
FeTaQA: Free-form Table Question Answering

Linyong Nan1 Chiachun Hsieh3 Ziming Mao1 Xi Victoria Lin2∗ Neha Verma1
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Abstract

Existing table question answering datasets
contain abundant factual questions that pri-
marily evaluate a QA system’s comprehension
of query and tabular data. However, restricted
by their short-form answers, these datasets
fail to include question–answer interactions
that represent more advanced and naturally
occurring information needs: questions that
ask for reasoning and integration of infor-
mation pieces retrieved from a structured
knowledge source. To complement the exist-
ing datasets and to reveal the challenging na-
ture of the table-based question answering
task, we introduce FeTaQA, a new dataset
with 10K Wikipedia-based {table, question,
free-form answer, supporting table cells} pairs.
FeTaQA is collected from noteworthy de-
scriptions of Wikipedia tables that contain
information people tend to seek; generation
of these descriptions requires advanced pro-
cessing that humans perform on a daily basis:
Understand the question and table, retrieve,
integrate, infer, and conduct text planning
and surface realization to generate an answer.
We provide two benchmark methods for the
proposed task: a pipeline method based on
semantic parsing-based QA systems and an
end-to-end method based on large pretrained
text generation models, and show that FeTaQA
poses a challenge for both methods.

1 Introduction

Question Answering (QA) is the task of producing
answers to natural language questions based on
knowledge resources (Burke et al., 1997; Yao and
Van Durme, 2014; Chen et al., 2017). One of the
primary goals of QA is to allow users to directly
and efficiently interact with large-scale and het-
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erogeneous knowledge sources. In the real world,
knowledge sources take a variety of forms, includ-
ing unstructured texts (documents, passages, or
conversations), structured knowledge bases, and
semi-structured tables, each requiring dedicated
modeling approaches.

For QA over text, a sequence modeling ap-
proach is usually adopted to encode the query
and the context, and answers are either categori-
cal (Lai et al., 2017), extractive (Rajpurkar et al.,
2016; Yang et al., 2018), or abstractive/generative
(Kociský et al., 2017; Nguyen et al., 2016; Fan
et al., 2019; Kwiatkowski et al., 2019). For QA
over table, a common approach is to apply seman-
tic parsing on the query and the table schema to
generate a logical form (e.g., a SQL-like database
query) that can be executed to retrieve the answer
from the relevant portion of the table (Pasupat
and Liang, 2015; Iyyer et al., 2017; Zhong et al.,
2017; Yu et al., 2018). The answers are extracted
facts/entities in the table, therefore usually in
short-form.

Though existing datasets have enabled sig-
nificant progress for table QA, their limitations
prevent them from reflecting the challenging na-
ture of the task. The exchange of information be-
tween humans through interactions with questions
and answers is different from the interactions
presented in most of the existing QA datasets, in
which questions are specific (sometimes contrived
for testing multi-hop reasoning) and provide most
of the information, while answers are in short-form
and fill in the missing information piece. Never-
theless, in many cases, people tend to seek more
structured information content, such as ‘‘how’’,
‘‘why’’, and some of the ‘‘what’’ questions that
ask for general concepts. Therefore a QA system
should also possess such structuring capability,
evaluated by text generation tasks.
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Figure 1: Examples of FeTaQA instances. Only part of the original table is shown for better visualization.

Dataset Knowledge Source Answer Format Avg # Words
Wikipedia articles Stories, books, movie scripts Online forum texts Wikipedia tables in Answer

SQuAD (Rajpurkar et al., 2016) ✓ Text-span 3.2
HotpotQA (Yang et al., 2018) ✓ Short-form entity 2.2
NarrativeQA (Kociský et al., 2017) ✓ Free-form text 4.7
ELI5 (Fan et al., 2019) ✓ Free-form text 130.6
WikiTableQuestions (Pasupat and Liang, 2015) ✓ Short-form entity 1.7
SequenceQA (Saha et al., 2018) ✓ Short-form entity 1.2
HybridQA (Chen et al., 2020d) ✓ ✓ Short-form entity 2.1

FeTaQA ✓ Free-form text 18.9

Table 1: Comparison of FeTaQA with other QA datasets.

To complement the existing datasets with the
absent QA interactions, we present FeTaQA, a
Free-form Table Question Answering dataset that
includes long, informative, and free-form answers.
FeTaQA reveals the challenging nature of the
table QA task: 1) retrieving multiple entities from
tables based on the query; 2) aggregating and rea-
soning over relations of these entities; and 3)
structuring surface information and inferences into
a coherent answer that is faithful to the table. We
collect question–answer pairs from noteworthy
descriptions of Wikipedia tables that are high
quality sentences rich in structured information
contents. We annotate questions that elicit such
descriptions, and we make efforts to ensure that the
QA interaction is compatible, and question anno-
tations are not contrived. In addition, the FeTaQA
tables cover a diverse set of topics and con-
tain un-normalized text, including numbers, dates,
and phrases. FeTaQA examples are presented in
Figure 1 and differences between FeTaQA and
other QA datasets are described in Table 1.

