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Abstract

Fact verification systems typically rely on neu-
ral network classifiers for veracity prediction,
which lack explainability. This paper proposes
ProoFVer, which uses a seq2seq model to gen-
erate natural logic-based inferences as proofs.
These proofs consist of lexical mutations be-
tween spans in the claim and the evidence
retrieved, each marked with a natural logic
operator. Claim veracity is determined solely
based on the sequence of these operators.
Hence, these proofs are faithful explanations,
and this makes ProoFVer faithful by construc-
tion. Currently, ProoFVer has the highest label
accuracy and the second best score in the
FEVER leaderboard. Furthermore, it improves
by 13.21% points over the next best model
on a dataset with counterfactual instances,
demonstrating its robustness. As explanations,
the proofs show better overlap with human
rationales than attention-based highlights and
the proofs help humans predict model de-
cisions correctly more often than using the
evidence directly.1

1 Introduction

Fact verification systems typically comprise an
evidence retrieval model followed by a textual en-
tailment classifier (Thorne et al., 2018b). Recent
high-performing fact verification systems (Zhong
et al., 2020; Ye et al., 2020) use neural models
for textual entailment whose reasoning is opaque
to humans despite advances in interpretablity
(Han et al., 2020). On the other hand, proof sys-
tems like NaturalLI (Angeli and Manning, 2014)
provide transparency in their decision making for
entailment tasks, by using explicit proofs in the
form of natural logic. However, the accuracy of
such approaches often does not match that of
neural models (Abzianidze, 2017a).

1Find our code and data at https://github.com
/krishnamrith12/ProoFVer.

Justifying decisions is central to fact verifica-
tion (Uscinski and Butler, 2013). While models
such as those developed for FEVER (Thorne
et al., 2018b) typically substantiate their decisions
by presenting the evidence as is, more recent
proposals use the evidence to generate explana-
tions. Here, models highlight salient parts of the
evidence (Popat et al., 2018; Wu et al., 2020),
generate summaries (Kotonya and Toni, 2020b;
Atanasova et al., 2020), correct factual errors
(Thorne and Vlachos, 2021b; Schuster et al., 2021),
answer claim-related questions (Fan et al., 2020),
or perform rule discovery (Ahmadi et al., 2019;
Gad-Elrab et al., 2019). An explanation is faith-
ful only if it reflects the information that is used
for decision making (Lipton, 2018; Jacovi and
Goldberg, 2020), which these systems do not
guarantee. A possible exception here would be
the rule discovery models, although, their per-
formance often suffers due to limited knowledge
base coverage and/or the noise in rule extraction
from text (Kotonya and Toni, 2020a; Pezeshkpour
et al., 2020). Faithful explanations are useful as
mechanisms to dispute, debug, or advise (Jacovi
and Goldberg, 2021), which may aid a news agency
for advice, a user to dispute decisions, and a devel-
oper for model debugging in fact verification.

Keeping both accuracy and explainability in
mind, we propose ProoFVer—Proof System for
Fact Verification—which generates proofs or ref-
utations of the claim given evidence as natural
logic-based inference. ProoFVer follows the nat-
ural logic based theory of compositional entail-
ment, originally proposed in NatLog (MacCartney
and Manning, 2007). In the example of Figure 1
ProoFVer generates the proof shown in Figure 2,
for a given claim and evidence. Here, at each
step in the proof, a claim span is mutated with
a span from the evidence. Each such mutation is
marked with an entailment relation, by assigning
a natural logic operator (NatOp; Angeli and
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Figure 1: The proof generator in ProoFVer, generates the natural logic proofs using a seq2seq model. The natural
logic operators from the proof are used as transitions in the DFA to determine the veracity of the claim. The states
S, R, and N in the automaton denote the task labels SUPPORTS, REFUTES, and NOT ENOUGH INFO, respectively. The
transitions in the automaton are the natural logic operators (NatOPs) defined in Table 1.

Figure 2: Proof steps for the input in Figure 1.

Manning, 2014). A step in the proof can be repre-
sented using a triple, consisting of the aligned
spans in the mutation and its assigned NatOp. In
the example, the mutations in the first and last
triples occur with semantically equivalent spans,
and hence are assigned with the equivalence
NatOp (≡). However, the mutation in the second
triple results in a contradiction, as ‘short story’ is
replaced with ‘novel’ and an item cannot be both.
Hence, the mutation is assigned the alternation
NatOp ( ). The sequence of NatOps from the
proof become the transitions in the DFA shown
in Figure 1, which in this case terminates at the
‘REFUTE (R)’ state, that is, the evidence refutes
the claim.

Unlike other natural logic systems (Angeli
et al., 2016; Feng et al., 2020), ProoFVer can
form a proof by combining spans from multi-
ple evidence sentences, by leveraging the entity
mentions linking those sentences. The proof is
generated by a seq2seq model trained using a
heuristically annotated dataset, obtained by com-
bining information from the publicly available
FEVER dataset (Thorne et al., 2018a; Thorne and
Vlachos, 2021b) with PPDB (Pavlick et al., 2015),
Wordnet (Miller, 1995) and Wikidata (Vrandečić

and Krötzsch, 2014). We heuristically generate
the training data for the claims in three datasets,
namely, FEVER, symmetric FEVER (Schuster
et al., 2019), and FEVER 2.0 (Thorne et al.,
2019).

ProoFVer is currently the highest scoring sys-
tem on the FEVER leaderboard in terms of label
accuracy and is the second-best system in terms
of FEVER score. Additionally, ProoFVer has ro-
bustness and explainability as its key strengths. Its
veracity predictions are solely determined using
the generated proof. Hence by design, ProoFVer’s
proofs, when used as explanations, are faithful by
construction (Lei et al., 2016; Jain et al., 2020).
Similarly, it demonstrates robustness to counter-
factual instances from Symmetric FEVER and
adversarial instances from FEVER 2.0. In particu-
lar, ProoFVer achieved 13.21% higher label accu-
racy than that of the next best model (Ye et al.,
2020) for symmetric FEVER and similarly im-
proves upon the previous best results (Schuster
et al., 2021) on Adversarial FEVER.

