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Abstract

Natural Language Processing algorithms have
made incredible progress, but they still struggle
when applied to out-of-distribution exam-
ples. We address a challenging and under-
explored version of this domain adaptation
problem, where an algorithm is trained on
several source domains, and then applied to
examples from unseen domains that are un-
known at training time. Particularly, no ex-
amples, labeled or unlabeled, or any other
knowledge about the target domain are avail-
able to the algorithm at training time. We
present PADA: An example-based autoregres-
sive Prompt learning algorithm for on-the-fly
Any-Domain Adaptation, based on the T5 lan-
guage model. Given a test example, PADA
first generates a unique prompt for it and then,
conditioned on this prompt, labels the exam-
ple with respect to the NLP prediction task.
PADA is trained to generate a prompt that is
a token sequence of unrestricted length, con-
sisting of Domain Related Features (DRFs)
that characterize each of the source domains.
Intuitively, the generated prompt is a unique
signature that maps the test example to a se-
mantic space spanned by the source domains.
In experiments with 3 tasks (text classifica-
tion and sequence tagging), for a total of 14
multi-source adaptation scenarios, PADA sub-
stantially outperforms strong baselines.1

1 Introduction

Natural Language Processing (NLP) algorithms
are gradually achieving remarkable milestones
(Devlin et al., 2019; Lewis et al., 2020; Brown
et al., 2020). However, such algorithms often
rely on the seminal assumption that the training
set and the test set come from the same underly-
ing distribution. Unfortunately, this assumption

∗Both authors equally contributed to this work.
1Our code and data are available at https://github

.com/eyalbd2/PADA.

often does not hold since text may emanate
from many different sources, each with unique
distributional properties. As generalization be-
yond the training distribution is still a fundamental
challenge, NLP algorithms suffer a significant
degradation when applied to out-of-distribution
examples.

Domain Adaptation (DA) explicitly addresses
this challenge, striving to improve out-of-
distribution generalization of NLP algorithms. DA
algorithms are trained on annotated data from
source domains, to be effectively applied in a
variety of target domains. Over the years, con-
siderable efforts have been devoted to the DA
challenge, focusing on various scenarios where
the target domain is known at training time (e.g.,
through labeled or unlabeled data) but is yet under-
represented (Roark and Bacchiani, 2003; Daumé
III and Marcu, 2006; Reichart and Rappoport,
2007; McClosky et al., 2010; Rush et al., 2012;
Schnabel and Schütze, 2014). Still, the challenge
of adaptation to any possible target domain, which
is unknown at training time, is underexplored in
DA literature.2

In this work, we focus on adaptation to any
target domain, which we consider a ‘‘Holy Grail’’
of DA (§3). Apart from the pronounced intellec-
tual challenge, it also presents unique modeling
advantages as target-aware algorithms typically
require training a separate model for each target
domain, leading to an inefficient overall solution.

Intuitively, better generalization to unseen
domains can be achieved by integrating knowl-
edge from several source domains. We present
PADA: An example-based autoregressive Prompt
learning algorithm for on-the-fly Any-Domain
Adaptation (§4), which utilizes an autoregres-
sive language model (T5; Raffel et al., 2020),
and presents a novel mechanism that learns to

2The any-domain adaptation setting is addressed in the
model robustness literature. In §3, we discuss the differences
between these static methods and our dynamic approach.
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generate human-readable prompts that represent
multiple source domains. Given a new example,
from any unknown domain, the model first gener-
ates properties (a sequence of tokens) that belong
to familiar (source) domains and relate to the
given example. Then, the generated sequence is
used as a prompt for the example, while the
model performs the downstream task.3 PADA im-
plements a specialized two-stage multi-task pro-
tocol that facilitates model parameter sharing
between the prompt generation and the down-
stream tasks. Ultimately, PADA performs its
adaptation per example, by leveraging (1) an
example-specific prompting mechanism and (2)
a two-stage multi-task objective.

In order to generate effective prompts, we draw
inspiration from previous work on pivot features
(Blitzer et al., 2006; Ziser and Reichart, 2018;
Ben-David et al., 2020) to define sets of Domain
Related Features (DRFs, §4.2). DRFs are tokens
that are strongly associated with one of the source
domains, encoding domain-specific semantics.
We leverage the DRFs of the various source do-
mains in order to span their shared semantic
space. Together, these DRFs reflect the similari-
ties and differences between the source domains,
in addition to domain-specific knowledge.

Consider the task of review sentiment clas-
sification (Figure 1). The model is familiar with
four source domains: restaurants, home-furniture,
electronic-devices, and movies. When the model
encounters a review, this time from the airlines
domain, it uses DRFs to project the example
into the shared semantic space, via the prompt-
ing mechanism. In the given example the DRFs
marked in blue and green relate to the restaurants
and the home-furniture domains, respectively. The
DRF-based prompt is then used in classification.

We evaluate PADA in the multi-source DA set-
ting, where the target domain is unknown during
training (§5, 6). We consider two text classifi-
cation tasks (Rumour Detection and Multi-Genre
Natural Language Inference [MNLI]), and a se-
quence tagging task (Aspect Prediction), for a
total of 14 DA setups. PADA outperforms strong
baselines, yielding substantial error reductions.

3We use a language model, pre-trained on massive unla-
beled data, and it is possible that this model was exposed to
text from the source or target domains. Yet, the downstream
task training is based only on examples from the source
domains without any knowledge of future target domains.

Figure 1: Text classification with PADA. Colored text
signifies relation to a specific source domain. PADA
first generates the domain name, followed by a set of
DRFs related to the input example. Then it uses the
prompt to predict the task label.

2 Related Work

We first describe research in the setting of unsu-
pervised DA with a focus on pivot-based methods.
We then continue with the study of DA methods
with multiple sources, focusing on mixture of
experts models. Finally, we describe autoregres-
sive language models and prompting mechanisms,
and the unique manner in which we employ T5
for DA.