We formulate generative table question answer-
ing as a Sequence-to-Sequence learning problem.
We propose two benchmark methods and provide
experimental results for them. The first one is an

end-to-end model that integrates query and table
comprehension, reasoning, and language genera-
tion by adapting T5 (Raffel et al., 2020). The other
is a pipeline model that achieves content selec-
tion and surface realization in separate modules
involving TAPAS (Herzig et al., 2020), which is
a recently proposed pre-trained model that jointly
processes text and tabular data for the usage of
semantic parsing.

Through human studies, we evaluate answers
generated by our proposed models as well as the
reference answer based on fluency, correctness,
adequacy (informativeness), and faithfulness. The
results indicate the challenging nature of FeTaQA
and that there is much room for improvement
in QA systems. We make the dataset and code
available online.1

2 Dataset

Here we introduce FeTaQA and describe the pro-
cess and criteria for collecting the tables, ques-
tions, and answers. Some statistics of FeTaQA
are shown in § 2.4.

1https://github.com/Yale-LILY/FeTaQA.
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2.1 Desiderata

We frame generative table question answering as
a problem of generating an answer a to a ques-
tion q based on a table T and its metadata m.
Our goal was to construct a table QA dataset
{(qi, ai, Ti,mi)|i = 1 . . . n} with a large number
of instances and diverse topics. We want to col-
lect questions that seek not just a specific fact,
but more structured information: Desirably, they
should require retrieving more and different facts
and reasoning with diverse aggregations. Answers
should be well structured information contents,
faithful to the tables, and presented in natural
utterances.

2.2 Data Collection Method

A natural way to collect a table-based QA pair
is to ask annotators to first generate a question
given a table, then provide the answer to it. How-
ever, we found that it usually takes more effort to
ask about how multiple facts are related or share
something in common than to ask about a specific
fact in the table; annotators spend much more
time finding out the relations between cell con-
tents for question generation, and they also need
to spend time writing an answer. We found that
ToTTo (Parikh et al., 2020), a recently proposed
large-scale Table-to-Text dataset, is a desirable
resource to start with. It contains textual descrip-
tions that are naturally written and fully grounded
in Wikipedia tables. Additionally, ToTTo comes
with annotations of table cells that support the
sentences: A sentence is supported by the cell
contents if it is directly stated or can be logically
inferred by them. ToTTo applied several heuristics
to sample the tables and the candidate sentences
from Wikipedia pages, and their annotators are
asked to revise sentences and highlight the corre-
sponding table regions so that the sentences still
have the varied language and structure found in
natural sentences.

We want to first sample a subset of these
sentences that already provide aggregation and
reasoning on multiple facts in the table, which
is the target content that annotators spend most
of the time trying to come up with, so that we
could largely reduce the time spent on annotation.
More importantly, such sentences contain note-
worthy information that users are more interested
in and likely to ask given a table from Wikipedia.
We sample ToTTo instances with the following

considerations. First we found that ToTTo’s anno-
tation of highlighted cells is a reasonable indicator
of how much information is required from the
table to give the answer, which we aim to max-
imize. With this objective, we found by probing
ToTTo that tables with extreme sizes (too large
or too small number of rows, columns or both)
are more similar to attribute–value pairs instead
of tables with complicated structures, and they
tend to have a small number of highlighted cells,
which make them not ideal for our dataset. As
shown by Figure 9 and 10 in the Appendix, we
removed all tables whose sizes are above the 75th
percentile of the number of rows or columns of
all ToTTo tables, and also removed tables with
a single row or column. We further select tables
whose highlighted cells span more than a single
row or column to ensure sentences contain several
table entities. We provide a flowchart of this sam-
pling process in Figure 7 in the Appendix. This
process gave us sufficient {table, metadata, high-
lighted region, sentence} instances from ToTTo,
on which we conducted the annotation procedure
as described below.

We adopted these table-grounded sentences as
the answers in our new QA dataset and exploited
ToTTo’s annotations of table cells (the high-
lighted table region) as the weak supervision labels
(denotations) for training and evaluating the inter-
mediate semantic parser. We processed each table
(originally in HTML format) as a 2-dimensional
array, where the first row corresponds to the table
header. We also processed merged cells by copy-
ing the cell content and cell highlighted region to
all the individual cells that compose the original
merged cell.

2.2.1 Question Annotation
Question annotations were collected with the help
of human judges in two phases: an internal phase
conducted by on-site expert annotators, and an
external phase conducted by crowd workers on
Amazon Mechanical Turk. To streamline the pro-
cess, we built a custom Web interface to visualize
table HTML and metadata, augmented with Web
widgets that allow table region highlighting, table
content and sentence editing. A screenshot of the
annotation interface is shown in Figure 8 in the
Appendix.