To evaluate the robustness of fact verification
systems against the impact of superfluous informa-
tion from the retriever, we propose a new metric,
Stability Error Rate (SER), which measures the
proportion of instances where superfluous in-
formation changes the decision of the model.
ProoFVer achieves a SER of 5.73%, compared
with 9.36% of Stammbach (2021), where a lower
SER is preferred. ProoFVer’s proofs as explana-
tions, apart from being faithful, score high in their
overlap with human rationales with a token over-
lap F1-Score of 93.28%, 5.67 percentage points
more than attention-based highlights from Ye
et al. (2020). Finally, humans, with no knowl-
edge of natural logic, correctly predict ProoFVer’s
decisions 81.67% of the times compared with
69.44% when using the retrieved evidence.
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2 Natural Logic Proofs as Explanations

Natural logic operates directly on natural lan-
guage (Angeli and Manning, 2014; Abzianidze,
2017b). Thus it is appealing for fact verification,
as structured knowledge bases like Wikidata typi-
cally lag behind text-based encyclopedias such as
Wikipedia in terms of coverage (Johnson, 2020).
Furthermore, it obviates the need to translate
claims and evidence into meaning representations
such as lambda calculus (Zettlemoyer and Collins,
2005). While such representations may be more
expressive, they require the development of se-
mantic parsers, introducing another source of po-
tential errors in the verification process.

Natural Logic has been previously used in sev-
eral information extraction and NLU tasks such
as Natural Language Inference (NLI, Abzianidze,
2017a; Feng et al., 2020), question answering
(Angeli et al., 2016), and open information extrac-
tion (Angeli, 2016, Chapter 5). NatLog (Mac-
Cartney and Manning, 2007), building on earlier
theoretical work on natural logic and monotonic-
ity calculus (Van Benthem, 1986; Valencia, 1991),
uses natural logic for textual inference.

NaturalLI (Angeli and Manning, 2014) ex-
tended NatLog by adopting the formal semantics
of Icard III and Moss (2014), and it is a proof
system formulated for the NLI task. It determines
the entailment of a hypothesis by searching over a
database of premises. The proofs are in the form of
a natural logic based logical inference, which re-
sults in a sequence of mutations between a premise
and a hypothesis. Each mutation is marked with a
natural logic relation, and is realized as a lexical
substitution, forming a step in the inference. Each
mutation results in a new sentence, and the natural
logic relation assigned to it identifies the type of
entailment that holds between the sentences before
and after the mutation. NaturalLI adopts a set of
seven natural logic operators, as shown in Table 1.
The operators were originally proposed in NatLog
(MacCartney, 2009, p. 79). We henceforth refer
to these operators as NatOps.

To determine whether a hypothesis is entailed
by a premise, NaturalLI uses a deterministic fi-
nite state automaton (DFA). Here, each state is
an entailment label, and the transitions are the
NatOps (Figure 1). The sequence of NatOps in
the inference is used to traverse the DFA, and
the state where it terminates decides the label
of the hypothesis-premise pair. The decision mak-

NatOP: Name Definition

: Alternation x∩y=�∧x∪y �=U
�: Cover x∩y �=�∧x∪y=U
≡: Equivalence x = y
	: Forward Entailment x ⊂ y
�: Negation x∩y=�∧x∪y=U
�: Reverse Entailment x ⊃ y

: Independence All other cases

Table 1: Natural logic relations (NatOps) and their
set theoretic definitions.

ing process relies solely on the steps in the logical
inference, and thus form faithful explanations.

Other proof systems that apply mutations
between text sequences have been previously
explored. Stern et al. (2012) explored how to
transform a premise into a hypothesis using mu-
tations, however their approach was limited to
two-way entailment instead of three-way that is
handled by NaturalLI. Similar proof systems have
used mutations in the form of tree-edit operations
(Mehdad, 2009), transformations over syntactic
parses (Heilman and Smith, 2010; Harmeling,
2009), knowledge-based transformations in the
form of lexical mutations, entailment rules, re-
write rules, or their combinations (Bar-Haim et al.
2007; Szpektor et al., 2004).

3 ProoFVer

ProoFVer uses a seq2seq generator that generates
a proof in the form of natural-logic based logical
inference, which becomes the input to a DFA for
predicting the veracity of the claim. We elaborate
on the proof generation process in Section 3.1,
and on the veracity prediction in Section 3.2.

3.1 Proof Generation

The proof generator, as shown in Figures 1 and 3,
takes as input a claim along with one or more re-
trieved evidence sentences. It generates the steps
of the proof as a sequence of triples, each con-
sisting of a span from the claim, a span from the
evidence and a NatOp. The claim span being sub-
stituted and the evidence span replacing it form a
mutation, and each mutation is assigned a NatOp.
In a proof, we start with the claim, and the mu-
tations are iteratively applied from left to right.
Figure 1 shows a proof containing a sequence
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Figure 3: A claim requiring multiple evidence sentences for verification.

of three triples. The corresponding mutated state-
ments at each step of the proof, along with the
assigned NatOps, are shown in Figure 2.

We use a seq2seq model following an autore-
gressive formulation for the proof generation. In
the proof, successive spans of the claim form
part of the successive triples. However, the corre-
sponding evidence spans in the successive triples
need not follow any order. As shown in Figure 3,
the evidence spans may come from multiple sen-
tences, and may not all end up being used. Finally,
the NatOps, as shown in Table 1, are represented
using a predetermined set of tokens.

