and
is responsible for the low performance of existing
systems, as errors in the clustering step are not
recoverable and negatively impact word segmen-
tation. We propose an algorithm that segments
speech utterances based on an instance lexicon of
word tokens, instead of a lexicon of word types.
Each speech segment instance of the training set
is represented as a distinct memory trace, and
these traces are used to estimate word form fre-
quency using a k-NN algorithm without having
to refer to a discrete word type but still apply-
ing the same Dirichlet process logic. As for the
representation of these word tokens, we follow
recent approaches that use fixed length Speech
Sequence Embeddings (SSE) (Thual et al., 2018;
Kamper et al., 2017b). We use state-of-the-art
SSEs from Algayres et al. (2022) that have either
been trained in a self-supervised fashion or with
weak labels, in order to assess how the segmen-
tation model behaves with inputs of increasing
quality.

The second challenge is related to the fact
that the speech waveform being continuous in
time, the number of possible segmentation points
grows very large, making the optimization of seg-
mentation of large speech corpora using Bayesian
techniques intractable. Some models reduce the
number of segmentation points using phoneme
boundaries (Lee and Glass, 2012; Bhati et al.,
2021), syllable boundaries (Kamper et al., 2017b),
or a constant discretization of the time axis into
speech frames, subject to the following trade-off:
Too coarse frames may miss some short word
boundaries, too fine-grained ones may render seg-
mentation intractable on large corpora because of
the quadratic increase in number of segmentations
with frame rate. Here we choose a compromise
with 40ms frames, corresponding to half of the
mean duration of a phoneme, yielding a 4x the-
oretical slowdown compared to phoneme-based
transcripts. In addition, we introduce an acceler-
ated version of a Dirichlet process segmentation
algorithm that replaces Gibbs sampling of each
boundary by sampling entire parse trees using
Dynamic Programming Beam Search, and updat-

ing the lexicon in batches instead of continuously.
This achieves a 10-times speed-up compared
to Johnson et al. (2007)’s implementation, with
similar or superior performances.

Because of our ‘no clustering’ approach, we
cannot evaluate our model using the word type-
based metrics of the Zero Resource speech seg-
mentation challenge (Versteegh et al., 2016;
Dunbar et al., 2017). Here, we use the two classes
of metrics: boundary-related metrics (Token and
Boundary F-score) that do not refer to types,
and high-level word embedding metrics. The idea
is use a downstream language model to learn
high level word embeddings and evaluate them
on semantic and Part-Of-Speech (POS) dimen-
sions. We rely on a semantic similarity task from
Dunbar et al. (2020) and introduce two new
metrics.

The combination of our contributions yields an
overall system, DP-Parse, that sets a new state-
of-the-art on speech segmentation for five speech
corpora by a large margin. By doing various
ablation and anti-ablation studies (replacing unsu-
pervised components by weakly supervised ones)
we pinpoint the components of the system where
there is still margin for improvement. In particular,
we show that using better embeddings obtained
with weak supervision, it is possible to double the
segmentation F-score and substantially improve
our new semantic and POS scores.

2 Related Work

2.1 Speech Sequence Embeddings

Speech Sequence Embedding (SSE) models take
as input a piece of speech signal of any length and
outputs a fixed-size vector. The main objective of
these models is to represent the phonetic content of
a given speech segment. A naive SSE model would
be to extract frame-level features of a speech
sequence, using for instance Wav2vec2.0 or
HuBERT (Baevski et al., 2020; Hsu et al., 2021),
and mean-pool the frames along the time axis. A
more subtle approach is to train a self-supervised
systems on positive pairs of speech sequences.
The model learns speech sequence representa-
tion thanks to contrastive loss functions (e.g.,
the infoNCE loss as in Algayres et al. [2022];
Jacobs et al. [2021] or the Siamese loss as in
Settle and Livescu [2016]; Riad et al. [2018])
or reconstructive losses (e.g., Correspondance
Auto-Encoder from Kamper [2018] where the first
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element of the pair is compressed and decoded into
the second element). Recently, a growing body of
work leverage multilingual labeled dataset to build
SSEs that can, to an extent, generalize to unseen
languages (Hu et al., 2020a,b; Jacobs et al.,
2021). In this work, we use a state-of-the-art self-
supervised system SSE model from Algayres et al.
(2022).

2.2 Speech Segmentation
Three main class of models have been proposed to
solve speech segmentation: matching-first models
(Park and Glass, 2007; Jansen and Van Durme,
2011; Hurtad, 2017) attempt to find high quality
pairs of identical segments and cluster them based
on similarity, thereby building a lexicon of word
types that may not cover the entire corpus (Bhati
et al., 2020; Räsänen et al., 2015). Segmentation-
first models try to exhaustively parse a sentence
(Lee et al., 2015; Kamper et al., 2017a,b; Kamper
and van Niekerk, 2020), while jointly learning
a lexicon (and therefore also involving match-
ing and clustering). Segmentation-only models
discover directly the likely word boundaries in
running speech using prediction error (Bhati et al.,
2021; Cuervo et al., 2021), without relying on any
lexicon of word types. Our approach is a new
hybrid of the last two lines of research: Like a
segmentation-first model, we jointly model lex-
icon and segmentation, but our lexicon is not a
lexicon of types, thereby escaping matching and
clustering errors, like in segmentation-only mod-
els. This model shows good performances across
different languages as measured by the Mean
Average Precision on pre-segmented spoken
words.