Provided the full context of ToTTo instances,
the annotators were asked to write a question
whose answer is the provided ToTTo sentence.
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Highlighted Cell ToTTo PercentageRegion Content Sentence

✗ ✗ ✗ 62.45%
✓ ✗ ✗ 2.96%
✗ ✓ ✗ 0.66%
✗ ✗ ✓ 10.13%
✓ ✗ ✓ 22.62%
✓ ✓ ✗ 0.07%
✗ ✓ ✓ 0.49%
✓ ✓ ✓ 0.62%

Total 100%

Table 2: Breakdown of modifications made
by the annotators for generating more natural
questions.

We found that such questions arise naturally when
table cell contents are more semantically related.
In addition, annotators were free to modify the sen-
tence, the table cell content, and the highlighted
region so that these contents could lead to a more
natural question formulation and avoid any con-
trived effort. Table 2 provides measurements on
how often annotators modified ToTTo resources
for producing more compatible question-answer
interactions.

Internal Annotations In the first phase of an-
notation, we enrolled 15 internal annotators who
were provided with preliminary guidelines. In ad-
dition to the annotation task, they were asked to
provide feedback regarding the task instructions
and the user experience of the Web site, based on
which we iteratively modified the guideline and
the Web site design.

External Annotations For external annota-
tions, we hired MTurk workers who have
completed at least 500 HITs, have 97% approval
rate, and are from English-speaking regions. To
ensure that the MTurk annotators understand our
task, we provided an instruction video for the
interactive annotation tool usage, FAQs that clar-
ify the annotations we desire, along with good
vs. bad annotation examples. We also created a
Slack channel for crowdsourced workers to ask
questions and clarify doubts.

Annotation Evaluation To ensure that FeTaQA
is of high quality, we evaluate crowdsourced anno-
tations as follows. We built another Web interface
for evaluation and asked internal evaluators to
approve (with modification if necessary) based on

Decision Type Percentage

Reject 12.00%
Approve - no modification 73.30%
Approve - only modify question 7.66%
Approve - only modify HR 1.71%
Approve - modify question and HR 5.19%
Approve - other modification 0.14%

Total 100%

Table 3: MTurk annotation evaluation result
breakdown. HR stands for highlighted region.

grammatical correctness, relevancy to the high-
lighted table cells, and its compatibility with the
answer. Evaluators modified question annotations
if they are asking for only one of many facts in
the answer sentence, or if a short-form answer is
clearly adequate, as we discovered that most of
the modifications that evaluators made are in this
category. We reject when we couldn’t modify the
annotation to meet the above standards within a
reasonable time frame. The breakdown of the eval-
uation result is shown in Table 3. We approved
most of the annotations and rejected only 12%,
for which we found the original ToTTo instances
are hard to generate questions for. We found that
these instances usually contain highlighted cells
that do not have any clear relation, therefore mak-
ing it difficult to come up with questions. Among
the annotations we approved, only 16.7% of the
original annotations were modified, so that the
crowd-sourced annotations are not much affected
by the internal evaluators’ bias if there exist any.

The annotator contributions to the final dataset
are distributed as follows: We have 3,039 (30%)
instances from internal annotators and 7,291
(70%) from MTurk workers. In total, our dataset
contains 10,330 instances.

2.3 Dataset Split

Randomly splitting the dataset may make train,
development, and test splits contain tables with
similar contents (Finegan-Dollak et al., 2018;
Lewis et al., 2021). Therefore, to increase the
generalization challenge, we split FeTaQA to min-
imize the content/topic overlap (not necessarily
question/answer type overlap) between train set
and dev-test set, similar to ToTTo (Parikh et al.,
2020). We calculate the Jaccard similarity of to-
kens shown in the question and the table column
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Property Value

Unique Tables 10,330
Question Length (Median/Avg) 12 / 13.2
Answer Length (Median/Avg) 18 / 18.9
Rows per Table (Median/Avg) 12 / 13.8
Columns per Table (Median/Avg) 5 / 5.9
No. of Highlighted Cell (Median/Avg) 6 / 8.0
Percentage of Cells Highlighted (Median/Avg) 10.7% / 16.2%
Page Title Length (Median/Avg) 2 / 3.3
Section Title Length (Median/Avg) 2 / 1.9

Training Set Size 7,326
Development Set Size 1,001
Test Set Size 2,003

Table 4: FeTaQA core statistics.