Unsupervised Domain Adaptation (UDA)
With the breakthrough of deep neural network
(DNN) modeling, attention from the DA commu-
nity has been directed to representation learning
approaches. One line of work employs DNN-
based autoencoders to learn latent representations.
These models are trained on unlabeled source
and target data with an input reconstruction loss
(Glorot et al., 2011; Chen et al., 2012; Yang and
Eisenstein, 2014; Ganin et al., 2016). Another
branch employs pivot features to bridge the gap
between a source domain and a target domain
(Blitzer et al., 2006, 2007; Pan et al., 2010). Pivot
features are prominent to the task of interest and
are abundant in the source and target domains.
Recently, Ziser and Reichart (2017, 2018, 2019)
married the two approaches. Later on, Han
and Eisenstein (2019) presented a pre-training
method, followed by Ben-David et al. (2020)
and Lekhtman et al. (2021), who introduced a
pivot-based variant for pre-training contextual
word embeddings.
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Crucially, UDA models assume access to unla-
beled data from the target domain in-hand during
training. We see this as a slight relaxation to the
goal of generalization beyond the training distri-
bution. Moreover, this definition has engineering
disadvantages, as a new model is required for each
target domain. To this end, we pursue the any-
domain adaptation setting, where unlabeled target
data is unavailable at training time.

We draw inspiration from pivot-based model-
ing. The pivot definition relies on labeled source
domain data and unlabeled source and target do-
main data (which is unavailable in our setup).
Particularly, good pivots are ones that are corre-
lated with the task label. Hence, pivot features
are typically applied to tasks that offer meaning-
ful correlations between words and the task label,
such as sentiment classification. For other types of
tasks, pivots may be difficult to apply. Consider
the MNLI dataset, where the task is to under-
stand the directional relation between a pair of
sentences (entailment, contradiction, or neutral).
In such a task it is unlikely to find meaningful
correlations between single words and the label.
Instead, we define task-invariant DRFs, features
that are highly correlated with the identity of the
domain. Since domains are highly correlated with
words, our DRFs are lexical in nature.

Our proposed approach is an important step
forward from pivots, as our model generates
DRF sequences of unrestricted lengths, instead
of focusing on individual words. Moreover, piv-
ots are typically applied in single source setups,
and while our method can operate with a sin-
gle source domain, we utilize multiple source
domains to facilitate generalization to unknown
target domains.

Multi-Source Domain Adaptation Most exist-
ing multi-source DA methods follow the setup
definitions of unsupervised DA, while consider-
ing more than one source domain. A prominent
approach is to fuse models from several sources.
Early work trained a classifier for each domain
and assumed all source domains are equally im-
portant for a test example (Li and Zong, 2008;
Luo et al., 2008). More recently, adversarial-based
methods used unlabeled data to align the source
domains to the target domains (Zhao et al., 2018;
Chen and Cardie, 2018). Meanwhile, Kim et al.
(2017) and Guo et al. (2018) explicitly weighted
a Mixture of Experts (MoE) model based on the

relationship between a target example and each
source domain. However, Wright and Augenstein
(2020) followed this work and tested a variety
of weighting approaches on a Transfomers-based
MoE and found a naive weighting approach to be
very effective.

We recognize two limitations in the proposed
MoE solution. First, MoE requires training a stan-
dalone expert model for each source domain.
Hence, the total number of parameters increases
(typically linearly) with the number of source do-
mains, which harms the solution’s scalability. One
possible solution could be to train smaller-scale
experts (Pfeiffer et al., 2020; Rücklé et al., 2020),
but this approach is likely to lead to degradation
in performance. Second, domain experts are tuned
towards domain-specific knowledge, at times at
the expense of cross-domain knowledge that high-
lights the relationship between different domains.
In practice, test examples may arrive from un-
known domains, and may reflect a complicated
combination of the sources. To cope with this,
MoE ensembles the predictions of the experts us-
ing heuristic methods, such as a simple average
or a weighted average based on the predictions of
a domain-classifier. Our results indicate that this
approach is sub-optimal.

Moreover, we view domain partitioning as of-
ten somewhat arbitrary (consider for example the
differences between the dvd and movie domains).
We do not want to strictly confine our model
to a specific partitioning and rather encourage a
more lenient approach towards domain bound-
aries. Hence, in this work, we train only a single
model that shares its parameters across all do-
mains. Furthermore, we are interested in adapting
to any target domain, such that no information
about potential target domains is known at train-
ing time. Some of the above works (Wright and
Augenstein, 2020) in fact avoid utilizing target
data, thus they fit the any-domain setting and
form two of our baselines. Yet, in contrast to
these works, the any-domain objective is a core
principle of this study.

Autoregressive LMs and Prompting Re-
cently, a novel approach to language modeling
has been proposed, which casts it as a sequence-
to-sequence task, by training a full Transformer
(encoder-decoder) model (Vaswani et al., 2017)
to autoregressively generate masked, missing or
perturbed token spans from the input sequence
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(Raffel et al., 2020; Lewis et al., 2020). Raffel
et al. (2020) present a particularly interesting
approach with the T5 model. It treats all tasks
as generative (text-to-text), eliminating the need
for a task-specific network architecture. This is
made possible by prefixing each example with a
prompt phrase denoting the specific task being
performed.

Recent works have further explored such
prompting mechanisms in several avenues: Adapt-
ing a language model for different purposes
(Brown et al., 2020); eliciting sentiment or topic-
related information (Jiang et al., 2020; Sun and
Lai, 2020; Shin et al., 2020; Haviv et al., 2021);
efficient fine-tuning (Li and Liang, 2021; Scao
and Rush, 2021); or as a method for few-shot
learning (Gao et al., 2021; Schick and Schütze,
2021).4 In this work, we make use of T5’s prompt-
ing mechanism as a way of priming the model to
encode domain-specific characteristics relating to
each example from an unknown target domain.
Borrowing terminology from Liu et al. (2021a),
our approach falls under the ‘‘Prompt+LM Tun-
ing’’ training strategy (Liu et al., 2021b; Han
et al., 2021). In this strategy, prompt-relevant pa-
rameters are fine-tuned together with some or all
of the parameters of the pre-trained model (T5 in
our case). However, in contrast to prompt tuning
approaches which focus on representation level
tuning (Liu et al., 2021b; Li and Liang, 2021;
Lester et al., 2021), we train T5 to generate human
readable prompts consisting of natural language
tokens that encode domain-specific information
relating to the the given example. To the best of
our knowledge, this work is the first to learn to
generate textual prompts alongside a downstream
prediction task. It is also the first to generate a
unique prompt per example. Finally, it is the first
to design a prompting mechanism for the purpose
of DA.