2.3 Evaluating Speech Segmentation
Across the different word segmentation studies,
the evaluation has been done according to two
general classes of metrics: matching and cluster-
ing metrics for word embeddings (MAP, NED,
grouping F-score, Type F-score), and segmenta-
tion metrics for boundaries (Token and Boundary
F-scores) (Carlin et al., 2011; Ludusan et al.,
2014). All of these metrics presuppose that the
optimal segmentation strategy is aligned with the
text-based gold standard (based on spaces and
punctuation). Yet, it is entirely possible that such
segmentation is not optimal for downstream appli-
cations, as witnessed by the fact that most current
language models use subword units like BPEs

Figure 1: The core components of DP-Parse. The al-
gorithm is a loop between two main steps (Step 1.
and 2.) in the spirit of the Expectation Maximization
algorithm. Given an initial coarse word segmentation,
we estimate Lw and L0w (i.e., the Dirichlet Process
parameters) with k-NN density estimation over SSEs.
The estimated parameters are used to derive a new
word segmentation, which in turn serves to re-estimate
Lw and L0w .

or sentence pieces (Devlin et al., 2018). There-
fore, we propose a third class of segmentation
metrics based on downstream language modeling
tasks. Chung and Glass (2018) showed that gold
word boundaries provide sufficient information to
learn good quality semantic embeddings from raw
audio using a skipgram or word2vec objective,
as assessed by semantic similarity benchmarks
adapted to speech inputs. These datasets were also
used to compile the sSIMI benchmark in the Zero
Speech Challenge 2021 (Nguyen et al., 2020), but
turn out to give very low and noisy results (at least
for small training sets). Here, we introduce two
new metrics evaluating semantic and grammatical
similarity that we show to be more stable.

3 Method: Instance-based Dirichlet
Process Parsing

This section describes the building blocks and
notations used by DP-Parse as depicted in
Figure 1 and Table 1, respectively. At a high level,
DP-Parse is a new adaptation of Goldwater’s
Dirichlet process algorithm (Goldwater et al.,
2009) for speech inputs. At the heart of Goldwater’s
algorithm is a hierarchical Bayesian model that
generates a joint distribution of a lexicon of words
(a word is a sequence of phonemes) and a corpus
(a sequence of words). The associated learning
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u a unit u is a block of 40 ms of speech signal

w = (u0, . . . , uw) a segment w is a sequence of units

Ew ∈ IRp a fixed length embedding of a segment w computed by a SSE model

C = {v0, . . . , vN} a corpus C is a set of utterances (segments without silence found by VAD)

Cseg = {(w0
1, . . . , w

0
p0
), ...} a segmented corpus Cseg is a set of sequences of segments

D = {w0, ...wP } the list of all possible subsegments in C that are possible words (between 40ms and 800ms)

L0 = {Ew0
, . . . , EwP

} a kNN index of embeddings from D

L = {Ew0
, . . . , Ewn} a kNN index of all embeddings from the segments in Cseg

L0w the frequency of Ew in L0

Lw the frequency of Ew in L

Table 1: Notations used in Section 3.

algorithm optimizes the likelihood of an observed
corpus as a function of the (unobserved) lexicon
and corpus segmentation. It does so by alternat-
ing between two EM steps: (Step 1) estimating
the most probable lexicon given a segmentation,
and (Step 2) sampling among the most probable
segmentation given the lexicon. More precisely,
at each Step 1, the algorithm estimates the proba-
bility of a segmentation from two sets of numbers:
the probability P 0

W (w) that a given speech seg-
ment w is a word, and Lw the frequency of a
given word w in the (segmented) input corpus.
They are estimated by building tables of counts
of phoneme-n-grams and words given a segmen-
tation, respectively. At Step 2, these numbers are
combined using Equation 3 (Section 3.3) and a
new segmentation is sampled. Our adjustments to
the original algorithm are the following:

• Section 3.1: Phonemes are replaced by
40ms speech frames (from a pretrained
self-supervised learning algorithm), words
are replaced by fixed-length SSEs (using a
pretrained self-supervised embedder).

• Section 3.2: The tables of counts for com-
puting P 0

W (w) and Lw are replaced by
k-Nearest-Neighbors (k-NN) indexes of em-
beddings (L0, and L, respectively) which can
be viewed as instance lexicons of all possible
n-frames and of segmented ‘words’, respec-
tively. The count estimates are obtained
using Gaussian kernel density estimation over
k-NN.

• Section 3.3: We make a small adaptation to
theDirichlet process formula.

• Section 3.4: Instead of alternating between
the two steps at each boundary as in the
original Gibbs sampling algorithm, which is
very time-consuming, we sample segmenta-
tions over entire utterances using a segment
lattice, and update the lexicon over a batch
of utterances.

• Section 3.5: We initialize the system by se-
lecting as an initial lexicon a list of short
enough utterances, and precompute all the
constant values (L0 and P 0

W (w)) to optimize
for speed.

So modified, the algorithm is no longer depen-
dent on input type and can work either with
discrete representations (text, represented as
sequences of 1-hot vectors of phonemes) or con-
tinuous ones (speech, represented as embeddings).