Annotation Quality Score >= 4 % Agreement Randolph’s Kappa
(%) / 95% CI

Question Complexity 52.6 0.65 0.48 / [0.41, 0.55]
Denotation Correctness 89.0 0.88 0.82 / [0.76, 0.88]
Denotation Adequacy 91.6 0.89 0.83 / [0.77, 0.89]
Answer Fluency 95.0 0.92 0.89 / [0.84, 0.94]
Answer Correctness 92.4 0.91 0.86 / [0.80, 0.92]
Answer Adequacy 90.6 0.88 0.82 / [0.76, 0.88]
Answer Faithfulness 95.6 0.93 0.89 / [0.84, 0.94]

Table 5: Human evaluation over 100 samples of
FeTaQA. Five internal evaluators are asked to
rate the samples on a scale of 1 to 5. We report
% of samples that have score ≥ 4 to show high
quality of FeTaQA, and report percent agreement
and Randolph’s Kappa (Randolph, 2010) (with
95% CI) to show that our human evaluation has
high inter-annotator agreement.

headers of two instances to measure their similar-
ity. We first sampled 800 instances randomly as
a seed set, then gradually add instances to it if an
instance is similar to any instance in the seed set.
When this seed set grows to take up 70% of all the
instances, the remaining 30% instances are less
similar to any instance in the seed set. The seed
set then becomes the training set and the remain-
ing instances are divided to form the development
and test sets. This results in 7,326/1,001/2,003
instances in the train/dev/test splits, respectively.

2.4 Data Analysis and Statistics

Basic statistics of FeTaQA are shown in Table 4.
We also conducted a human evaluation over 100
FeTaQA instances in 7 dimensions. Evaluation
scores and inter-evaluator agreements are reported
in Table 5. A quantitative and qualitative analysis
of FeTaQA shows it contains lots of complex
questions judged by human evaluators. Note that
an ideal measurement of the question complexity
is to quantify the structural complexity of the
information contained in the answer, but since

Figure 2: FeTaQA topics distribution.

this is a time-consuming process, we simply asked
the evaluators to score based on their subjective
judgement, which could have caused the relatively
low agreement. The median number of highlighted
cells (denotations) is 6, which is twice as much as
the corresponding number for ToTTo, indicating
that FeTaQA requires retrieval of multiple entities
in the table. These denotations are correct and
adequate as indicated by the corresponding high
evaluation scores. The free-form answers have a
median of 18 tokens in length, and are grounded
to the table and the denotations, also suggested by
the high evaluation scores.

Topics Similar to ToTTo, we use Wikimedia
Foundation’s topic categorization model (Asthana
and Halfaker, 2018) to investigate the topic dis-
tribution of FeTaQA, as shown in Figure 2. We
found that most of the instances are related to biog-
raphy, sports, and geographical regions. There are
also abundant instances related to media, politics,
and government.

Question Types FeTaQA has diverse and com-
plex questions, as illustrated in Figure 3. We
found that in FeTaQA, a large percentage of what
questions ask about entities in plural, or about
abstract entities such as outcome, result, margin,
percentage. In addition, there is a higher percent-
age of how questions that are not how many/much,
compared to existing table QA datasets.

3 Models

To quantify the challenge posed by FeTaQA for
state-of-the-art models, we used two modeling
approaches that have shown to be effective for the
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Figure 3: FeTaQA questions by most frequent starting words.

Figure 4: Pipeline model and End-to-End model diagrams.

existing table question answering datasets, with
some modifications made to adjust to our task.
Model configurations are shown in Figure 4.

3.1 Pipeline Model

Question answering over tables is usually seen as a
semantic parsing task. A table semantic parser ob-
tains representations of the question and the table
schema, and uses these to generate database-like
queries. These generated queries then get executed
to give the final denotation(s), which are suffi-
cient for answering the questions in the previous
datasets. There are two possible settings for train-
ing or fine-tuning a table semantic parser, as shown
by the two diagrams on the left in Figure 4. The
first one is the supervised learning setting, which
requires annotations of database-like queries. But
due to their high annotation costs, people usually
train semantic parsers with the latter: a weakly su-
pervised setting, which requires label denotations,
and semantic parsers learn to predict which table
cells constitute the final answer (Note that we use
ToTTo’s highlighted table cells as these labels).

However, in our task, targets are generated texts
instead of retrieved denotations, suggesting that
we also need a generator to integrate the retrieved
information into a cogent sentence. Therefore,

we propose a pipeline model with two separately
trained modules, described below.

Weakly Supervised Table Semantic Parsing
The first module adopts a weakly supervised
table semantic parser. Two recently proposed
pre-trained models could help achieve this:
TAPAS (Herzig et al., 2020) and TaBERT (Yin
et al., 2020a). They are both pre-trained models
for joint understanding of text and tabular data,
and can be integrated into semantic parsers for
solving table-based QA tasks. However, we did
not include TaBERT in our experiment because
it provides table column representations based
on no more than 3 rows of the table, which
are selected based on their n-gram overlap with
the question. These representations are designed
to help weakly supervised semantic parsers gen-
erate better database-like queries, therefore this
method also depends on a reasonably designed
domain-specific query language, as shown by
TaBERT’s use case of MAPO (Liang et al., 2018).
In contrast, TAPAS provides representations for
all table cells that help weakly supervised se-
mantic parsers directly predict denotations in an
end-to-end fashion, so it’s easier to perform anal-
ysis for our pipeline models without considering
any propagating error.
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Figure 5: Weakly supervised fine-tuning of table se-
mantic parser on FeTaQA. We choose a checkpoint
of TAPAS-base fine-tuned on WikiTableQuestions to
start with. After fine-tuning, the table semantic parser
predicts denotations, which are then converted to triples
and sent to the Data-to-Text module.