To obtain valid proofs during prediction, we
need to lexically constrain the inference process
by switching between three different search spaces
depending on which element of the triple is being
predicted. To achieve this, we use dynamically
constrained markup decoding (De Cao et al.,
2021), a modified form of lexically constrained
decoding (Post and Vilar, 2018). This decoding
uses markups to switch between the search spaces,
and we use the delimiters ‘‘{’’, ‘‘}’’, ‘‘[’’, and
‘‘]’’ as the markups. Using these markups, we
constrain the tokens predicted between a ‘‘{’’
and ‘‘}’’ to be from the claim, between a ‘‘[’’,
and ‘‘]’’ to be from the evidence, and the token
after ‘‘]’’ to be a NatOp token. The prediction
of a triple begins with predicting a ‘‘{’’, and it
proceeds by generating a claim span where the
tokens are monotonically copied from the claim
in the input, until a ‘‘}’’ is predicted. The predic-
tion then continues by generating a ‘‘[’’, which
initiates the evidence span prediction in the triple.
The evidence span can begin with any word from
the evidence, and is then expanded by predicting
subsequent tokens, until ‘‘]’’ is predicted. Finally,
the NatOp token is predicted. In the next triple,
copying resumes from the next token in the claim.
All triples until the one with the last token in the
claim are generated in this manner.

3.2 Veracity Prediction

The DFA shown in Figure 1 uses the sequence of
NatOps predicted by the proof generator as tran-
sitions to arrive at the outcome. Figure 2 shows
the corresponding sequence of transitions for the
claim and evidence from Figure 1. Based on this,
the DFA in Figure 1 determines that the evidence
refutes the claim, that is, it terminates in state R.
NaturalLI (Angeli and Manning, 2014) designed
the DFA for the three classes in the NLI classifi-
cation task, namely, entail, contradict, and neutral.
Here, we replace them with SUPPORT (S), RE-
FUTE (R), and NOT ENOUGH INFO (N), respectively
for fact verification. Angeli and Manning (2014)
chose not to distinguish between negation (�)
and alternation ( ) relations for NLI, and assign

for both. However, there is a clear distinction
between cases where each of these NatOPs is ap-
plicable in fact verification, and thus we treat them
as different NatOps. For instance, in the second
mutation for the claim in Figure 1, an evidence
span ‘‘is not a short story’’ would be assigned
negation (�), and not the currently assigned alter-
nation ( ) for the mutation with the evidence span
‘‘is a novel’’. However, we follow Angeli and
Manning (2014) in not using the cover (�) NatOp.
In rare occasions where this NatOp would be
applicable, say in a mutation with the spans ‘‘not
a novel’’ and ‘‘fiction’’, we currently assign the
independence NatOp ( ).

4 Generating Proofs for Training

Training datasets for evidence-based fact verifi-
cation consist of instances containing a claim, a
label indicating its veracity, and the evidence, typ-
ically a set of sentences (Thorne et al., 2018a;
Hanselowski et al., 2019; Wadden et al., 2020).
However, we need sequences of triples to train
the proof generator of Section 3.1. Manually
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Figure 4: Annotation process for obtaining the proof for the input in Figure 3. It proceeds in two steps, chunking &
alignment, and NatOp assignment, and the latter proceeds by initial mutation assignment and two filtering steps.

annotating them would be laborious; thus, we
heuristically generate them from existing re-
sources. As shown in Figure 4, we perform a two-
step annotation process: chunking and alignment,
followed by the NatOp assignment.

4.1 Chunking and Alignment
Chunking the claim into spans is conducted us-
ing the chunker of Akbik et al. (2019), and any
span that does not contain any content words is
merged with its subsequent span. Next, as shown
in Figure 4, a word aligner (Jalili Sabet et al.,
2020) aligns each evidence sentence in the in-
put separately with the claim. For each claim
span, each evidence sentence provides an aligned
span by grouping together words that are aligned
to it, including any words in between to ensure
contiguity. However, if the aggregated similarity
score from the aligner for a given pair of claim
and evidence spans falls below an empirically
set threshold, then it is ignored and instead the
claim span is aligned with the string ‘‘DEL’’. In
Figure 4, ‘‘DEL’’ appears once in each of the
evidence sentences.

Next, we convert the alignments into a sequence
of mutations, which requires no additional effort
in instances with only one evidence sentence.
However, a claim span may have multiple evi-
dence spans aligned with it in cases with multiple
evidence sentences, as shown in Figure 4. Here,
for a claim span, we generally select the evidence
span with the highest cosine similarity with it.
Such spans are marked with solid red borders in
Figure 4. Further, we assume that the evidence
sentences are linked via entity mentions, such as
‘‘Spanish Empire’’ the only hyperlinked mention

(from Evidence-1 to 2) in Figure 3. These hy-
perlinked mentions must always be added as a
mutation, as they provide the context for switch-
ing the source of the evidence from one sentence
to another. In Figure 3, ‘‘Spanish Empire’’ is not
selected as an alignment based on the similarity
scores with the claim spans. Hence, it is inserted
as the third mutation, at the juncture at which the
switch from Evidence-1 to 2 happens. It is aligned
with the string ‘‘INS’ in the place of a claim span.
Use of hyperlink structure in Wikipedia or per-
forming entity linking to establish hyperlinked
mentions, similar to our approach here, has been
previously explored in multi-hop open domain
question answering (Asai et al., 2020; Nie et al.,
2019). Mutations with a ‘‘DEL’’ instead of an evi-
dence span, and an ‘‘INS’’ instead of a claim span,
are treated as deletions and insertions of claim and
evidence spans, respectively.