3.1 Speech Sequence Embeddings
We represent speech as 20ms frames obtained by
selecting the 8th layer of a pretrained Wav2vec2.0
Base system from Baevski et al. (2020). Each
two successive frames are tied together so that
a speech sentence is a series of 40ms speech
blocks. To represent a speech segment, we use
the SSE model from Algayres et al. (2022): a
self-supervised system trained with contrastive
learning where positive pairs are obtained by
data-augmentation of the speech signal. This
model shows good performance across differ-
ent languages as measured by the Mean Average
Precision on pre-segmented spoken words. The
SSE model takes as input the pre-extracted
Wav2vec2.0 frames and applies a single 1-D con-
volution layer with GLU (kernel size: 4, number of
channels: 512, stride: 1) and a single transformer
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layer (attention heads: 4, size of attention matri-
ces: 512 neurons, and feed forward layer: 2048
neurons). A final max-pooling layer along the time
axis is applied to obtain a fixed-size vector. To
save computation, we reduce the dimensionality
of Algayres et al.’s (2022) SSE model from 512 to
64 with a PCA trained on random speech segments
extracted from the corpus at work.

In addition to their unsupervised SSE model,
Algayres et al. (2022) provide a weakly supervised
version. They trained it with the same contrastive
loss (infoNCE) using positive pairs obtained with
a time-aligned transcription of the speech signal.
The weakly supervised version will be used as a
topline model, as it scores much higher on Mean
Average Precision than the self-supervised one.

3.2 Density Estimation from
Gaussian-smoothed k-Nearest-Neighbors

In text, the exact frequency of a string of letters can
be computed by counting how often it occurs in
the corpus. In speech, due to acoustic variability,
most of the counts would be 1, and clustering
methods cause too many errors to obtain reliable
count estimates (more details in Appendix A.2.1).
Here, we follow the method in Algayres et al.
(2020) using Gaussian filtering over k-NNs. Let
us assume that all speech segments w of a corpus
are represented as embeddings Ew and stored in
a k-NN index L0. To compute L0w the frequency
of w in L0, we extract the k nearest-neighbors of
Ew: (E1, . . . , Ek)

2 and sum over them, weighted
by a decreasing function of their distance to w.
Intuitively, embeddings close to Ew are more
likely to be instances of the same segments than
distant ones. For weighting, we use a Gaussian
kernel centred on Ew as in the following equation:

L0w ≈ F (w) =

k∑
j=1

exp−β‖Ew−Ej‖22 (1)

F is the Parzen-Rosenblatt window method for
density estimation (Parzen, 1962) and returns a
continuous value between 0 and k, estimating
L0w . It rests on two hyper-parameters: k, which
is set to 1000, and β, the standard deviation of
the Gaussian kernel. To set β, we follow the
observation from Algayres et al. (2022): Around
50% of the segments in the development dataset

2We remove from the list the embeddings corresponding
to overlapping segments.

of the Zerospeech Challenge 2017 appear to have
a frequency of one. Therefore, we set β during
runtime so that 50% of the L0w calculated get a
frequency of one (i.e., an F value below a small
ε > 0). We did not change these hyper-parameters
for any of the tested languages.

3.3 Dirichlet Process Formula

This section explains how Goldwater et al. (2009)
formulate the Dirichlet Process and our modifica-
tion. Let v′ be a non silent section from a speech
corpus C found by a Voice Activity Detection
(VAD). A segmentation of v′ is written v′seg and
is composed of a series of segment (w1, . . . , wl).
The probability of v′seg is, under the unigram hy-
pothesis, the product of the probability of each
segment to be a real spoken word:

PS(s
′
seg) =

l∏
i=0

PW (wi) (2)

To model the probability of a segment w to be
a real word, Goldwater et al. (2009) use the
following formulation of the Dirichlet Process:

PW (w|C,Cseg) =
Lw

#L+ α0
+

α0P
0
W (w)

#L+ α0
(3)

The first term of Equation 3 accounts for how
often the token w has been segmented in Cseg.
Its numerator Lw is the count estimate of w in
L. The second part of Equation 3 is the intrinsic
probability of w to be a word regardless of its
appearance in Cseg. This intrinsic probability is
called the base distribution P 0

W and is controlled
by the concentration parameter α0.

To find a formulation for P 0
W , the intuition

from Goldwater et al. (2009) is simple: frequently
appearing tokens are more likely to be true words
than rare ones. Yet, their formulation ofP 0

W cannot
be easily adapted to the segmentation of speech
data. Our contribution here is to propose a new
formula for P 0

W that follows the same intuition:

P 0
W (w) =

L0w

#L0
(4)

where L0w is the count estimate of w in L0 (the
lexicon of all possible segments in C). #L0 being
the total number of segments in L0, P 0

W is then
the probability to find w in among the tokens
in C.
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3.4 Segmentation Lattice
In Goldwater et al. (2009), the learning algorithm
uses Gibbs sampling, where word boundaries are
sampled one at a time, requiring all parameters
of the Dirichlet Process model to be recomputed
after each sample. On text data, it is not a problem,
as updating the model’s parameters (Lw and L0w )
is fast: No k-NN search is needed, parameters
are computed exactly by matching and count-
ing strings. It becomes a bottleneck for speech
segmentation where the parameters are computed
with density estimation and k-NN search. One
way to alleviate this problem is to incorporate
the dynamic programming version of the Gibbs
sampler from Mochihashi et al. (2009). Another
way, as in this paper, is to build a segmentation
lattice over each utterance and sample among the
n-best segmentations.

Here, we assume that the corpus C has been
pre-segmented in a set of utterances using a VAD
algorithm. After each Step 1 from Figure 1 we can
compute the log probability, log(PW (w)) from
Equation 3, that each token in an utterance is
a real word. Yet, instead of directly using this
probability, we introduce a per-token penalty score
that favors short tokens:

q(x) =

(
x− 1

δ

)γ

(5)

This penalty is added to the Dirichlet process log
probability as follows:

S(w) = log(PW (w) + ε) + q(len(w)) (6)

where ε is a very small number to handle cases
where PW (w) = 0, len(w) is the number of 40ms
speech frames in w.