We fine-tune TAPAS with FeTaQA’s label de-
notations (highlighted table regions). We believe
fine-tuning is crucial for our task because TAPAS
is pre-trained on questions that require retrieval
of limited denotations (single entity or homoge-
neous entities that can be aggregated with COUNT,
SUM, or AVG operation), while FeTaQA questions
require retrieval of multiple entities and complex
aggregations. Details of experiment results are
provided in § 4.3. Note that besides denotations,
TAPAS was pre-trained to explicitly predict an ag-
gregation operation (choose from COUNT, SUM,
AVG, NONE) applied to the predicted denotations
to obtain the final answer. However, we argue
that the aggregations required to solve FeTaQA
instances are diverse and they are not covered by
a small list of atomic operations pre-defined by
humans. Instead, we use NONE as the aggregation
operation label for fine-tuning TAPAS, and let the
second module (described next) produce latent
aggregations inferred from the question and the
denotation predictions for generating the answer
sentence.

Data-to-Text As shown in Figure 5, we fine-
tune T5 (Raffel et al., 2020) on DART (Nan et al.,
2021) to obtain a Data-to-Text model as the sec-
ond module of the pipeline to perform inference
of aggregation and surface realization of table
cells (denotations in our case). We first convert
the denotation prediction into the triple-set format
with the following scheme: for each table cell in

Figure 6: Table linearization in end-to-end model.

the highlighted region, we generate the following
triple:

[
[TABLECONTEXT], column header,

cell value
]
, where column header is the

cell’s corresponding column name. Similar to
DART, we use [TABLECONTEXT] as a spe-
cial token for converting a table cell into a
triple. We then incorporate the metadata into
triples by replacing column header with the
field name (TABLE TITLE, PAGE TITLE) and
cell value with the metadata content (table ti-
tle text, page title text). We end up with a triple-set
containing all highlighted table cells and the meta-
data (table title and title of the Wikipedia page
that includes the table). We further fine-tune the
Data-to-Text model on ToTTo instances so that
it adapts to our formation of triple-set inputs.
To avoid exposure to FeTaQA test instances, we
fine-tune with a sample of 8K ToTTo instances
that are not used for creating FeTaQA.

3.2 End-to-End Model
In this approach, we model the task as a
sequence-to-sequence learning problem by lin-
earizing table T appended to question q as the
source sequence, and treating the free-form an-
swer a as the target sequence. We propose a
simple linearization scheme as a baseline: table
rows are concatenated with [SEP] tokens in be-
tween, and cells in each row are separated by
spaces. We prepend q to table linearization T̃ ,
and use [CLS] tokens as prefixes for separa-
tion. We fine-tune models from the T5-family on
the FeTaQA train set. The linearization scheme
is visualized in Figure 6. We considered an al-
ternative option of integrating TaBERT into an
end-to-end model but found it infeasible, since it
provides contextual features for the question and
table columns (instead of table cells, as in our
table linearization). The decoder that generates
the free-form answer does not have access to any
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sacreBLEU2 ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore BLEURT

Pipeline - zeroshot 9.16 0.38 0.20 0.33 0.22 0.88 −0.79
Pipeline - fine-tuned 11.00 0.40 0.22 0.35 0.24 0.91 −0.35
Pipeline - gold denotation 31.63 0.67 0.43 0.53 0.50 0.91 −0.23

End-to-End - T5-small 21.60 0.55 0.33 0.47 0.40 0.94 0.08
End-to-End - T5-base 28.14 0.61 0.39 0.51 0.47 0.96 0.31
End-to-End - T5-large 30.54 0.63 0.41 0.53 0.49 0.96 0.57

Table 6: Experiment results on the test split of FeTaQA.

table cell content. Therefore we did not include
TaBERT as a baseline end-to-end model.

4 Experiments

In this section, we explain the experiment settings
and report the automatic and human evaluations
on model outputs.

4.1 Experiment Setup

We first experiment with the pipeline model in a
zero-shot setting, that is, without any fine-tuning
on FeTaQA. We use a checkpoint of TAPAS-
base that is fine-tuned on WikiTableQuestions
(Pasupat and Liang, 2015) to perform table se-
mantic parsing implicitly in order to produce a
set of denotations, which is then converted to a
triple-set as described in § 3.1. We then employ
a T5-large model (Raffel et al., 2020) that goes
through two fine-tuning stages: in the first stage
it is fine-tuned on the downstream Data-to-Text
task with DART (Nan et al., 2021); in the second
stage it is further fine-tuned on ToTTo instances
to adapt to the triple-set formulation we pro-
posed. We denote this setting as Pipeline -
zeroshot in Table 6. Next we experiment with
the pipeline model by fine-tuning the table se-
mantic parser on FeTaQA. We further fine-tune
the TAPAS-base checkpoint (WTQ fine-tuned)
on FeTaQA train set and select models based on
their performance on the development set. We use
the same Data-to-Text model as described in the
zero-shot setting.