3 Any-Domain Adaptation

DA and Transfer Learning A prediction task
(e.g., Rumour Detection) is defined as T = {Y},
where Y is the task’s label space. We denote X to
be a feature space, P (X) to be the marginal
distribution over X , and P (Y ) the prior dis-
tribution over Y . The domain is then defined
by DT = {X , P (X), P (Y ), P (Y |X)}. DA is a

4For a comprehensive discussion of the research on
prompting mechanisms, we refer to Liu et al. (2021a).

particular case of transfer learning, namely, trans-
ductive transfer learning (Ramponi and Plank,
2020), in which TS and TT , the source and tar-
get tasks, are the same. However, DT

S and DT
T ,

the source and target domains, differ in at least
one of their underlying probability distributions,
P (X), P (Y ), or P (Y |X).5 The goal in DA is to
learn a function f from a set of source domains
{DSi}Ki=1 that generalizes well to a set of target
domains {DTi}Mi=1.

The Any-Domain Setting We focus on build-
ing an algorithm for a given task that is able
to adapt to any-domain. To this end, we assume
zero knowledge about the target domain, DT , at
training time. Hence, we slightly modify the clas-
sic setting of unsupervised multi-source domain
adaptation, by assuming we have no knowledge
or access to labeled or unlabeled data from the
target domains. We only assume access to labeled
training data from K source domains {DSi}Ki=1,
where DSi � {(xSi

t , ySi
t )}ni

t=1. The goal is to learn
a model using only the source domains data, which
generalizes well to unknown target domains.

The NLP and ML literature addresses several
settings that are similar to any-domain adaptation.
However, our on-the-fly example-based approach
is novel. Below, we discuss these settings and
the differences between their proposed solution
approaches and ours.

The goal of any-domain adaptation was pre-
viously explored through the notion of domain
robustness. Algorithms from this line of work seek
generalization to unknown distributions through
optimization methods which favor robustness
over specification (Hu et al., 2018; Oren et al.,
2019; Sagawa et al., 2020; Koh et al., 2020;
Wald et al., 2021). This is typically achieved by
training the model to focus on domain-invariant
features, which are considered fundamental to
the task and general across domains (Muandet
et al., 2013; Ganin et al., 2016; Arjovsky et al.,
2019; Müller et al., 2020). In contrast, this work
proposes to achieve this goal through on-the-fly
example-based adaptation, utilizing both domain-
invariant and domain-specific features, as the
latter often proves relevant to the new domain
(Blitzer et al., 2006; Ziser and Reichart, 2017).
For instance, consider the example presented
in Figure 1. The expression ‘‘food was cold’’

5In inductive transfer learning TS differs from TT .
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would be considered as domain-specific, consid-
ering the restaurants domain. Despite it not being
a domain-invariant feature, it may serve as a
valuable feature for the target domain (airlines).

Any-domain adaptation also draws some simi-
larities with the continual learning (Ring, 1995)
and zero-shot learning (Palatucci et al., 2009)
paradigms. Continual learning systems seek to
transfer knowledge from a number of known tasks
to a new one, while in our proposed setting new
domains arrive during inference, and as opposed
to continual learning, we do not update the pa-
rameters of the model when a new domain is
presented (we actually do not even know the do-
mains of the test examples).6 The zero-shot setting
also does not update the parameters of the model
given a new task, yet its definition is less consistent
across different models: GPT-3 (Brown et al.,
2020) attempts to transfer knowledge to an un-
known target task TT and unknown domain DT ;
Blitzer et al. (2009) assume access to unlabeled
data from various domains including the target
domain; and Peng et al. (2018) use data of a dif-
ferent task from the target domain. In contrast, our
problem setting specifically focuses on domain
adaptation, while assuming no prior knowledge of
the target domain.

The any-domain adaptation setting naturally
calls for an example-level adaptation approach.
Because the model does not have any knowledge
about the target domain during training, each ex-
ample it encounters during inference should be
aligned with the source domains.

4 Example-based Adaptation through
Prompt Learning

In this work we propose a single model that en-
codes information from multiple domains. Our
model is designed such that test examples from
new unknown domains can trigger the most rele-
vant parameters in the model. This way we allow
our model to share information between domains
and use the most relevant information at test
time. Our model is inspired by recent research
on prompting mechanisms for autoregressive lan-
guage models. We start (§4.1) by describing the
general architecture of our model, and continue
(§4.2) with the domain related features that form
our prompts.

6von Oswald et al. (2020) explore the notion of inferring
the new example’s task out of the training tasks.

Figure 2: PADA during test time inference. An auto-
regressive model with a generative head trained for
DRF generation and a discriminative head for senti-
ment classification. PADA conditions the classification
on the generated prompt. Text marked with blue sig-
nifies the DRFs and text marked with yellow signifies
the domain name. Black arrows (→) mark the first
inference step and red arrows mark the second
inference step.

4.1 The Model

We present our example-based autoregressive
Prompt learning algorithm for on-the-fly Any-
Domain Adaptation (PADA, Figure 2). PADA
employs a pre-trained T5 language model and
learns to generate example-specific DRFs in or-
der to facilitate accurate task predictions. This is
implemented through a two-step multi-task mech-
anism, where first a DRF set is generated to form
a prompt, and then the task label is predicted.

Formally, assume an input example (xi, yi) ∼
Si, such that xi is the input text, yi is the task
label, and Si is the domain of this example. For
the input xi, PADA is trained to first generate
Ni, the domain name, followed by Ri, the DRF
signature ofxi, and given this prompt to predict the
label yi. At test time, when the model encounters
an example from an unknown domain, it gener-
ates a prompt that may consist of one or more
domain names as well as features from the DRF
sets of one or more source domains, and based on
this prompt it predicts the task label.