For each utterance in C, we create a segmen-
tation lattice that provides a compact view for
all possible segmentation paths. A segmentation
path is a sequence of consecutive segmentation
arcs that covers the full utterance. Each arc starts
and finishes in-between the units and is bounded
within a minimal and maximal length. An ex-
ample of a segmentation lattice can be found in
Figure 2. Each segmentation arc is associated with
itsS score from Equation 6. For each utterance, the
n-best segmentations are computed with Dynamic
Programming Beam Search, and we sample from
a softmax of their total S scores. One advantage
of this procedure is that it is possible to parallelize
utterance segmentation across large batches and

Minimum segment length 40ms
Maximum segment length 800ms
No. of segments in L0 1M
Concentration parameter α0 (eq. 3) 100
No. of neighbors in k-NN (eq. 1) 100
Lattice beam size 10
Duration penalty q (eq. 5) γ = 1.8

δ = 2 (text)
δ = 4 (speech)

Table 2: DP-Parse hyper-parameters.

only update the lexicon L after each batch. In our
experiments, we take the entire corpus C to be a
single batch.

3.5 Initializing DP-Parse

We create a corpus C as a collection of utterances
by applying the pyannote VAD (Bredin et al.,
2019) with a threshold of 200 ms. As shown in
Figure 1, initialization (Step 0) contains several
sub-steps. The first (0.1) is to provide an initial
segmentation of C, using a simple heuristic: All
sentences shorter than 800ms are treated as word
tokens, the other ones are discarded. The intuition
is that short sentences could be words in isolation,
which provides the seed for an initial lexicon.

The second sub-step (0.2) is to create the list
D composed of the embeddings of all possible
speech segments in C that are possible words,
which we set to be anything between 40ms and
800ms (by 40ms increments). To embed a speech
segment, we use the SSE model in Section 3.1.

The third sub-step (0.3) consists in the construc-
tion ofL0: a k-NN index of all embedded segments
in D. In practice, we found that randomly
subsampling D to one million embedded seg-
ments worked well (see grid-search in Appendix
A.2.2), and we precompute L0w as explained in
Section 3.2.

4 Evaluation Metrics and Settings

4.1 Boundary Level Segmentation Metrics

In the Zerospeech Challenge 2017 (Dunbar et al.,
2017), two metrics measure how well discovered
boundaries match with the gold word boundaries.
These metrics, the Boundary and Token F-score,
are obtained by comparing the discovered sets of
tokens to the gold one obtained by force-aligning
spoken sentences with their transcription. The
evaluation is done in phoneme space and each
discovered boundary is mapped to a real phoneme
boundary: If a boundary overlaps a phoneme by
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Figure 2: An example of a segmentation lattice for
a small utterance of 6 units, with a constraint on
word tokens to be bounded between 2 and 6 units. A
segmentation path is a sequence of segmentation arcs
that covers the whole utterance. Each arc starts and
ends in-between units and is associated with its score
S from Equation 6.

more than 30ms or more than half of the phoneme
length, the boundary is placed after that phoneme
(otherwise it is placed before).

4.2 Semantic and POS Embedding Metrics

The idea here is to evaluate segmentation through
its effect on a downstream language model. The
evaluation is less direct than the segmentation
metrics above, as it assumes that the segmentation
is used to turn a spoken utterance into a series
of fixed size SSEs, themselves used to train a
continuous-input Speech Language Model (LM).
The metrics will therefore reflect each of these
components (segmentation, SSE, Speech LM), but
by keeping the SSE and Speech LM components
constants, we can hope to study systematically
the effect of the segmentation component. Our
evaluation focuses on word-level representations,
which we call here High-Level Speech Embed-
dings (HLSE). They are the speech equivalent of
Word2Vec representations (Mikolov et al., 2013),
yet coming from an inexact segmentation. Here,
we assume that a Speech LM has been trained
on SSE inputs on a given dataset with a given
segmentation and can be used at test time to pro-
vide embeddings associated to a set of test words.
As our segmentation models work on whole ut-
terances, we present the test words in continuous
utterances and then mean pool the HLSEs from
the Speech LM that overlap with that word to ob-
tain a single vector. An overview of the building
of generic HLSEs and their evaluation is shown
in Figure 3.

We introduce two zero-shot tasks to evalu-
ate HLSEs that do not require training a further

Figure 3: Method for deriving HLSEs for semantic and
POS evaluations. Speech is segmented and converted
into SSEs before being used to train a Speech LM. At
test time, the HLSEs that overlap with the ABX times-
tamps by more than 40ms are mean-pooled to form the
ABX word embeddings (here the word ‘asleep’).

classifier, and are purely based on distances be-
tween these embeddings. They are based on
machine-ABX, a type of distance-based metric
introduced in Schatz et al. (2013) which computes
a discrimination score over sets of (A,B,X)
triplets. For each triplet, A and X belong to the
same category and B plays the role of a distractor.
The task for the model is to find the distrac-
tor in each triplet based on the cosine distance
between the HLSEs of A, B, and X . The first
task (ABXsem), have A and X to be synonyms
whereas B is semantically unrelated to neither A
or X . The second task, ABXPOS , have A and
X share the same POS-tags whereas B has a dif-
ferent one. The triplets are all extracted from the
Librispeech corpus training set. See Appendix A.1
for details on the construction of the triplets.