For the End-to-End model, we adapt Hugging
Face’s implementation (Wolf et al., 2020) of T5
(Raffel et al., 2020) for our task. We use a standard
T5-tokenizer with additional [CLS] and [SEP]
tokens and the model vocabulary is resized ac-
cordingly. Since we expect the input sequence to
be significantly longer than the target, we fine-

2SacreBLEU signature:
BLEU+case.lc+numrefs.1+smooth.exp+tok.13a+version.1.3.7.

tuned the models using T5’s ‘‘summarize:’’ pre-
fix. The motivation behind this is to avoid simple
extraction from the table since abstractive sum-
marization is supposed to rephrase important de-
tails in the source. T5-small is trained on 4 Tesla
K80 GPUs with per-device batch size of 16 for 30
epochs (about 6,900 steps) which took less than
an hour. T5-base is trained on 4 Tesla K80 with
per-device batch size of 4 (due to GPU memory
constraints) for 80 epochs (about 36,640 steps)
and it took around 3 hours. As for T5-large, we
distributed the layers across 8 Tesla K80 to train
with a batch size of 4 for 80 epochs (about 80k
steps) and it took 5 hours to train.

4.2 Automatic Evaluation Metrics

We use a variety of automatic metrics and human
evaluation (§ 4.4) to evaluate the quality of the
generated answers. We report sacreBLEU (Post,
2018), ROUGE-{1, 2, L} (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005) that evaluate
the n-gram match between generated and refer-
ence answers. Considering the limitations of these
measures in evaluating the semantic meanings
of sentences, we also report BERTScore (Zhang
et al., 2020) and BLEURT (Sellam et al., 2020)
that incorporate semantics using contextual em-
beddings. To evaluate the retrieval competency
of table semantic parsers, we applied various set
similarity metrics to the predicted and reference
denotation lists. Specifically, we report Jaccard
similarity, Overlap, Cosine similarity, and Dice
similarity.

4.3 Results and Discussions

Our experimental results on the FeTaQA test set
are summarized in Table 6. The T5-large model
using an End-to-End modeling approach achieves
the highest performance scores in all evaluation
metrics. Also, we observe a large performance gap
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Jaccard Overlap Coff. Cosine Dice

Zeroshot 0.065 0.300 0.140 0.109
Fine-tuned 0.101 0.311 0.184 0.161

Table 7: Evaluation of denotation prediction on
the test split of FeTaQA. We report performance
of TAPAS in zero-shot and fine-tuned with weak
supervision.

between pipeline models and End-to-End mod-
els, even though the latter only adopt a simple
linearization strategy for encoding tables.

We also see that after fine-tuning on Fe-
TaQA with denotations as weak supervisions,
the pipeline model improves by almost 2 BLEU
points. To further examine the source of this
improvement, we report the evaluation of table se-
mantic parser performance in Table 7, from which
we also observe an improvement in retrieval capa-
bility. However, we note that compared with the
gold denotations that have a median of six table
cells being highlighted (shown in 4), our table se-
mantic parser is only able to predict two table
cells on average before fine-tuning on FeTaQA,
and three table cells on average after. When gold
annotations are used, the pipeline model is able to
perform better than the End-to-End model. This
indicates that the low performance of denotation
predictions and the loss of relational information
between denotations lead to the inadequate per-
formance of pipeline models, and it also indicates
that the table semantic parser has a large space
for improvement. A final observation is that the
End-to-End model is comparable to the model that
has access to the gold denotations, suggesting that
the End-to-End model is effective at extracting
denotations latently.

4.4 Human Evaluation

To further evaluate the quality of the answers
generated by different models comparing to the
references, we conduct our human evaluation
based on four criteria: (1) fluency if an answer is
natural and grammatical; (2) correctness if an an-
swer is correct; (3) adequacy if an answer contains
all the information that is asked; (4) faithfulness
if an answer is faithful and grounded to the con-
tents of the table and the highlighted region. Each
evaluator is asked to examine an answer given the
question and the full context (table, highlighted
region, and metadata) and give a score on a scale

Source Fluent Correct Adequate Faithful
(%) (%) (%) (%)

Pipeline 85.2 25.4 8.4 23.6
End-to-End 94.6 54.8 48.4 50.4
Reference 95.0 92.4 90.6 95.6

Table 8: Human evaluation over 100 samples
of model outputs and references. We report the
percentage of outputs that have scores of 4 or 5.

of 1 to 5 for each of the criteria. We ask five inter-
nal annotators to evaluate 100 samples of FeTaQA
instances. Each sample is paired with 3 answers:
the reference, the pipeline model result, and the
End-to-End model result.