4.2 NatOp Assignment
As shown in Figure 4, the NatOp assignment step
produces a sequence of NatOps, one for each
mutation. Here, the search space becomes expo-
nentially large (i.e., 6n possible NatOp sequences
for n mutations). First, we assign NatOps to in-
dividual mutations relying on hand-crafted rules
and external resources, without considering the
other mutations in the sequence (§ 4.2.1). With
this partially filled NatOp sequence, we perform
two filtering steps to further reduce the search
space. We describe these steps below: one using
veracity label information from training data in
FEVER (Thorne et al., 2018a) and another using
some additional manual annotation information
from annotation logs of FEVER (§ 4.2.2).
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4.2.1 Initial Assignment

The initial assignment of NatOps considers each
mutation in the sequence in isolation. Here, muta-
tions that fully match lexically are assigned with
the equivalence NatOp (≡), like the mutations 1,
4, and 5 in Figure 4. Similarly, mutations where
the claim or evidence span has an extra negation
word but lexically match otherwise, are assigned
the negation NatOp (�). Further, insertions and
deletions, that is, mutations with INS and DEL, re-
spectively (§4.1), containing negation words are
also assigned the negation NatOp. To obtain these
words, we identify a set of common negation
words from the list of stop words in Honnibal
et al. (2020), and combine them with the list of
negative sentiment polarity words from Hu and
Liu (2004). Remaining cases of insertions (dele-
tions) are treated as making the existing claim
more specific (general), and hence assigned the
forward (reverse) entailment NatOp, like muta-
tion 3 in Figure 4. Furthermore, as every para-
phrase pair present in Paraphrase Database (PPDB
Ganitkevitch et al., 2013; Pavlick et al., 2015) is
marked with an entailment relation, we identify
mutations which are present in it as paraphrases
and assign the corresponding NatOp.

In several cases, the NatOp information need
not be readily available at the span level. Here, we
retain the word-level alignments from the aligner
and perform lexical level NatOp assignment with
the help of Wordnet (Miller, 1995) and Wiki-
data (Vrandečić and Krötzsch, 2014). We follow
MacCartney (2009, Chapter 6) for NatOp assign-
ment of open-class terms using Wordnet.

Additionally, we define rules to assign a NatOp
for named entities using Wikidata. Here, aliases
of an entity are marked with an equivalence
NatOp (≡), as shown in third triple in Figure 1.
Further, we manually assign NatOps to the 500
most frequently occurring Wikidata relations in
the aligned training data. For instance, as shown
in Figure 5, the entities ‘The Trial’ and ‘novel’
have the relation ‘genre’. A claim span containing
‘The Trial’, when substituted with an evidence
span containing ‘novel’, would result in a general-
isation of the claim, and hence will be assigned the
reverse entailment NatOp (�). A substitution in
the reverse direction would be assigned a forward
entailment NatOp (	), indicating specialization.

The KB relations we annotated occur between
the entities linked in Wikidata, and they do not

Figure 5: Entities and their relations in Wikidata.

capture hierarchical multihop relations between
the entities in the KB. We create such a hierarchy
by combining the ‘‘instance of’’, ‘‘part of’’, and
‘‘subclass of’’ relations in Wikidata. Thus, a pair
of entities connected via a directed path of length
k ≤ 3, such as ‘‘Work of art’’ and ‘‘Rashomon’’
in Figure 5, is considered to have a parent-child
relation, and assigned the forward or reverse en-
tailment NatOp, depending on which span appears
in the claim and the evidence. Similarly, two en-
tities (e.g., ‘‘Rashomon’’ and ‘‘Inception’’) are
considered to be siblings if they have a common
parent, and are assigned the alternation NatOp
( ). However, two connected entities that do
not satisfy the aforementioned distance criterion
(e.g., ‘‘novel’’ and ‘‘Rashomon’’) are assigned
with the independence NatOp ( ), signifying that
they are unrelated.

4.2.2 Filtering the Search Space
While in Section 4.2.1 we assigned a NatOp to
each mutation in isolation, there can still be un-
filled NatOps. For instance, the unfilled NatOp
in the second mutation of Figure 4 leads to
six possible NatOp sequences as candidates, one
per available NatOp. Recall that these NatOp se-
quences act as a transition sequence in the DFA
(§ 3.2). Thus we make use of the partially filled
NatOp sequence and the veracity label from the
training data to filter out NatOp sequences that do
not terminate at the same state as the veracity label
according to the DFA. The instance in Figure 4
has the SUPPORT label, and among the six possible
candidate sequences only two terminate in this
label. Hence, we retain those two sequences.

For the final filtering step we use the additional
manual annotation that was produced during the
construction of the claims in FEVER. There, the
annotators constructed each claim by manipu-
lating a factoid extracted from Wikipedia using
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Transformation S R N

substitute with similar info. 	 �
substitute with dissimilar info. 	
paraphrasing ≡
negation � � �
transform to specific 	 	 	
transform to general � � �

Table 2: NatOp assignment based on transfor-
mations and veracity label information.

one of the six transformations listed in Table 2.
Our proofs can be viewed as an attempt at re-
constructing the factoid from a claim in multiple
mutations, whereas these transformations can be
considered claim-level mutations that transition
directly from the last step (reconstructed factoid)
in the proof to the first step (claim). This factoid
is treated as the corrected claim in Thorne and
Vlachos (2021b), who released this annotation.
For each veracity label we define the mapping of
each transformation to a NatOp, as described in
Table 2. The assumption is that if a transforma-
tion has resulted in a particular veracity label, then
the corresponding NatOp is likely to occur in the
proof. To identify the mutation to assign it, we
obtain the text portions in the claim manipulated
by the annotators to construct it, by comparing the
claim and the original Wikipedia factoid. In the
example of Figure 4, this transformed text span
happens to be part of the second mutation, and
as per Table 2 forward entailment is the corre-
sponding NatOp given the veracity label, result-
ing in the selection of the first NatOp sequence.
In rare occasions (2.55% claims in FEVER), we
manually performed NatOp assignment, as the fil-
tering steps led to zero candidates in those cases.
As the heuristic annotation requires manual ef-
fort, we explore how it can be obtained using a
supervised classifier (see §5.5).