Another task, sSIMI from Nguyen et al. (2020),
also evaluates high-level representations of spo-
ken words in a zero-shot and distance-based
fashion. Yet, sSIMI differs from our ABX tasks
in two important ways. First, sSIMI presents test
words as pre-segmented chunk of speech without
the context of the original sentence to help the
Speech LM. Second, the task for the Speech LM
is to predict a semantic similarity score given
by human annotators to pairs of words. The
Speech LM encodes the pre-segmented spoken
words into HLSEs and the distance between the
HLSEs is correlated with the human judgements.
The correlation coefficient r is used as the final
sSIMI score.
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4.3 Datasets and Experimental Settings

The Zerospeech Challenge 2017 (Dunbar et al.,
2017) provides five corpora to evaluate speech
segmentation systems. These corpora are com-
posed of speech recordings from different lan-
guages split into sentences using Voice Activity
Detection. Three corpora (Mandarin, 2h30; En-
glish, 45h; French, 24h) are used for development,
and two ‘surprise’ corpora for testing (German,
25h; Wolof, 10h). On each corpus, a separate SSE
model from Algayres et al. (2022) is trained and
a separate run of DP-Parse is performed to pro-
duce a full-coverage segmentation. DP-Parse’s
hyper-parameters from Table 2, as well as q’s
formula (Equation 5), were grid-searched to max-
imize token-F1 segmentation scores over the
three development datasets. The two remain-
ing test sets are used to show generalization of
DP-Parse to new unseen languages. More details
on hyper-parameter search is found in Appendix
A.2.2.

For the ABX and sSIMI tasks, we train a BERT
model as a Speech LM on the training set of
the Librispeech dataset (Panayotov et al., 2015),
composed of 960 hours of English recordings.
We proceed by first training a SSE model from
Algayres et al. (2022) on the Librispeech. Then,
this latter dataset is segmented using DP-Parse.
Each segmented speech sequence is aggregated
into a single vector using the pre-trained SSE
model. Segmented sentences are used to train a
BERT model with masked language modeling
and the Noise Contrastive Estimation (NCE) loss
(Gutmann and Hyvärinen, 2010) (see Figure 4).
The BERT model is composed of 12 layers, 12
attention heads per layer with 768 neurons each
and a FFN size of 3072 neurons. To compute the
NCE, two heads p and h are composed respec-
tively of one fully connected linear layer with
256 neurons and two fully connected layers with
ReLU activation with also 256 neurons. Batches
are composed of utterances from a single speaker,
and the 200 negative samples for the NCE are
chosen within the batch. Fifteen percent of SSEs
are masked in each batch during training. Only the
BERT is trained, gradients are not propagated into
the SSEs. As BERT is a multi-layer transformer
model, the scores for ABX tasks and sSIMI are
obtained by grid-searching the layer that performs
best on the dev set of each task and evaluating
that same layer on the corresponding test sets.

Figure 4: Our method to train a BERT model on SSEs.
Speech is segmented into segments that are converted
into vectors by a frozen SSE model. BERT is trained
with the NCE loss. p and h are used to project vectors
into a common space to compute the NCE objective.
The negative samples are random SSEs from the same
speaker.

Mandarin French English
(2h30) (24h) (45h)

DP Unigram 61m39s 240m44s 62m11s
DP-Parse 0m55s 25m12s 62m11s

Speed-up factor 67.3 9.6 9.8

Table 3: Time performances on 8 CPUs for the
standard configuration of DP-Parse (10 iterations)
and the Dirichlet Process Unigram (2000 itera-
tions) implemented by Johnson et al. (2007).

The development and test sets for the ABX tasks
are composed of triplets of sentences extracted
from the training set of the Librispeech corpus.
For sSIMI, the development and test set both
contain two subsets: one with spoken words ex-
tracted from the Librispeech training set and one
with spoken words synthesized with WaveNet
(van den Oord et al., 2016).

5 Results

5.1 Results on Word-level Segmentation

Regarding text segmentation, DP-Parse compares
favorably to the original Dirichlet Process Un-
igram model from Goldwater et al. (2009). It
produces a 21-point increase in token F1 com-
pared with the original version (and 3 points
increase in boundary F score) for a 10× runtime
speed-up (Table 3) under the Adaptor Grammar
implementation of Johnson et al. (2007).

Regarding speech segmentation, we compare
DP-Parse with the three best speech segmentation
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Token F1 ↑ Boundary F1 ↑
Dev Test Dev Test

Model Mand. French Engl. German Wolof avg. Mand. French Engl. German Wolof avg.

Speech data
Every 120ms 10.7 11.7 9.8 5.4 12.4 10.0 52.4 49.4 48.2 41.3 55.0 49.2
Syllables× 4.4 5.1 4.1 3.0 4.2 4.2 49.1 46.3 43.7 38.1 40.6 43.6
SEA+ 12.1 8.3 8.6 7.5 14.8 10.3 52.2 48.4 46.1 40.9 54.2 48.4
ES-Kmeans∨ 8.1 6.30 19.2 14.5 10.9 11.8 54.5 43.3 56.7 52.3 52.8 51.9
DP-Parse∗ 16.0 15.3 21.9 13.4 17.5 16.8 59.3 55.9 60.0 51.5 59.0 57.1

DP-Parse∗ 28.2 30.9 31.3 34.4 39.2 35 69.9 70.0 68.4 64.4 75.5 69.4
+ weak sup.

