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Abstract

With the growing prevalence of large-scale lan-
guage models, their energy footprint and po-
tential to learn and amplify historical biases
are two pressing challenges. Dataset distilla-
tion (DD) — a method for reducing the dataset
size by learning a small number of synthetic
samples which encode the information in the
original dataset — is a method for reducing the
cost of model training, however its impact on
fairness has not been studied. We investigate
how DD impacts on group bias in the context
of text classification tasks, with experiments
over two data sets, concluding that vanilla DD
preserves the bias of the dataset. We then show
how existing debiasing methods can be com-
bined with DD to produce models that are fair
and accurate, at reduced training cost.1

1 Introduction

Training and inference with deep neural networks
is generally costly in terms of storage and comput-
ing resources. Model compression methods such
as knowledge distillation (Hinton et al., 2015) and
pruning (Cheong and Daniel, 2019) are popular
ways of reducing model size to make inference
more efficient. An alternative approach is dataset
distillation (“DD”: Wang et al. (2018)), which
compresses the training set into a small synthetic
dataset. Although there is significant pre-cost as-
sociated with DD in learning synthetic instances,
DD has been shown to achieve almost identical
performance to training over the original training
set (Wang et al., 2018), at reduced computational
cost. For example, Sucholutsky and Schonlau show
that, on the IMDB binary sentiment classification
dataset (Maas et al., 2011), a randomly initialized
model trained over the distilled dataset with 10

∗This work was done when Aili Shen was at The Univer-
sity of Melbourne.

1Source code available at https://github.com/
HanXudong/Fair_Dataset_Distillation
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Figure 1: Performance and fairness over an occupation
classification task, using models trained over the orig-
inal (dotted lines) and distilled datasets (dashed lines)
with different data sizes. For both metrics, larger is
better. See Section 3.2 for full results.

instances per class achieves almost 97.8% of the
original accuracy.

It is well known that naively-trained models
learn and amplify dataset biases, potentially lead-
ing to discrimination such as opportunity inequal-
ity (De-Arteaga et al., 2019). With the potential
for compression methods to reduce training and
storage cost, it is important to study their impact on
model fairness. Here, we take DD as a case study
and ask: (a) how does DD impact fairness; and
(b) can we ensure fairness within this paradigm?

Specifically, we investigate how DD impacts on
group fairness, and present experiments over two
fairness benchmark datasets for text classification.
Our contributions are: (1) we show that while DD
preserves model performance, it also retains the
dataset bias (e.g., Figure 1); and (2) we combine
bias mitigation approaches with DD, and show that
they improve fairness substantially.

2 Methodology

2.1 Dataset Distillation

Under STANDARD training, given inputs x anno-
tated with main task labels y and protected labels
g, a neural network with parameters θ and loss
function ℓ (x,y, θ) learns θ∗=argminθ ℓ(x,y, θ).
Training with stochastic gradient descent (SGD)
involves repeatedly sampling mini-batches of train-
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ing data and updating network parameters based on
their error gradient scaled by learning rate η, i.e.,
θt+1 = θt − η∇θtℓ (xt,yt, θt).

With DD (Wang et al., 2018) the goal is to find a
synthetic dataset such that SGD results in a parame-
ter update that maximally improves the STANDARD

training loss. This works by starting with initial
parameters θ0 and optimising:

x̃∗, ỹ∗, η̃∗

= argmin ℓ
x̃,ỹ,η̃

(
x,y, θ0 − η̃∇θ0ℓ (x̃, ỹ, θ0)

)
(1)

where the inner gradient term is the SGD update on
synthetic data, and the outer-most loss is the STAN-
DARD loss using the resulting parameter update.
The synthetic data instances, x̃, their labels, ỹ (rep-
resented softly, using a softmax parameterisation;
Sucholutsky and Schonlau (2021)), and the learn-
ing rate, η̃, are learned using gradient descent over
Equation (1). This requires twice differentiable ℓ;
see Wang et al. (2018) and Sucholutsky and Schon-
lau (2021) for full details of the training algorithm.
The final step after learning this small synthetic
dataset (typically in the realm of 10-100 examples)
is to use it to train a new model, which we can
then evaluate for accuracy (as in prior work), and
fairness (unique to this work).

Note that the distillation computational cost
scales positively with both the synthetic dataset
size, and the size of the original training set. In
Section 3.2, we provide the average runtime for
DD. When retraining networks over the distilled
instances, the original dataset will not be used and
is irrelevant to the retraining cost.