5 Experimental Methodology

5.1 Data

ProoFVer is trained using heuristically annotated
proofs (§4) obtained from FEVER (Thorne et al.,
2018a), which has a train/test/development split
of 145,449/19,998/19,998 claims. Further, the
heuristic proof annotation involves the use of
additional information from the manual annota-
tion logs of FEVER, recently released by Thorne

and Vlachos (2021b). Finally, claims with the
label NOT ENOUGH INFO (NEI) require retrieved
evidence for obtaining their proofs for training,
as no ground truth evidence exists for such cases.
Here, we use the same retriever that would be
used during the prediction time as well.

In addition to FEVER, we train and evaluate
ProoFVer on two other related datasets. First, we
use Symmetric FEVER (Schuster et al., 2019), a
dataset designed to assess the robustness of fact
verification systems against the claim-only bias
present in FEVER. The dataset consists of 1,420
counterfactual instances, split into development
and test sets of 708 and 712 instances, respec-
tively. Here, we heuristically generate the ground
truth proofs for the dataset’s development data
and use it to fine tune ProoFVer, before evaluat-
ing it on the dataset’s test data. Similarly, we also
evaluate ProoFVer on the FEVER 2.0 adversar-
ial examples (Thorne et al., 2019). Specifically,
we use the same evaluation subset of 766 claims
that was used by Schuster et al. (2021). To fine-
tune ProoFVer on this dataset, we generate the
ground truth proofs for 2,100 additional adver-
sarial claims, separate from the evaluation set,
which were curated by the organisers and partici-
pants of the FEVER 2.0 shared task.

Finally, we also use the manual annotation logs
of FEVER (Thorne and Vlachos, 2021b) to obtain
rationales for claims in the development data. In
particular, we obtain the rationale for a claim by
extracting from its corresponding Wikipedia fac-
toid the words which were removed by the anno-
tators during its creation. If these words are part
of an evidence sentence, then they become the
rationale for veracity label of the claim given the
evidence. Further, we require that the words ex-
tracted as rationale form a contiguous phrase. We
identified 300 claims that satisfy all these criteria.

5.2 Evaluation Metrics

The evaluation metrics for FEVER are label ac-
curacy (LA, i.e., veracity accuracy) and FEVER
Score (Thorne et al., 2018b), which rewards only
those predictions which are accompanied by at
least one correct set of evidence sentences. We
report mean LA and standard deviation for ex-
periments with Symmetric FEVER, where we use
its development data for training and train with
five random initialisations due to its limited size.
We further introduce a new evaluation metric, to
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assess model robustness, called Stability Error
Rate (SER). Neural models, especially with a re-
triever component, have shown to be vulnerable
to model overstability (Jia and Liang, 2017).
Overstability is the inability of a model to dis-
tinguish superfluous information that merely has
lexical similarity with the input, from the informa-
tion truly relevant to arrive at the correct decision.
In the context of fact verification, it is expected
that an ideal model should always predict NOT

ENOUGH INFO, whenever it lacks sufficient evi-
dence to make a decision otherwise. Further, it
should arrive at a REFUTE or SUPPORT decision only
when the model possesses sufficient evidence to
do so, and any additional evidence should not
alter its decision. To assess the model overstabil-
ity in fact verification, we define SER as the per-
centage of claims where additional evidence alters
the SUPPORT or REFUTE decision of a model.

5.3 Baseline Systems

KGAT (Liu et al., 2020) uses a graph attention
network, where each evidence sentence, concate-
nated with the claim, forms a node in the graph. We
use their best configuration, where the node repre-
sentations are initialized using RoBERTA (Large).
The relative importance of each node is computed
with node kernels, and information propagation
is performed using edge kernels. They also pro-
pose a new evidence sentence retriever, a BERT
model trained with a pairwise ranking loss, though
they rely on past work for document retrieval
(Hanselowski et al., 2018).

CorefBERT (Ye et al., 2020) follows KGAT
and differs only in terms of the LM used for the
node initialisation. Here, they further pretrain the
LM on a task that involves prediction of referents
of a masked mention to capture co-referential
relations in context. We use CorefRoBERTA,
their best-performing configuration.

DominikS (Stammbach, 2021) focuses primar-
ily on sentence-level evidence retrieval, scoring
individual tokens from a given Wikipedia doc-
ument, and then selecting the highest scoring
sentences by averaging token scores. It uses a
fine-tuned document level BigBird model (Zaheer
et al., 2020) for this purpose. For claim verifica-
tion it uses a DeBERTa (He et al., 2021) based
classifier.

5.4 ProoFVer: Implementation Details

We follow most previous works on FEVER which
model the task in three steps, namely, docu-
ment retrieval, retrieval of evidence sentences
from them, and finally veracity prediction based
on the evidence. ProoFVer’s novelty lies in the
proof generation in the third step. Hence, for bet-
ter comparability, we follow two popular, well-
performing retrieval approaches, Liu et al. (2020)
and Stammbach (2021). Liu et al.’s (2020) sen-
tence retriever, also used in Ye et al. (2020), is
a sentence level pairwise ranking model, whereas
that of Stammbach (2021) is a document level
token score aggregation model. ProoFVer’s con-
figuration which uses the former is our default
configuration, referred to as ProoFVer, and the
configuration using the latter will henceforth be
referred to as ProoFVer-SB. We retrieve five sen-
tences for each claim as required in the FEVER
evaluation.