Text data
DP Unigram‡ 34.9 57.0 64.7 33.6 38.8 45.7 79.5 86.1 88.9 71.6 77.3 80.7
DP-Parse∗ 50.0 68.1 78.5 67.4 69.1 66.6 76.0 84.3 89.8 83.5 84.1 83.5

Table 4: Token and Boundary F1 scores (the higher, the better) for speech and text segmentation models
across development and test set from the Zerospeech Challenge 2017. The average scores are computed
over the five datasets. *: ours, ×: Räsänen et al. (2015), +: Bhati et al. (2020), ∨: Kamper et al. (2017b),
‡: Goldwater et al. (2009).

models submitted at the Zerospeech Challenge
2017 (Bhati et al., 2020; Kamper et al., 2017b;
Räsänen et al., 2015). Table 4 reports the token F1
and boundary F1 obtained by these models over
the 5 datasets of the Zerospeech Challenge 2017.
Across all corpora, DP-Parse outperforms its com-
petitors by at least 5 points in both boundary and
token F1. We also introduce a naive baseline that
draws boundaries every 120 milliseconds, disre-
garding the content of the speech signal. It turns
out to be surprisingly competitive with all speech
segmentation systems except DP-Parse. The latter
is the only existing speech segmentation system
that beats the naive baseline on all languages.

Most speech segmentation systems from the
Zerospeech Challenge 2017 rely on off-the-shelf
self-supervised representations of speech. The
hope is that, without modification, these systems
would benefit from future improvements in speech
representations and mechanically lead to higher
segmentation scores. Yet, such hopes have never
been guaranteed by explicit experiments. Here, we
test for the ability of DP-Parse to improve with bet-
ter inputs. For that, we use the weakly supervised
version of the SSE model from Algayres et al.
(2022) trained with 10 hours of labelled speech
data. On this type of input, DP-Parse doubles its
token F1 score.

5.2 Results on Semantic and POS Metrics

In Table 5, the segment-based sections show how
a BERT model can benefit from speech segmen-
tation and SSE modeling on the tasks ABXsem,
ABXPOS and sSIMI. To do that, we trained

BERT models along the pipeline depicted in
Figure 4.

Let us first analyze the scores on the ABX tasks.
The section unsupervised, segment-based shows
that DP-Parse and two less-performant segmen-
tation strategies lead to comparable ABX scores.
Yet, the weak supervision section shows that by
improving the quality of the SSEs with weak su-
pervision, DP-Parse performs higher than other
segmentation methods. The partial supervision
section shows that with either perfect word bound-
aries or perfect segment representation (1-hot
vectors), the ABX scores increase even more.
Finally, the full supervision is regular text-based
LM that serves as a topline model.

As baseline systems, we propose frame-based
approaches that do not use speech segmenta-
tion nor SSEs. Speech-to-frames models like
Wav2vec2.0, HuBERT, or CPC (Baevski et al.,
2020; Hsu et al., 2021; van den Oord et al., 2019)
are trained with masked language modeling in the
spirit of text-based LM but on the raw speech
signal. Therefore, these models should have al-
ready acquired some knowledge of semantics
and POS-taggings. We evaluate speech-to-frames
models directly on ABXsem, ABXPOS and
sSIMI. To do that, we simply skip the Speech LM
as well as the segmentation and SSE steps from
the method in Figure 3. Speech-to-frames models
are used to encode the whole speech sentences
from the ABX triplets, and the frames within the
word boundaries provided by the ABX tasks are
mean-pooled to form the HLSEs. The results show
that Wav2vec2.0 Large and HuBERT Large are
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Input Segments SSE BERT Dev Set Test Set Dev Set Test Set

Representations ABXsem ↑ ABXPOS ↑ ABXsem ↑ ABXPOS ↑ sSIMI ↑ sSIMI ↑

No supervision, frame based
CPC+ – – – 51.22 [2] 53.67 [2] 53.86 [2] 54.68 [2] 6.14 [2] 4.34 [2]
W2V2 base× – – – 54.96 [8] 55.78 [8] 56.20 [8] 56.86 [8] 3.85 [9] 5.21 [9]
HuBERT base‡ – – – 54.65 [8] 55.65 [8] 55.12 [8] 56.77 [8] 3.53 [8] 0.68 [8]
W2V2 large× – – – 57.69 [13] 59.86 [13] 58.88 [13] 60.93 [13] 2.04 [11] 6.82 [11]
HuBERT large‡ – – – 58.04 [23] 57.77 [23] 58.95 [23] 57.19 [23] 4.14 [7] 0.55 [7]

No supervision, segment based
W2V2 base [8]× 120ms unsup† � 59.65 [7] 70.66 [7] 58.64 [7] 71.68 [7] 4.10 [9] 4.19 [9]
W2V2 base [8]× Syllables∨ unsup† � 59.09 [6] 68.58 [6] 58.49 [6] 68.81 [6] 0.96 [9] 3.48 [9]
W2V2 base [8]× DP-Parse unsup† � 61.09 [8] 68.15 [7] 62.73 [8] 69.35 [7] 4.54 [5] 3.49 [5]

Weak supervision, segment based
W2V2 base [8]× 120ms weak-sup† � 59.64 [8] 70.04 [8] 59.43 [8] 70.58 [8] 5.83 [7] 5.81 [7]
W2V2 base [8]× Syllables∨ weak-sup† � 61.44 [6] 70.89 [7] 60.28 [6] 71.03 [7] 0.51 [9] 0.79 [9]
W2V2 base [8]× DP-Parse weak-sup† � 64.24 [8] 72.65 [7] 64.82 [8] 72.67 [7] 5.19 [9] 4.51 [9]