Test-time Inference Consider the example in
Figure 1, which describes a sentiment classifi-
cation model, trained on the restaurants, home-
furniture, electronic-devices, and movies source
domains. The model observes a test example from
the airlines domain, a previously unseen domain
whose name is not known to the model. The
model first generates the name of the domain that
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Input. A sad day for France, for journalism, for
free speech, and those whose beliefs the attackers
pretend to represent.
Prompt. Ottawa Shooting - french, attack,
shootings

Input. Picture of explosion in Dammartin-en-
Goele. all happened suddenly.
Prompt. Germanwings Crash - explosion, goele,
german

Input. At least 5 hostages in kosher supermarket
in eastern Paris, according to reports.
Prompt. Paris Siege - hostages, reports, taker

Table 1: Examples for DRF-based prompts gen-
erated by PADA, from the Charlie-Hebdo (C)
target domain, which is unknown to PADA dur-
ing training (source domains are FR, GW, OS,
and S; see Table 4). PADA generates prompts
which are semantically related to the input ex-
ample by combining DRFs from source domains
along with non-DRF yet relevant words. More-
over, it can also generate new domain names
(Paris Siege).

is most appropriate for this example, restaurants
in this case. Then, it continues to generate the
words ‘‘food’’ and ‘‘chair’’, features related to
the restaurants and home-furniture domains, re-
spectively. Finally, given this prompt, the model
predicts the example’s (negative) sentiment.

Training In order to separate the prompt gen-
eration task from the discriminative classifica-
tion task, we train our model within a multi-task
framework. PADA is trained to perform two tasks,
one for generating a prompt, consisting of features
from the DRF set of the example’s domain, and
another for predicting the example’s label. For
the first, generative task, the model receives ex-
amples with the special prompt ‘Domain:’, which
primes the model to generate Ni and Ri (see
examples for prompts generated by PADA in
Table 1). Note that Ri is a set of features derived
from the DRF set of Si, and training examples
are automatically annotated with their Ri, as de-
scribed in §4.2. For the second, discriminative
task, the model receives a prompt, consisting of
Ni and Ri, and its task is to predict yi.

Following the multi-task training protocol of
T5, we mix examples from each task. To this end,
we define a task proportion mixture parameter
α. Each example from the training set forms an

example for the generative task with probability
α, and an example for the discriminative task with
probability 1− α. The greater the value of α, the
more the model will train for the generative task.

At the heart of our method is the clever selection
of the DRF set of each domain, and the prompt
annotation process for the training examples. We
next discuss these features and their selection
process.

4.2 Domain Related Features

For each domain we define the DRF set such that
these features provide a semantic signature for the
domain. Importantly, if two domains have shared
semantics, for example, the restaurants and the
cooking domains, we expect their DRFs to seman-
tically overlap. Since the prompt of each training
example consists of a subset of features from the
DRF set of its domain, we should also decide on
a prompt generation rule that can annotate these
training examples with their relevant features.

In order to reflect the semantics of the domain,
DRFs should occur frequently in this domain.
Moreover, they should be substantially more com-
mon in that specific domain relative to all other
domains. Despite their prominence in a specific
domain, DRFs can also relate to other domains.
For instance, consider the top example presented
in Table 1. The word ‘‘attack’’ is highly associ-
ated with the ‘‘Ottawa Shooting’’ domain and is
indeed one of its DRFs. However, this word is also
associated with ‘‘Sydney Siege’’, which is another
domain in the Rumour Detection dataset (Zubiaga
et al., 2016). Moreover, because both domains are
related to similar events, it is not surprising that
the DRF set of the former contains the feature
suspect and the DRF set of the latter contains
the feature taker (see Table 3). The similarity
of these features facilitates parameter sharing in
our model.

Automatically Extracting DRFs There can be
several ways of implementing a DRF extraction
method that are in line with the above DRF
definition. We experimented with several differ-
ent extraction criteria (Correlation, class-based
TF-IDF,7 and Mutual Information), and ob-
served high similarity (82% overlap) between
their resulting DRF sets. However, we observed
a qualitative advantage for Mutual Information

7https://github.com/MaartenGr/cTFIDF.
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ρ = 0 ρ = 1 ρ = 10 ρ = 100

ferguson police know breaking
mikebrown officer report
robbery killing just

Table 2: A sample of DRFs extracted for the Fer-
guson domain (rumour detection) with different
ρ values. Each column represents DRFs that are
filtered in DRF sets of lower ρ value. DRFs of
lower ρ values are more domain specific.

(MI), which successfully extracted DRFs that hold
domain-specific semantic meaning.

We present the following MI-based method:
Let examples (texts) from the jth source domain
(Sj) be labeled with 1, and examples from all
other domains (S\Sj) be labeled with 0. We first
calculate the mutual-information (MI) between
all tokens and this binary variable, and choose
the l tokens with the highest MI score. Note, that
the MI criterion might promote tokens that are
highly associated with (S\Sj) rather than with
Sj . Thus, we filter the l tokens according to the
following condition:

CS\Sj (n)

CSj (n)
≤ ρ, CSj (n) > 0

where CSj (n) is the count of the n-gram n in
Sj , CS\Sj (n) is the count of this n-gram in all
source domains except for Sj , and ρ is an n-gram
frequency ratio hyper-parameter.

Intuitively, the smaller ρ is, the more certain we
are that the n-gram is especially associated with
Sj , compared to other domains. Since the number
of examples in Sj is much smaller than the num-
ber of examples in S\Sj , we choose ρ ≥ 1 but
do not allow it to be too large. As a result, this
criterion allows for features which are associated
with Sj but also related to other source domains,
to be part of the DRF set of Sj . This is demon-
strated in Table 2, where we present examples of
DRFs extracted for the Ferguson domain of the
rumour detection task, by using different values
of ρ. Using ρ = 0, domain-specific DRFs such
as ‘‘mikebrown’’ are extracted for the domain’s
DRF set. By increasing the value of ρ to 1, we
add DRFs which are highly associated with the do-
main, but are also prevalent in other domains (e.g.,
‘‘killing’’ is also related to the Ottawa-shooting
domain). However, when increasing the value of

C GW OS S
hebdo (88%) lufthansa (86%) ottawa (83%) australians (75%)
ahmed (48%) germanwings (33%) cdnpoli (36%) monis (69%)
terrorists (22%) crash (25%) shooting (30%) isis (21%)
attack (19%) plane (24%) soldier (12%) cafe (18%)
victims (4%) barcelona (23%) suspect (5%) taker (16%)

Table 3: A sample of DRFs from four rumour
detection domains along with their frequency for
being annotated in a training example’s prompt.

ρ to 10, we extract DRFs which are less associ-
ated with the domain (‘‘know’’). This is further
exacerbated when increasing ρ to higher values.