For the proof generator, we use the pretrained
BART (Large) model (Lewis et al., 2020) and
fine-tune it using the heuristically annotated data
from Section 4. During prediction, the search
spaces for the claim and evidence are populated
using two separate tries. We add all possible
subsequences of the claim and evidence, each
with one to seven words, into the respective tries.
The default configuration takes the concatenation
of a claim and all the retrieved evidence together
as a single input, separated by a delimiter.

We consider three additional configurations
which differ in the way the retrieved evidence is
handled. In ProoFVer-MV, a claim is concatenated
with one evidence sentence at a time; this produces
five proofs and five decisions per claim, and the
final label is decided based on majority voting
(MV). Both ProoFVer-A and -AR are designed to
restrict the proof generator’s flexibility in inferring
the textual spans in the mutations, and thus assess
the gains obtained by allowing it in ProoFVer.
ProoFVer-A (aligned) considers during predic-
tion only the subsequences from each evidence
sentence aligned with the claim using word-level
alignment, which are then concatenated with the
claim as its input during training and prediction.
Thus, the evidence search space becomes nar-
rower, as the unaligned portions in the evidence are
not considered. ProoFVer-AR (aligned-restricted)
further restricts the search space of both the claim
and evidence, by predetermining the number of
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mutations, the claim spans in these mutations and
five candidate evidence spans for each mutation
(one per evidence sentence). It obtains this infor-
mation using the chunker and aligner used in the
heuristic annotation (§4).

5.5 Heuristic Annotation Using Kepler
To reduce the reliance on manual annotation from
Thorne and Vlachos (2021b) during the annota-
tion in Section 4, we experiment with replacing
the ground truth transformations with predicted
ones using a classifier. We use KEPLER (Wang
et al., 2021), a RoBERTA-based pretrained LM
enhanced with KB relations and entity pairs from
WikiData for the classification. KEPLER covers
97.5% of the entities present in FEVER. We first
train it with the FEVER training dataset for the
fact verification task. Then we fine-tune it for
the six-class classification task of predicting the
transformations, given a claim, evidence sentence
and veracity label as input from the FEVER train-
ing data. We train it with varying training dataset
sizes ranging from 1.24% (1,800; 300 per class) to
41.24% (60,000; 10,000 per class) of the FEVER
training data. We consider two configurations:
ProoFVer-K, which uses gold data to identify the
transformed span for applying the predicted trans-
formation, and ProoFVer-K-NoS, which instead
only ensures that the predicted transformation
occurs at least once in the final NatOp sequence.

6 Results

6.1 Fact Verification
Table 3 reports the fact verification results for
ProoFVer and the baselines. Overall, ProoFVer-
SB, our configuration using Stammbach’s (2021)
retriever, is the best performing model in our
experiments. ProoFVer-SB, which outperforms
Stammbach (2021) itself, is currently the high-
est scoring model in terms of label accuracy in
the FEVER leaderboard. It also is the second
best model in terms of FEVER Score, second
only to the currently unpublished model titled
‘‘mitchell.dehaven’’, in the leaderboard.

ProoFVer, our default configuration using the
retriever from Liu et al. (2020), differs from
ProoFVer-SB only in terms of the retriever they
use. ProoFVer is the best performing model among
all the baselines and other ProoFVer configura-
tions (-MV, -A, and -AR) that use Liu et al.’s
(2020) retriever. As compared to ProoFVer-MV,

System Dev Test

LA Fever LA Fever
Score Score

Using Retriever from Liu et al. (2020)

ProoFVer 80.23 78.17 79.25 74.37
ProoFVer-MV 78.71 74.62 74.18 70.09
ProoFVer-A 79.83 76.33 77.16 72.47
ProoFVer-AR 77.42 75.27 – –
KGAT 78.29 76.11 74.07 70.38
CorefBERT 79.12 77.46 75.96 72.30

Using Retriever from Stammbach (2021)

ProoFVer-SB 80.74 79.07 79.47 76.82
DominikS 80.59 78.37 79.16 76.78

Table 3: Fact verification results on FEVER.

KEPLER ProoFVer
Training Classifier -K-NoS (LA) -K (LA)
Data Size Accuracy
1,800 69.07 64.65 66.73
6,000 74.02 68.86 72.41

18,000 79.67 74.25 76.23
30,000 80.61 75.39 77.76
45,000 82.76 77.62 78.84
60,000 84.85 78.61 79.67

Table 4: LA of ProoFVer-K and -NoS using pre-
dictions from KEPLER. Training data size used
for KEPLER and its classifier accuracy is also
provided.

ProoFVer’s gains come primarily from its ability
to handle multiple evidence sentences together,
as opposed to handling each separately and then
aggregating the predictions. 9.8% (1,960) of the
claims in the FEVER development set require mul-
tiple evidence sentences for verification. While
ProoFVer-MV predicts 60.1% of these instances
correctly, ProoFVer correctly predicts 67.45% of
these. Further, around 80.73% (of 18,038) of the
single evidence instances are correctly predicted
by ProoFVer-MV, in comparison to 81.62% in-
stances for ProoFVer. Allowing the proof gener-
ator to infer the mutations dynamically, instead
of having them predefined, benefits the overall
performance of the model. The increasingly re-
stricted variants with narrower search spaces (i.e.,
ProoFVer-A and ProoFVer-AR) lead to decreas-
ing performances as shown in Table 3. ProoFVer-
AR, the most restricted version, performs worse
than all the other models.
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Model
Dataset

FEVER-DEV Symmetric FEVER
Original FT FT+L2 Original FT FT+L2

ProoFVer 89.07±0.3 86.41±0.8 87.95±1.0∗ 81.70±0.4 85.88±1.3# 83.37±1.3#∗

KGAT 86.02±0.2 76.67±0.3 79.93±0.9∗ 65.73±0.3 84.94±1.1# 73.34±1.5#∗

CorefBERT 88.26±0.4 78.79±0.2 84.22±1.5∗ 68.49±0.6 85.45±0.2# 77.37±0.5#∗

Table 5: Label accuracy of models on FEVER-development(DEV) and Symmetric FEVER with and
without fine tuning. All results marked with ∗ and # are statistically significant (unpaired t-test) with
p < 0.05 against their FT and Original variants respectively. FEVER-DEV predictions are using gold
standard evidence.