Table 8 attests to the high quality of our an-
notations and the challenging nature of FeTaQA.
Similar to the evaluation result of the automatic
metrics, we observe a large gap between the
pipeline model and the End-to-End model, with
the latter one significantly outperforming its coun-
terpart in terms of answer correctness, adequacy,
and faithfulness. Comparing the best performing
End-to-End model outputs to human references,
we see that there is room for improvement in the
future.

5 Related Work

Generative QA Generative question answering
datasets such as NarrativeQA (Kociský et al.,
2017), CoQA (Reddy et al., 2019), TriviaQA
(Joshi et al., 2017), and MS MARCO (Nguyen
et al., 2016) all have free-form answers that are
generated based on the contexts of Wikipedia ar-
ticles, books, movie scripts, dialogues, or Web
documents. These responses are mostly crowd-
sourced and are reported to mostly contain copies
of short text spans from the source. By contrast,
ELI5 (Fan et al., 2019) is a long form question
answering dataset containing a diverse set of com-
plex questions, each paired with a paragraph-long
answer and 100 relevant Web source documents
(Petroni et al., 2021; Krishna et al., 2021). FeTaQA
is the first dataset for generative question answer-
ing over tables. Unlike the existing generative QA
datasets that assess multi-documents retrieval and
abstraction capability, FeTaQA poses new chal-
lenges in the reasoning and integration capability
of a system given a structured knowledge source.

QA over Tables and Semantic Parsing Sev-
eral datasets have been proposed to apply semantic
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parsing on tables, including WikiTableQuestions
(Pasupat and Liang, 2015), SequentialQA (Iyyer
et al., 2017), WikiSQL (Zhong et al., 2017), and
Spider (Yu et al., 2018). With the development
of pre-trained language models, recent work (Yin
et al., 2020b, Herzig et al., 2020; Eisenschlos et al.,
2020; Iida et al., 2021) jointly learns representa-
tions for natural language sentences and structured
tables, and Yu et al. (2021a,b) use pre-training
approach for table semantic parsing. HybridQA
(Chen et al., 2020d) and OTT-QA (Chen et al.,
2021) have contexts of both structured tables and
unstructured text. MultiModalQA (Talmor et al.,
2021) contains complex questions over text, ta-
bles and images. These datasets define a table QA
task that is extractive in nature by restricting their
answers to be short-form, while FeTaQA frames
table QA as a generation task.

Data-to-Text Generation Recent neural end-
to-end models tested on the WebNLG 2017
dataset (Gardent et al., 2017) have focused on
incorporating pre-training and fine-tuning for
specific generation tasks (Chen et al., 2020b; Kale
and Rastogi, 2020) to improve performance and
strengthen generalization ability. However, recent
models featuring separate content-planning and
surface realization stages have exhibited improve-
ments (Moryossef et al., 2019; Iso et al., 2020)
over comparable baselines. TabFact (Chen et al.,
2020c) is composed of Wikipedia tables coupled
with statements labeled as either ‘‘ENTAILED’’
or ‘‘REFUTED’’ by the table. LogicNLG (Chen
et al., 2020a) features statements logically en-
tailed from tables. ToTTo (Parikh et al., 2020)
is a large-scale open-domain dataset consisting
of Wikipedia tables with a set of highlighted
table cells and a sentence description of those
highlighted cells. DART (Nan et al., 2021) is
an open-domain Data-to-Text dataset that con-
tains table-ontology-preserving data samples with
a diverse predicate set occurring in Wikipedia
tables.

6 Conclusion

In this paper, we introduced the task of gener-
ative table question answering with FeTaQA, a
table QA dataset consisting of complex questions
that require free-form, elaborate answers. We also
proposed two modeling approaches: (1) a pipeline
model that incorporates a table semantic parser and
a Data-to-Text generator, and (2) an End-to-End

model that integrates query comprehension, rea-
soning and text generation. Our experimental
results indicate that the End-to-End model with
a simple table encoding strategy achieves much
higher scores than the pipeline model that requires
table semantic parsing. Furthermore, we show that
FeTaQA reveals the challenging nature of the table
question answering task and calls for innovative
model designs in the future.

Acknowledgments

The authors would like to thank the anonymous
reviewers and the Action Editor for their valuable
discussions and feedback.

References

Sumit Asthana and Aaron Halfaker. 2018. With
few eyes, all hoaxes are deep. In Proceedings
of the ACM on Human Computer Inter-
action 2(CSCW). https://doi.org/10
.1145/3274290

Satanjeev Banerjee and Alon Lavie. 2005. ME-
TEOR: An automatic metric for MT evaluation
with improved correlation with human judg-
ments. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summariza-
tion, pages 65–72, Ann Arbor, Michigan.
Association for Computational Linguistics.

Robin D. Burke, Kristian J. Hammond, Vladimir
Kulyukin, Steven L. Lytinen, Noriko Tomuro,
and Scott Schoenberg. 1997. Question an-
swering from frequently asked question files:
Experiences with the faq finder system. AI
Magazine, 18(2):57–57.