Partial supervision, segment based
W2V2 base [8]× gold words unsup† � 67.89 [5] 75.46 [7] 67.17 [5] 75.61 [7] 6.82 [5] 6.30 [5]
W2V2 base [8]× gold words weak-sup† � 71.38 [5] 77.75 [6] 71.04 [5] 77.64 [6] 2.72 [5] 6.83 [5]
text DP-Parse 1-hot � 75.38 [4] 78.57 [4] 74.89 [4] 78.49 [4] 21.42 [2] 19.54 [2]

Full supervision, segment based
text gold words 1-hot � 83.23 [3] 81.07 [3] 84.12 [3] 80.09 [3] 41.78 [1] 36.83 [1]

Table 5: Semantic and Part-of-Speech discrimination scores (the higher, the better). Segment-based
models compute SSEs for each segment (obtained by speech segmentation) on which a BERT model is
trained with a NCE loss. Frame-based models are pre-trained baseline models without speech segmen-
tation nor BERT training. sSIMI scores are average over the Librispeech and synthetic subsets. Layers
used are given between brackets. +:van den Oord et al. (2019), ×:Baevski et al. (2020), ‡:Hsu et al.
(2021), ∨: Räsänen et al. (2015), †: Algayres et al. (2022).

strong baseline systems for our ABX metrics. Yet,
they score in average below the segment-based
approaches.

Regarding the scores obtained on sSIMI from
Nguyen et al. (2020), the table of results (Table 5)
shows important downsides on this task compared
to our ABX tasks. First, the scores sometimes
show large inconsistencies across development
and test sets, which is not the case for the ABX
tasks. Second, while our ABX tasks are sensi-
tive to improvements in speech segmentation and
SSE modeling, sSIMI is not and show comparable
scores across most sections of Table 5. One reason
for that could be that self-supervised speech sys-
tems (Wav2vec2.0, HuBERT, and CPC) as well
as SSE models from Algayres et al. (2022) are
not trained to encode short sequence of speech,
especially extracted as chunks from a sentence.

6 Conclusion and Open Questions

We introduce a new speech segmentation pipeline
that sets the state-of-the-art on the Zerospeech’s
datasets at 16.8 token F1. The whole pipeline
needs no specific tuning of hyper-parameters,
making it ready to use on any new languages. We
showed that the problem of speech segmentation
can be reduced to the problem of learning dis-
criminative speech representations. Indeed, using

different level of supervision, our pipeline reaches
up to 35 token F1 score. Therefore, as long as
the field of unsupervised representation learning
makes headway, this method should automatically
produce higher token F1 scores.

A first avenue of improvement of the current
work is in the SSE component. Here, we took
the system described in Algayres et al. (2022) out
of the box, and we showed good performance in
speech segmentation compared to the state of the
art, but there was still a large margin of improve-
ment compared to text-based system. A recent
unpublished paper (Kamper, 2022) came to our
attention based on the non-lexical principle and
showed similar or slightly better results than ours
on a subset of the ZR17 language. Kamper (2022)
also uses a segmentation lattice that resembles ours
for inference. Yet, as we have shown, our system
is monotonous with input embedding quality, and
can therefore reach much better performance if
the speech sequence embedding component were
better trained. Further work is needed to improve
the SSE component based on purely unsupervised
methods.

Despite our computational speedup, our current
system would face challenges to scale up the ap-
proach to larger datasets than Librispeech. While
it uses FAISS, an optimized search library, it is
unclear that storing each instance of a possible
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segment is necessary. One interesting avenue of
research would therefore be to downsample both
instance lexicons to alleviate space complexity
and/or to trade storage with compute by recal-
culating the embeddings on-line.

Another interesting improvement would be
to compute bigram probabilities instead of un-
igram probabilities, as previously explored in
Goldwater et al. (2009). Yet, this possibility looks
challenging, as explained in Appendix A.2.3.

Finally, our method showed promising results
in terms of semantic and POS encoding when
taken as a preprocessor for a language model.
Such a phenomenon is displayed by our new
in-context semantic tasks, but not by a previous
without-context semantic task from Nguyen et al.
(2020). Further work is needed to show whether
this can translate into high quality generations
when used as a component to generative systems
(Lakhotia et al., 2021).

A Appendix

A.1 Construction of Triplets for ABXsem

and ABXPOS

Let’s write the series of triplet from our ABX
tasks: (Ai, Bi, Xi)0≤i<N . For all i, Ai is defined
as a tuple (Ra

i , s
a
i , e

a
i , t

a
i ) where Ra

i is a recording
of a whole sentence and sai and eai are the temporal
boundaries of a word with phonetic transcription
tai . Bi and Xi are defined identically. The sen-
tences are extracted from the Librispeech dataset,
a 960-hour corpus of read English literature.

The Speech LM is asked to encode the whole
sentences (Ra

i , R
b
i , R

x
i ) and compute the three

word embeddings for the words of interest using
the provided timestamps. The ABX score is given
by the following formula:

ABX(T, d) =
1

N

N−1∑
i=0

d(fa
i ,f

x
i )<d(fb

i ,f
x
i )

where T is a collection of triplet word embeddings
(fa

i , f
b
i , f

x
i )0≤i<N and d is the cosine distance.

ABXsem is composed of 502 pairs (evenly split
into a development and test set) of words created
using a synonym dictionary. By sampling a list
distractor for each pair, we reached 1557 different
triplets. For each unique word found in the triplets,
we sample 10 occurrences from the sentences of
the Librispeech corpus. In total, ABXsem is com-
puted over 1.5M triplets. ABXPOS is composed

Token-F1
Languages DP-Parse + k-means DP-Parse + k-NN

mandarin 0.1 0.147
french 0.07 0.153
english 0.08 0.219

Table 6: Token-F1 scores obtained by DP-Parse
on three corpora from the Zerospeech 2017. The
frequency estimation is performed by either a
k-NN or by a k-means that knows the true number
of clusters (found in the transcription of those
datasets).

of 9997 pairs of words built from the WordNet
database (Fellbaum, 1998). The words in each pair
have the same POS tags that can be either noun,
verb, or adjective. By sampling distractors and
10 occurrences of each word types, we reached
37.3M triplets.