Impact of Additional Manual Annotation Be-
cause the final filtering step in NatOp assignment
(§4.2.2) requires additional manual annotation, we
experimented with a proof set obtained without
this step. Here, we arbitrarily select a NatOp se-
quence from the candidates remaining after the
veracity label based filtering. The latter reduced
the search space to just two possible NatOp se-
quences in 93.59% of the claims. However, train-
ing ProoFVer with these proofs resulted in a LA
of 58.29% on the FEVER development set. In
comparison, ProoFVer-K-NoS achieves a LA of
64.65%, even when using predictions from a KE-
PLER configuration trained on as little as 1,800
instances. Table 4 shows the LA for ProoFVer-
K-NoS and ProoFVer-K when using KEPLER
predictions, with varying training data sizes for
KEPLER; the largest KEPLER configuration is
trained on only 41.24% of claims in FEVER.
Using this amount of training data, ProoFVer-K
and ProoFVer-K-NoS achieve a LA of 79.67%
and 78.61%, respectively. Here, ProoFVer-K
outperforms all the baseline models, including
CorefBert, which also uses additional annotation
for pretraining.

6.2 Robustness

Symmetric FEVER As shown in Table 5,
ProoFVer shows better robustness with a mean
accuracy of 81.70% on the Symmetric FEVER test
dataset, an improvement of 13.21% over Coref-
BERT, the next best model. All models improve
their accuracy and are comparable on the test set
when we fine-tune them on its development set.
However, this results in more than 9% reduction
on the original FEVER-DEV data for both the
classifier based models, KGAT and CorefBERT.
This catastrophic forgetting (French, 1999) occurs

primarily due to the shift in label distribution
during fine-tuning, as Symmetric FEVER con-
tains only claims with SUPPORT and REFUTE labels.
ProoFVer accuracy drops by only less than 3%,
as it is trained with a seq2seq objective. To miti-
gate the effect of catastrophic forgetting, we apply
L2 regularization (Thorne and Vlachos, 2021a),
which improves all models on the FEVER de-
velopment set. Nevertheless, ProoFVer has the
highest accuracy on both FEVER and Symmet-
ric FEVER among the competing models after
regularization.

Generalizing to FEVER 2.0 ProoFVer when
evaluated on FEVER 2.0 adversarial data, reports
a LA of 82.79%, outperforming the previously best
reported LA of 82.51% by Schuster et al. (2021).
ProoFVer, after training on FEVER, is further
fine-tuned (with L2 regularization) on heuristi-
cally generated proofs from the data contributed
by the participants of the FEVER 2.0 shared task
(disjoint from the evaluation set), and the proofs
generated from the FEVER Symmetric data. On
the other hand, Schuster et al. (2021) was trained
on the VitaminC training data. When they further
fine tune their default model with FEVER, their
performance drops to 80.94%.

Stability Error Rate (SER): SER quantifies the
rate of instances where a system alters its decision
due additional evidence in the input, passed on
by the retriever component. KGAT, CorefBERT,
and DominikS have a SER of 12.35%, 10.27%,
and 9.36% respectively. ProoFVer has an SER of
only 6.21%, which is further reduced to 5.73% for
ProoFVer-SB. The SER results confirm that the
baselines change their predictions from SUPPORT

or REFUTE after providing them with additional
information more often than ProoFVer.
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Figure 6: Human rationale extraction for predicted proofs from ProoFVer. The claim and evidence spans are
enclosed within ‘{ }’ and ‘[ ]’, respectively, with numbered superscripts showing the correspondence between the
spans. The predicted rationales are underlined and the portions matching with the human rationales are highlighted.

6.3 ProoFVer Proofs as Explanations

6.3.1 Rationale Extraction
Rationales extracted based on attention are often
used as means to highlight the reasoning involved
in the decision making process of various models
(DeYoung et al., 2020). For this evaluation, we
compare using token-level F-score of the predicted
rationales with human-provided rationales for 300
claims from the FEVER development data, as
elaborated in Section 5.1. We ensure that all the
systems are provided with the same set of evi-
dence sentences, and consider only those words
from the evidence as rationales that do not occur in
the claim. For ProoFVer, we additionally remove
evidence spans which are part of mutations with
an equivalence NatOp. For KGAT and Coref-
BERT, we obtain the rationales by sorting the
eligible words in descending order of their atten-
tion scores, and for each instance we find the set of
words with the highest token overlap F-score with
the rationale. Here, we consider the words in the
top 1% of attention scores, and also those ranging
from 5% to 50% of the words in step sizes of
5%. We find that ProoFVer achieves a token level
F-score of 93.28, compared to 87.61 and 86.42,
the best F-Scores for CorefBERT and KGAT.
Figure 6 shows the rationales for 3 instances ex-
tracted from ProoFVer, one for each label. All
the three proofs result in correct decisions. While
for the first two claims there is a perfect over-
lap with the human rationale, the third claim in
Figure 6 has some extraneous information in the
predicted proof.