Danqi Chen, Adam Fisch, Jason Weston, and
Antoine Bordes. 2017. Reading Wikipedia
to answer open-domain questions. In Pro-
ceedings of the 55th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/P17-1171

Wenhu Chen, Ming-wei Chang, Eva Schlinger,
William Wang, and William Cohen. 2021. Open
question answering over tables and text. In
Proceedings of ICLR 2021.

44

https://doi.org/10.1145/3274290
https://doi.org/10.1145/3274290
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171


Wenhu Chen, Jianshu Chen, Y. Su, Zhiyu
Chen, and William Yang Wang. 2020a. Log-
ical natural language generation from open-
domain tables. In ACL. https://doi.org
/10.18653/v1/2020.acl-main.708

Wenhu Chen, Yu Su, X. Yan, and
W. Wang. 2020b. Kgpt: Knowledge-grounded
pre-training for data-to-text generation. In
EMNLP. https://doi.org/10.18653
/v1/2020.emnlp-main.697

Wenhu Chen, Hongmin Wang, Jianshu Chen,
Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou
Zhou, and William Yang Wang. 2020c. Tab-
fact: A large-scale dataset for table-based
fact verification. In International Conference
on Learning Representations (ICLR). Addis
Ababa, Ethiopia.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan
Xiong, Hong Wang, and William Wang. 2020d.
Hybridqa: A dataset of multi-hop question
answering over tabular and textual data. Find-
ings of EMNLP 2020. https://doi.org
/10.18653/v1/2020.findings-emnlp.91

Julian Eisenschlos, Syrine Krichene, and Thomas
Müller. 2020. Understanding tables with inter-
mediate pre-training. In Findings of the Associ-
ation for Computational Linguistics: EMNLP
2020, pages 281–296, Online. Association for
Computational Linguistics. https://doi.org
/10.18653/v1/2020.findings-emnlp.27

Angela Fan, Yacine Jernite, Ethan Perez, David
Grangier, Jason Weston, and Michael Auli.
2019. ELI5: Long form question answering.
In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics,
pages 3558–3567, Florence, Italy. Association
for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, SeshSadasivam,
Rui Zhang, and Dragomir Radev. 2018. Im-
proving text-to-SQL evaluation methodology.
In ACL 2018. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/P18-1033

Claire Gardent, Anastasia Shimorina, Shashi
Narayan, and Laura Perez-Beltrachini. 2017.
The WebNLG challenge: Generating text
from RDF data. In Proceedings of the 10th
International Conference on Natural Lan-
guage Generation, pages 124–133, Santiago

de Compostela, Spain. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/W17-3518

Jonathan Herzig, Pawel Krzysztof Nowak,
Thomas Müller, Francesco Piccinno, and Julian
Eisenschlos. 2020. TaPas: Weakly supervised
table parsing via pre-training. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4320–4333,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.398

Hiroshi Iida, June Thai, Varun Manjunatha, and
Mohit Iyyer. 2021. Tabbie: Pretrained represen-
tations of tabular data. In NAACL. https://
doi.org/10.18653/v1/2021.naacl
-main.270

Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi
Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke
Miyao, Naoaki Okazaki, and Hiroya Takamura.
2020. Learning to select, track, and generate for
data-to-text. Journal of Natural Language Pro-
cessing, 27(3):599–626. https://doi.org
/10.5715/jnlp.27.599

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang.
2017. Search-based neural structured learn-
ing for sequential question answering. In
Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1821–1831,
Vancouver, Canada. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/P17-1167

Mandar Joshi, Eunsol Choi, Daniel S. Weld,
and Luke Zettlemoyer. 2017. Triviaqa: A
large scale distantly supervised challenge
dataset for reading comprehension. In Pro-
ceedings of the 55th Annual Meeting of
the Association for Computational Linguistics,
Vancouver, Canada. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/P17-1147

Mihir Kale and Abhinav Rastogi. 2020.
Text-to-text pre-training for data-to-text tasks.
In Proceedings of the 13th International Con-
ference on Natural Language Generation,
pages 97–102, Dublin, Ireland. Association for
Computational Linguistics.

Tomás Kociský, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor
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A Appendix

The Appendix contains the following contents:

• ToTTo instance sampling process. (Figure 7)

• FeTaQA annotation interface. (Figure 8)

• Distribution plots for number of rows and
columns of ToTTo tables. (Figure 9 and 10)

Figure 7: Flowchart of ToTTo sampling process.

Figure 8: FeTaQA annotation interface.
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Figure 9: Number of rows distribution of ToTTo ta-
bles. Orange line indicates the 75th percentile. Outliers
(3 standard deviations away) are removed for better
visualization.

Figure 10: Number of columns distribution of ToTTo
tables. Orange line indicates the 75th percentile. Out-
liers (3 standard deviations away) are removed for
better visualization.
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