Annotating DRF-based Prompts for Training
We denote the DRF set of the jth domain with
Rj . Given a training example i from domain j,
we select the m features from Rj that are most
associated with this example to form its prompt.
To do that, we compute the Euclidean distance
between the T5 embeddings of the DRF features
and the T5 embeddings of each of the example’s
tokens. We then rank this list of pairs by their
scores and select the top m features.8 In Table 3
we provide a sample of DRFs from the DRF
sets associated with each domain in the rumor
detection task (§ 5), alongside their frequency
statistics for being annotated in a training exam-
ple’s prompt.

To conclude, our methods for domain-specific
DRF set extraction and for prompt annotation
of training examples, demonstrate three attrac-
tive properties. First, every example has its own
unique prompt. Second, our prompts map each
training example to the semantic space of its do-
main. Lastly, the domain-specific DRF sets may
overlap in their semantics, either by including the
same tokens or by including tokens with similar
meanings. This way they provide a more nuanced
domain signature compared to the domain name
alone. This is later used during the inference phase
when the model can generate an example-specific
prompt that consists of features from the DRF sets
of the various source domains.

5 Experimental Setup

5.1 Task and Datasets

We experiment with three multi-source DA tasks,
where a model is trained on several domains and

8In this computation we consider the non-contextual
embeddings learned by T5 during its pre-training. In our
experiments we consider only unigrams (words) as DRFs.
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Rumour Detection
Domain Training (src) Dev (src) Test (trg)
Charlie-Hebdo (C) 1,663 416 2,079
Ferguson (FR) 914 229 1,143
Germanwings-crash (GW) 375 94 469
Ottawa-shooting (OS) 712 178 890
Sydney-siege (S) 976 245 1,221

MNLI
Domain Training (src) Dev (src) Test (trg)
Fiction (F) 2,547 1,972 1,972
Government (G) 2,541 1,944 1,944
Slate (SL) 2,605 1,954 1,954
Telephone(TL) 2,754 1,965 1,965
Travel (TR) 2,541 1,975 1,975

Aspect
Domain Training (src) Dev (src) Test (trg)
Device (D) 2,302 255 1,279
Laptops (L) 2,726 303 800
Restaurants (R) 3,487 388 800
Service(SE) 1,343 149 747

Table 4: The number of examples in each domain
of our three tasks. We denote the examples used
when a domain is included as a source domain
(src), and when it is the target domain (trg).

applied to a new one. We consider two text clas-
sification tasks, Rumour Detection and MNLI,
and one sequence tagging task—Aspect Predic-
tion. The details of the training, development, and
test sets of each domain are provided in Table 4.
Our experiments are performed in a leave-one-out
fashion: We train the model on all domains but
one, and keep the held-out domain for testing.
Particularly, training is done on the training data
of the source domains and development on their
development data, while the test data is taken from
the target domain, which is unknown at training
time. We repeat the experiments in each task such
that each domain is used as a target domain.

Rumour Detection The PHEME dataset of ru-
mourous tweets (Zubiaga et al., 2016, 2017)
contains 5,802 tweets, which followed 5 differ-
ent real-world events, and are labelled as rumour-
ous or non-rumourous.9 We treat each event as a
separate domain: Charlie-Hebdo (C), Ferguson
(FR), Germanwings-crash (GW), Ottawa-shooting
(OS), and Sydney-siege (S).

We follow the data processing procedure of
Wright and Augenstein (2020) and split each do-
main (event) corpus by a 4:1 ratio, establishing
training and development sets. Because the cor-
pora are relatively small, we want to avoid further
shrinking the size of the test set. Hence, we include

9https://figshare.com/articles/dataset
/PHEME dataset of rumours and non-rumours
/4010619.

all examples available from the target domain to
form the test set.10

MNLI This corpus (Williams et al., 2018) is an
extension of the SNLI dataset (Bowman et al.,
2015).11 Each example consists of a pair of sen-
tences, a premise and a hypothesis. The rela-
tionship between the two may be entailment,
contradiction, or neutral. The corpus includes
data from 10 domains: 5 are matched, with train-
ing, development and test sets, and 5 are mis-
matched, without a training set. We experiment
only with the five matched domains: Fiction (F),
Government (G), Slate (SL), Telephone (TL), and
Travel (TR).

Since the test sets of the MNLI dataset are not
publicly available, we use the original develop-
ment sets as our test sets for each target domain,
while source domains use these sets for develop-
ment. We explore a lightly supervised scenario,
which emphasizes the need for a DA algorithm.
Thus, we randomly downsample each of the train-
ing sets by a factor of 30, resulting in 2,000–3,000
examples per set.

Aspect Prediction The Aspect Prediction da-
taset is based on aspect-based sentiment analysis
(ABSA) corpora from four domains: Device (D),
Laptops (L), Restaurant (R), and Service (SE).
The D data consist of reviews from Toprak et al.
(2010), the SE data include web service reviews
(Hu and Liu, 2004), and the L and R domains
consist of reviews from the SemEval-2014 ABSA
challenge (Pontiki et al., 2014).

We follow the training and test splits defined
by Gong et al. (2020) for the D and SE domains,
while the splits for the L and R domains are
taken from the SemEval-2014 ABSA challenge.
To establish our development set, we randomly
sample 10% out of the training data.

5.2 Evaluated Models

Our main model is PADA: The multi-task model
that first generates the domain name and do-
main related features to form a prompt, and then
uses this prompt to predict the task label (§4.1,

10This does not harm the integrity of our experiments,
since the training and development sets are sampled from the
source domains while the test set is sampled only from the
target domain.

11https://cims.nyu.edu/∼sbowman/multinli/.
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Figure 2). We compare it to two types of models:
(a) T5-based baselines corresponding to ideas pre-
sented in multi-source DA work, as well as other
recent state-of-the-art models (§2); and (b) Abla-
tion models that use specific parts of PADA, to
highlight the importance of its components.

5.2.1 Baseline Models

Transformer-based Mixture of Experts (Tr-MoE)
For each source domain, a separate transformer-
based DistilBERT expert model (Sanh et al., 2019)
is trained on the domain’s training set, and an ad-
ditional model is trained on the union of training
sets from all source domains. At test time, the
average of the class probabilities of these models
is calculated and the highest probability class is
selected. This model is named MoE-avg by Wright
and Augenstein (2020) and has been demon-
strated to achieve state-of-the-art performance for
Rumour Detection.