A.2 Ablation Study
A.2.1 k-means Instead of k-NN
To estimate DP-Parse parameters (L0w and Lw),
we followed a non-clustering approach with a
k-NN density estimation. In this section, instead,
we use k-means clustering to estimate DP-Parse
parameters. We used the transcriptions of the
development sets from the Zerospeech Challenge
2017 to give to the k-means the true number
of clusters is it suppose to find when clustering
SSEs from L0 and L. The value of L0w and Lw

are given by the size of the cluster in which w
is found. From Table 6, the segmentation scores
obtained using k-means are much lower than those
obtained by k-NN. Indeed, as shown in a study by
Algayres et al. (2020), k-means is subject to the
uniform effect (Wu, 2012), which makes it not
suited to estimate frequencies on highly skewed
distributions, as the distribution of word types
which follows the Zipf Law (Zipf, 1949).

A.2.2 DP-Parse Hyper-parameters
In Table 7, we provide DP-Parse speech seg-
mentation performance, as measured by token-F1
scores, over three datasets (Mandarin, English,
and French) for different hyper-parameters values.
Surprisingly, increasing the number of neighbors
(k), the number of samples in L0 (#L0), or the
beam size does not improve token-F1 scores.
DP-Parse time complexity scales linearly with
each of these three parameters, therefore we keep
their values as low as possible.
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Token-F1
Mandarin French English average

k = 10 16.8 14.7 21.5 17.7
k = 100 16.7 15.3 21.9 18.0
k = 200 16.9 15.4 21.9 18.0

beam = 5 16.6 15.4 21.9 18.0
beam = 10 16.7 15.3 21.9 18.0
beam = 100 16.8 15.2 21.9 18.0

#L0 = 300k 16.9 14.7 21.5 17.7
#L0 = 1M 16.7 15.3 21.9 18.0
#L0 = 3M 16.6 15.4 22.0 18.0

α0 = 10−4 16.4 15.0 21.4 17.6
α0 = 10 16.3 15.3 21.7 17.8
α0 = 102 16.7 15.3 21.9 18.0
α0 = 103 17.0 15.1 21.7 17.9
α0 = 105 16.3 15.0 19.7 17.0

δ = 1 9.0 13.4 14.5 12.3
δ = 3 17.0 14.8 21.7 17.8
δ = 4 16.7 15.3 21.9 18.0
δ = 5 15.8 15.0 21.4 17.4
δ = 9 15.2 14.8 19.9 16.6

γ = 0 14.7 14.7 19.9 16.4
γ = 1.6 16.0 15.0 21.7 17.6
γ = 1.8 16.7 15.3 21.9 18.0
γ = 2 16.9 14.9 21.6 17.8

Table 7: Token F1-score on the number of neigh-
bors for the k-NN search (k), the concentration
parameter (alpha0), the beam-search size (beam),
the number of samples in L0 (#L0), and the
pair (δ, γ) from the penalty function. The de-
fault parameter values are k = 100, α0 = 100,
beam = 10, #L0 = 1M , γ = 1.8, and δ = 4
(also in bold in the table).

Another unexpected result is the low impact
of the concentration parameter (α0). The value of
this parameter should be a crucial as it controls the
implicit vocabulary by controlling the amount of
rare words in the segmentation. This observation
has led us to create the penalty function q from
Equation 5 that offers a control on word-lengths,
which also impacts the implicit vocabulary. This
time, we noticed that q’s shape strongly impact
token-F1 scores. By a careful tuning of the penalty
function, we increased the token-F1 from 16.4,
with γ = 0 (i.e., no penalty function) to 18, with
γ = 1.8 and δ = 4.

A.2.3 Hierarchical Dirichlet Process
Goldwater’s bigram Hierarchical Dirichlet Process
(bigram-HDP), presented in Goldwater et al.
(2009) for text segmentation computes the
probability of two consecutive word-candidate,

P (〈wi−1, wi〉), to be segmented instead of only
one, P (wi), as in the unigram Dirichlet pro-
cess (unigram-DP). In Goldwater et al. (2009),
the computation of the bigram-HDP probability
P (〈wi−1, wi〉) requires the number of different
types that can be found in all previously seg-
mented bigrams with wi as second word. This
is particularly difficult to adapt to speech seg-
mentation with DP-Parse, because counting types
require an explicit clustering step. We doubt that
using k-means would work as we have shown
that clustering SSEs with k-means works poorly,
even if the true number of clusters is known (see
Table 6). More advanced clustering technics could
work better than k-means as shown in Kamper
et al. (2014)—for example, Chinese Whispers
Clustering, Hierarchical K-means, or probabilis-
tic clustering using GMMs, yet it would require a
large effort to incorporate it to DP-Parse.
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and Najim Dehak. 2020. Self-expressing au-
toencoders for unsupervised spoken term
discovery.
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Rozé, Morgane Rivière, Evgeny Kharitonov,
Alexei Baevski, Ewan Dunbar, and Emmanuel
Dupoux. 2020. The zero resource speech
benchmark 2021: Metrics and baselines for un-
supervised spoken language modeling. CoRR,
abs/2011.11588.
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