6.3.2 Human Evaluation
We use forward prediction (Doshi-Velez and Kim,
2017) here, where humans are asked to predict

≡ Equivalent Spans
Evidence span contradicts the claim span

	 Claim span follows from evidence span
	 (Insert) New information from evidence
� Incomplete Evidence
� Evidence span refutes claim span
� Claim span negated (Deletion)

Unrelated claim span and evidence span
No related evidence found (Deletion)

Table 6: NatOPs and the corresponding para-
phrases.

the system output based on the explanations. For
assessing ProoFVer, we provide the claim, the
proof as the explanation, and those evidence sen-
tences from which the evidence spans in the proof
were extracted. Since we are interested in eval-
uating the applicability of our proofs as natural
language explanations, we ensure that none of our
subjects are aware of the deterministic nature of
determining the label from natural logic proofs.
Moreover, we replaced the NatOps in the proof
with plain English phrases for better comprehen-
sion by the subjects, as shown in Table 6. As
the baseline setup for comparison, we provide the
claim with all five retrieved evidence sentences.

We form a set of 24 different claims, 12 each
from ProoFVer and baseline, and 3 individual sub-
jects independently annotate the same set. Finally,
we altogether obtain annotations for 5 sets, result-
ing in 60 claims, 120 explanations, and a total
of 360 annotations from 15 subjects.2 For all 60

2Although 19 subjects volunteered, one of them annotated
a set that did not receive any other annotations. In another set,
two of them had prior knowledge in natural logic, leading to
disqualification of these 3 annotations from the set.
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Figure 7: Cases of incorrect proof generation from ProoFVer. The claim and evidence spans are enclosed within
‘{ }’ and ‘[ ]’, respectively, with numbered superscripts showing the correspondence between the spans.

claims, ProoFVer, CorefBERT, and KGAT pre-
dicted the same labels, though not necessarily the
correct ones (the subjects were not aware of this).
All the subjects were pursuing a PhD or postdocs
in fields related to computer science and com-
putational linguistics, or industry researchers/data
scientists.

With ProoFVer’s proofs, subjects are able to
predict the model decisions correctly in 81.67%
of the cases as against 69.44% of the cases with
only the evidence. In both setups, subjects were of-
ten confused on instances with a NOT ENOUGH INFO

label, and the forward predictions were compara-
ble, with 66.67% (ProoFVer) and 65% (baseline).
In many such cases, subjects subconsciously filled
in their own world knowledge that is not found in
the evidence to arrive at a SUPPORT or REFUTE

decision. Further, for instances with both REFUTE

and SUPPORT labels, subjects correctly predicted
ProoFVer’s decisions 86.67% and 91.67% times,
respectively, against only 70% and 73.33% for
the baseline. The inter-annotator agreement for
ProoFVer’s explanations is 0.7074 in Fleiss κ
(Fleiss, 1971), and 0.6612 for the baseline.

7 Limitations

Figure 7 shows three instances of incorrect proofs
from ProoFVer, which highlight some of the well
known limitations in natural logic (Karttunen,
2015; MacCartney, 2009). In Figure 7.i, the claim
uses two negation words, ‘‘neither’’ and ‘‘nor’’,
both of which appear in different spans and lead
to prediction of two negation NatOps. However,
this NatOp sequence nullifies the effect of the
negation NatOp and predicts SUPPORT instead of
REFUTE. Similarly, in Figure 7.ii the adverb ‘‘mis-
takenly’’ negates semantics of the verb. However,
its effect is not captured in the second mutation

and ProoFVer predicts the forward entailment
NatOP, leading to the SUPPORT label. Moreover,
the NatOP sequence remains the same even if we
remove the term ‘‘mistakenly’’ from the claim,
demonstrating that the effect of the adverb is
not captured by our model. Similar challenges
involving adverbs and non-subsective adjectives
(Pavlick and Callison-Burch, 2016) when per-
forming inference in natural logic have been re-
ported in prior work (Angeli and Manning, 2014).

In Figure 7.iii, the claim states a time period
by mentioning its start and end years, which
appear in two different claim spans. However,
ProoFVer does not capture the sense of the range
implied by the spans containing ‘‘from 1934’’ and
‘‘to 1940’’. Instead, two similar 4-digit number
patterns are extracted from the evidence and are
directly compared to the claim spans, resulting in
two alternation NatOps, thereby predicting NOT

ENOUGH INFO. Handling such range expressions
is beyond the expressive power of the natural
logic, and often other logical forms are needed
to perform such computations (Liang et al., 2013).
Datasets like FEVEROUS (Aly et al., 2021),
which consider semi-structured information pre-
sent in tables, often require such explicit com-
putations for which approaches purely based on
natural logic are not sufficient.

Finally, ProoFVer, due to its auto-regressive
formulation, generates the corresponding evi-
dence spans and NatOps for the claim spans se-
quentially from left to right. However, the steps
in the natural logic based inference are not sub-
ject to any such specific ordering, and hence the
order in which the NatOPs are generated is non
deterministic by default (Angeli and Manning,
2014). ProoFVer benefits from the implicit knowl-
edge encoded in the pretrained language models,
specifically BART, which follows auto-regressive
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decoding. Nevertheless, in the future we plan to
experiment with alternative decoding approaches,
including some of the recent developments in
non-autoregressive conditional language models
(Xu and Carpuat, 2021) and transformer-based
proof generators (Saha et al., 2021).

8 Conclusion

We presented ProoFVer, a natural logic-based
proof system for fact verification. Currently, we
report the best results in terms of label accuracy,
and the second best results in FEVER Score in
the FEVER leaderboard. Moreover, ProoFVer is
more robust in handling superfluous information
from the retriever, and handling counterfactual
instances. Finally, ProoFVer ’s proofs are faithful
explanations by construction, and improve the
understanding of the decision making process of
the models by humans.
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