T5-MoE A T5-based MoE ensemble model. For
each source domain, a separate pre-trained T5
model is fine-tuned on the domain’s training set
(i.e., a domain expert model). During inference,
the final predictions of the model are decided using
the same averaging procedure as in Tr-MoE.

T5-No-Domain-Adaptation (T5-NoDA) A pre-
trained T5 model, which feeds the same task clas-
sifier used in PADA (see below) to predict the
task label. In each DA setting, the model is trained
on the training data from all source domains.

We also experiment with an in-domain version
of this model, T5-UpperBound (T5-UB), which
is tested on the development data of each domain.
We treat T5-UB performance as an upper bound
for the average target performance across all DA
settings, for any T5-based model in our setup.

T5-Domain-Adversarial-Network (T5-DAN) A
model that integrates T5-NoDA with an adversar-
ial domain classifier to learn domain invariant
representations.12

T5-Invariant-Risk-Minimization (T5-IRM) A
T5-based model that penalizes feature distribu-
tions that have different optimal linear classifiers

12We also experimented with BERT-NoDA and
BERT-DAN models. We do not report their results be-
cause they were consistently outperformed by T5-NoDA and
T5-DAN.

Figure 3: PADA ablation models: (a) PADA-NP, which
follows a multi-task training protocol, but does not
condition its prediction on the generated prompt; (b)
PADA-NM, which separately trains a prompt generation
model (→) and a prompted task prediction model .

for each domain. The model is trained on the
training data from all source domains.

IRM (Arjovsky et al., 2019) and DAN (Ganin
et al., 2016) are established algorithms in the do-
main robustness literature, for generalization to
unseen distributions (Koh et al., 2020).

5.2.2 Ablation Models
Prompt-DN A simplified version of our PADA
model, which assigns only a domain name as
a prompt to the input text. Since the domain
name is unknown at test time, we create multiple
variants of each test example, each with one of
the training domain names as a prompt. For the
final predictions of the model we follow the same
averaging procedure as in Tr-MoE and T5-MoE.

Prompt-RDW and Prompt-REW Two simpli-
fied versions of PADA that form prompts from
Random-Domain-Words and Random-Example-
Words, respectively. For Prompt-RDW, we sam-
ple m = 5 domain words (according to their
distribution in the joint vocabulary of all source
domains) for each example. For Prompt-REW,
we randomly select m = 5 words from the ex-
ample’s text. At both training and test times, we
follow the same prompt formation procedures.

PADA-NP (No Prompt) A multi-task model
similar to PADA, except that it simultaneously
generates the example-specific domain name and
DRF-based prompt, and predicts the task label
(Figure 3a). Because this model does not condi-
tion the task prediction on the generated prompt,
it sheds light on the effect of the autoregressive
nature of PADA.
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Rumour Detection MNLI
All → C All → FR All → GW All → OS All → S AVG All → F All → G All → SL All → TE All → TR AVG

Tr-MoE 68.0 46.1 74.8 58.2 64.9 62.4 64.3 73.9 65.3 62.4 69.8 67.1

T5-MoE 68.1 46.0 73.6 65.3 66.3 63.9 74.0 82.0 73.4 74.6 78.3 76.5

T5-DAN 64.9 52.4 69.1 72.7 64.4 64.7 74.4 76.3 61.0 72.4 77.7 72.4

T5-IRM 63.5 39.4 70.1 44.2 65.7 56.6 72.0 81.5 73.2 69.3 78.9 75.0

T5-NoDA 64.1 46.9 75.1 72.0 71.0 65.8 76.4 83.5 75.5 74.9 81.3 78.3

Prompt-DN 66.4 53.7 72.4 71.4 70.1 66.8 77.0 84.4 75.6 76.3 80.5 78.8

Prompt-RDW 64.1 53.1 71.8 66.0 70.0 65.0 76.0 84.2 76.6 77.0 79.9 78.7

Prompt-REW 64.2 54.3 71.6 70.0 69.1 65.8 75.7 81.4 76.7 78.8 81.2 78.7

PADA-NP 65.8 54.8 71.6 72.2 74.0 67.7 76.2 83.6 75.4 77.2 81.4 78.8

PADA-NM 63.6 54.1 74.3 70.1 70.3 66.5 76.0 83.7 76.5 78.0 81.0 79.0

PADA 68.6 54.4 73.0 75.2 75.1 69.3 76.4 83.4 76.9 78.9 82.5 79.6

Table 5: Binary-F1 scores for the Rumour Detection task and macro-F1 scores for the MNLI task.

PADA-NM (No Multi-task) A pipeline of two
independent models which emulates PADA. Given
an input example, the first model generates a
unique prompt for it. Then, the second model
predicts the task label given the input and its gen-
erated prompt (Figure 3b). Since the prediction
and prompt generation tasks are not performed
jointly, nor are the model parameters shared be-
tween the tasks, this pipeline sheds light on the
effect of the multi-task nature of PADA.

5.3 Implementation Details

For all implemented models we use the Hug-
gingFace Transformers library (Wolf et al.,
2020).13

The T5-based text classification models do not
follow the same procedure originally described
in Raffel et al. (2020). Instead, we add a simple
1D-CNN classifier on top of the T5 encoder to
predict the task label (Figure 2). The number of
filters in this classifier is 32 with a filter size
of 9.14 The generative component of the T5-
based models is identical to that of the original
T5. Our T5-based models for Aspect Prediction
cast sequence tagging as a sequence-to-sequence
task, employing the text-to-text approach of Raffel
et al. (2020) to generate a ‘B’ (begin), ‘I’ (in),
or ‘O’ (out) token for each input token. Other
than this change, these models are identical to the
T5-based models for text classification.

We train all text classification models for 5
epochs and all sequence tagging models for 60
epochs, with an early stopping criterion accord-
ing to performance on the development data. We

13https://github.com/huggingface/transformers.
14We experimented with the original T5 classification

method as well, but PADA consistently outperformed it.

use the cross-entropy loss function for all mod-
els, optimizing their parameters with the ADAM
optimizer (Kingma and Ba, 2015). We employ
a batch size of 32 for text classification and 24
for sequence tagging, warmup ratio of 0.1, and
a learning rate of 5 · 10−5. The maximum input
and output lengths of all T5-based models is set
to 128 tokens. We pad shorter sequences and trun-
cate longer ones to the maximum input length.

For PADA, we tune the α (example proportion-
mixture, see §4.1) parameter considering the
value range of {0.1, 0.25, 0.5, 0.75, 0.9}. The
chosen values are: αrumour = 0.75, αmnli = 0.1
and αabsa = 0.1. For each training example, we
select the top m = 5 DRFs most associated
with it for its prompt. For the generative com-
ponent of the T5-based models, we perform infer-
ence with the Diverse Beam Search algorithm
(Vijayakumar et al., 2016), considering the fol-
lowing hyper-parameters: We generate 5 candi-
dates, using a beam size of 10, with 5 beam
groups, and a diversity penalty value of 1.5. The
l and ρ parameters of the DRF extraction proce-
dure (§4.2) were tuned to 1000 and 1.5, respec-
tively, for all domains.

6 Results

Text Classification Table 5 presents our results.
We report the binary-F1 score for Rumour Detec-
tion, and the macro-F1 score for MNLI.15

PADA outperforms all baseline models (§ 5.2.1)
in 7 of 10 settings and reaches the highest result
in another setting (with T5-NoDA), exhibiting av-
erage performance gains of 3.5% and 1.3% in

15Binary-F1 measures the F1 score of the positive class. It
is useful in cases of unbalanced datasets where the positive
class is of interest (34% of the Rumour Detection dataset).

423

https://github.com/huggingface/transformers


Rumour Detection and MNLI, respectively, over
the best performing baseline model. Interestingly,
it is T5-NoDA, which does not perform any DA,
that outperforms (on average and in most model-
to-model comparisons) all other baseline models,
including the MoE models.

While the performance gains differ between
the tasks, they partly stem from the different per-
formance gaps between source and target domains
in each of these tasks. Recall that we consider
the T5-UB performance on its development
sets for Rumour Detection (82.8%) and MNLI
(80.8%) to be the upper bound for the average
target performance across all DA settings, for
any T5-based model. When considering the gaps
between this upper bound and T5-NoDA (65.8%
for Rumour Detection and 78.3% for MNLI),
PADA reduces the error rate by 21% for Ru-
mour Detection and 52% for MNLI. The improve-
ments gained by PADA are in fact substantial in
both tasks.

The advantage of PADA over MoE goes beyond
improved predictions. Particularly, for PADA we
train a single model while for MoE we train
a unique model for each source domain, hence
the number of parameters in the MoE frame-
work linearly increases with the number of source
domains. For example, in our setups, Tr-MoE
trains five DistilBERT models (one for each
source domain and one for all source domains
together), resulting in 5 · 66M = 330M parame-
ters. In contrast, the PADA models keep the 220M
parameters of T5, regardless of the number of
source domains.

Sequence Tagging In order to demonstrate the
wide applicability of our approach, we go beyond
text classification (with 2 [Rumour Detection]
or 3 [MNLI] classes) and also consider Aspect
Prediction: A sequence tagging task. We are par-
ticularly curious to see if the aforementioned pat-
terns replicate in this qualitatively different task.
Our results are presented in Table 6, where we
report the binary-F1 score (the F1 score of the
aspect class). Crucially, the patterns we observe
for text classification can also be detected for
sequence tagging. Particularly, PADA is the best
performing model in 4 of 4 settings compared to
its baselines. On average, PADA outperforms the
second-best model, T5-IRM, by 3.5% on average.
Given the average results of T5-UB (69.4%) and
T5-NoDA (38.7%), the error reduction is 24%.

Aspect Prediction
All → D All → L All → R All → SE AVG

T5-MoE 39.5 31.4 31.4 30.9 33.3

T5-DAN 28.4 38.0 49.1 33.4 33.2

T5-IRM 37.1 44.6 47.4 41.5 42.7

T5-NoDA 31.1 45.6 40.2 37.9 38.7

Prompt-DN 41.1 42.6 29.0 30.8 35.9

Prompt-RDW 34.6 46.9 52.9 41.2 43.9

Prompt-REW 38.2 49.5 45.1 39.6 43.1

PADA-NP 41.7 48.2 50.1 40.1 45.0

PADA-NM 40.3 48.8 50.8 40.2 45.0

PADA 43.1 50.9 50.8 45.3 47.5

Table 6: Binary-F1 scores for Aspect Prediction.

PADA Ablation Models As shown in Table 5,
PADA outperforms all of its variants (§ 5.2.2)
in 6 out of 10 text classification settings over-
all. Furthermore, in the sequence tagging task
(Table 6), PADA outperforms its simpler vari-
ants (Prompt-{DN, REW}, PADA-NP) in all 4
setups, and Prompt-RDW, PADA-NM in 3 out
of 4 setups. These results highlight the impor-
tance of our design choices: (a) including DRFs
in the example-specific prompts, tailoring them to
express the relation between the source domains
and the test example (PADA vs Prompt-{DN,
RDW, REW}); (b) utilizing an autoregressive com-
ponent, where the generated DRF prompts are
used by the task classification component (PADA
vs PADA-NP); and (c) leveraging a multi-task
training objective (PADA vs PADA-NM). A no-
ticeable difference in the aspect prediction results
from text classification results is the weakness of
Prompt-DN, which is outperformed by all base-
line models (§ 5.2.1) in 2 setups, and by 2 of these
models in a third setup, as well as on average
across all setups. This is yet another indication
of the importance of the DRFs in the prompt
generated by PADA.

7 Ablation Analysis

In this section, we analyze several unique aspects
of PADA. We first evaluate the prompts generated
by PADA, to gain further insight into its genera-
tive capabilities. We then analyze the impact of
the number of source domains on PADA’s perfor-
mance. Finally, we examine performance drops
due to domain shifts, in order to evaluate PADA’s
adaptation stability across domains. For the sake
of clarity and concision, analyses will henceforth
focus on the rumour detection task.
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BERTScore ROUGE-1 ROUGE-2 ROUGE-L
Dev F1 0.94 0.64 0.30 0.61

Table 7: Average F1 scores for our automatic
evaluation metrics, calculated for generated
prompts compared to annotated prompts over all
development sets in the rumour detection task.

Generated Prompts Analysis We first present
an intrinsic evaluation of PADA’s prompt genera-
tion task (see §4.1) by examining model-generated
prompts for examples from the development set,
compared to their annotated prompts.16 We choose
automatic metrics widely used for evaluating NLG
tasks, focusing on n-gram overlap by calculating
ROUGE (Lin, 2004) scores as well as measuring
semantic similarity with BERTScore (Zhang et al.,
2020). In Table 7 we present average F1 scores
for these metrics, calculated over all DA settings
in the rumour detection task. The high average
BERTScore (0.94) indicates that the generated
prompts share high semantic similarity with their
annotated prompts. Yet, the average ROUGE-1
(0.64) and ROUGE-2 (0.3) scores indicate that
the generated prompts vary on their unigram and
bigram levels (respectively), compared with their
annotated prompts. This evidence suggests that
PADA learns to leverage the semantic overlaps
between DRFs, over memorizing specific n-grams
(e.g., an annotated DRF may be terrorist while
the generated word may be gunman).

We continue our evaluation by analyzing the
origins of words in the PADA-generated prompts,
specifically, whether they appear in the source
domains’ DRF sets, the input text, or in nei-
ther (Novel). Figure 4 presents the average ratios
of different origins for generated prompt tokens,
calculated over all DA settings in the rumour de-
tection task. As expected, the overwhelming ma-
jority of generated tokens come from the source
domains DRF sets, for both development (92.7%)
and test (75.3%) sets. However, when introduced
to examples from unknown domains (test sets),
we observe a significant increase (compared to
the development sets) in novel tokens (18.9% vs
5.4%) and a slight increase in tokens from the
example’s input text (14.1% vs 11.7%).

16PADA is not restricted to specific structures or vocabu-
lary when generating prompts, hence our annotated prompts
only serve as pseudo gold labels for training purposes.

Figure 4: Average token source ratios in generated
prompts, calculated over all development and test sets
in the rumour detection task.

Figure 5: Average ratios of number of domains in gen-
erated prompts, calculated over all development and
test sets in the rumour detection task.

Furthermore, Figure 5 demonstrates that PADA
is able to exploit information from its multiple
source domains. For test examples PADA gener-
ates prompts containing DRFs from several do-
mains (95% of prompts contain DRFs from more
than 2 source domains), while for development
examples it mostly generates prompts with DRFs
only from the correct source domain. Together
with the examples presented in Table 1, these
observations suggest an encouraging finding—
PADA is successful in generating prompts which
leverage and integrate both the source domains
and the semantics of the input example.

Number of Source Domains We next turn to
study the impact of the number of source do-
mains on PADA’s overall performance. Figure 6
presents F1 scores by the number of source do-
mains for PADA and two of its baselines, namely,
T5-NoDA and T5-MoE. We provide results on
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Figure 6: Performance on the Rumour Detection task
by the number of source domains the model was trained
on. Darker hues represent a larger number of source
domains.

two target domains, as well as an average score
across all five target domains from the rumour
detection dataset.

As indicated in the figure, PADA’s perfor-
mance improves as the number of source domains
increases. These results support our claim that
PADA is able to integrate knowledge from mul-
tiple source domains by learning a meaningful
domain-mixture, and it then leverages this knowl-
edge when introduced to an example from a new,
unknown, domain. Interestingly, for the baseline
models T5-NoDA and T5-MoE, it seems that in-
cluding more source domains can sometimes harm
their ability to generalize to unknown target do-
mains. One of our main hypotheses states that a
DA model stands to benefit from incorporating
combined knowledge from multiple source do-
mains (§4). PADA successfully implements this
idea, while T5-MoE and T5-NoDA fall short.

Performance Drops between Source and
Target When a DA method improves model
performance on the target domain, this can
result in either increasing or decreasing the
performance gap between the source and target
domains. If a model performs similarly on its
source training domains and on unseen target
domains, its source domain performance can
also provide an important indication for its
future performance in such unseen domains. We
hence consider such stability in performance as a
desired property in our setup where future target
domains are unknown (see discussion in Ziser
and Reichart [2019]).

Figure 7 presents a heatmap depicting the per-
formance drop for each model between the source
domains and the target domains in rumour de-
tection. We measure each model’s in-domain
performance by calculating an F1 score across
all development examples from its source do-
mains, as well as out-of-domain performance on

Figure 7: A heatmap presenting performance drops
between source domains and target domains (columns),
for the rumour detection task. Darker colors represent
smaller performance drops.

the target domain test set, as described in §6. We
then calculate the difference between the source
and the target performance measures, and report
results for the best performing models in our ex-
periments (§6). The general trend is clear: PADA
not only performs better on the target domain,
but it also substantially reduces the source-target
performance gap. While T5-NoDA, which is not
a DA model, triggers the largest average absolute
performance drop, 17%, the average of PADA’s
absolute performance drop is 8.7%.

8 Discussion

We addressed the problem of multi-source do-
main adaptation when the target domain is not
known at training time. Effective models for this
setup can be applied to any target domain with
no data requirements about the target domains
and without an increase in the number of model
parameters as a function of the number of source
or target domains. PADA, our algorithm, extends
the prompting mechanism of the T5 autoregres-
sive language model to generate a unique textual
prompt per example. Each generated prompt maps
its test example into a semantic space spanned by
the source domains.

Our experimental results with three tasks and
fourteen multi-source adaptation settings demon-
strate the effectiveness of our approach compared
to strong alternatives, as well as the importance
of the model components and of our design
choices. Moreover, as opposed to the MoE par-
adigm, where a model is trained separately for
each source domain, PADA provides a single
unified model. Intuitively, this approach also
seems more cognitively plausible—a single model
attempts to adapt itself to examples from new
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incoming domains, rather than employing an in-
dependent model per domain.

The prompt generation mechanism of PADA
is naturally limited by the set of source domains
it is trained on. This might yield sub-optimal
DRFs in prompts generated for examples stem-
ming from target domains which are semantically
unrelated to any of the source domains. To alle-
viate this issue, we allow PADA to generate non-
DRF words. Still, our prompt generation training
process does not directly optimize for the down-
stream prediction task’s objective, which might
also contribute to sub-optimally generated prompts.
In future work, we hope to improve these aspects
of our approach and explore natural extensions
that accommodate multiple tasks and domains in
a single model.
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