2.2 Bias Mitigation

Previously proposed bias mitigation approaches
can be classified as: (a) pre-processing the dataset
before training (Wang et al., 2019; Han et al.,
2021a); (b) adjusting the training algorithm itself
at-training (Li et al., 2018; Shen et al., 2021); and
(c) post-processing the trained models (Bolukbasi
et al., 2016; Ravfogel et al., 2020), which is less
relevant here, as it obscures the effect of DD it-
self. To learn fairer distilled datasets, we employ a
pre-processing method and an at-training method
at distillation time; no further debiasing is applied
at model training. We compare performance and
bias of a naively-trained model on distilled data
(a) without debiasing and (b) with debiased distil-
lation using one of the methods described next.

Balanced Training for Equal Opportunity Fair-
ness (BTEO) Recall that DD learns the com-
pressed synthetic training set from the original
dataset. Intuitively, we would expect to learn a
fairer synthetic dataset if the original dataset is bal-
anced w.r.t. the classes and protected attribute(s),
which we can achieve by pre-processing the dataset
(x, y and g). BTEO implements equal opportunity
fairness by balancing the distribution of protected
attributes for each class (Han et al., 2021a).

We achieve the objective of BTEO by dataset
downsampling, which essentially creates a bal-
anced training set where each demographic group
has the same number of training instances per class.

Adversarial Training (ADV) Following the
setup of Elazar and Goldberg (2018); Li et al.
(2018); Han et al. (2021c), the optimisation ob-
jective for standard adversarial training is:

min
θ

max
ϕ

ℓ(y, ŷ)− λℓ(g, ĝ) (2)

where ϕ denotes the trainable parameters of the ad-
versary, and λ is a trade-off hyperparameter. Solv-
ing this minimax optimization problem encourages
the main task model hidden representations to be
informative w.r.t. y but uninformative w.r.t. g.

In terms of the ADV for DD debiasing, the opti-
mization for DD (Equation (1)) is combined with
the adversarial loss (Equation (2)), resulting in the
minimax problem,

min
x̃,ỹ,η̃

max
ϕ

[

ℓ
(
x,y, θ0 − η̃∇θ0ℓ (x̃, ỹ, θ0)

)
− λℓ(g, ĝ)] (3)

Similar to STANDARD +ADV, DD +ADV trains
ϕ to predict ĝ over the final hidden representations
of the real dataset (x and g) extracted from the
classifer. However, for DD, the classifier is trained
over the synthetic datasets (x̃ and ỹ). To decouple
the training of model and discriminator, instead
of solving the minimax problem with a gradient
reversal layer (Ganin et al., 2016), we employ a
two-step update following Han et al. (2021b). The
negative sign for the adversarial loss ensures that
adversary gradients are incorporated into DD to
remove information related to protected attributes
from the synthetic instances. For full details, see
lines 6–9 of Algorithm 1 in Appendix A.

3 Experiments

In this section, we report experimental results for
DD without and with debiasing. In Appendix B,
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MOJI BIOS

Model Accuracy↑ Fairness↑ DTO↓ Accuracy↑ Fairness↑ DTO↓
STANDARD 72.3 ± 0.5 61.2 ± 1.4 47.7 82.3 ± 0.2 85.1 ± 0.8 23.2
STANDARD + BTEO 75.4 ± 0.1 87.7 ± 0.4 27.5 83.8± 0.2 90.5 ± 0.9 18.7
STANDARD + ADV 75.6 ± 0.7 89.3± 0.6 26.6 81.7 ± 0.2 90.7± 0.8 20.5

DD 71.3 ± 1.8 62.4 ± 5.9 47.3 79.7 ± 0.4 86.7 ± 1.4 24.3
DD + BTEO 75.7± 0.4 88.8 ± 1.1 26.8 73.2 ± 3.2 90.7± 1.3 28.3
DD + ADV 72.8 ± 1.5 70.7 ± 9.1 40.0 80.3 ± 0.5 87.7 ± 1.2 23.2

Table 1: Evaluation results ± standard deviation (%) on the test set of sentiment analysis (MOJI) and biography
classification (BIOS) tasks, averaged over 5 runs with different random seeds.

we provide full experimental details.

3.1 Experiment Setup

Dataset: We consider two tasks: (1) binary senti-
ment analysis over the MOJI dataset (Blodgett et al.,
2016), with protected “race” attributes (African
American English vs. Standard American English);
and (2) 28-way occupation classification with pro-
tected attribute gender (Male vs. Female) for each
biography (De-Arteaga et al., 2019).

Text DD: In order to perform text DD, we fol-
low Sucholutsky and Schonlau (2021) in learn-
ing synthetic samples from the embedding space.
Specifically, we create the training set by extract-
ing document embeddings from a fixed pretrained
language model, such that the learned synthetic
‘documents’ are vectors rather than text inputs.

Models: Since the inputs to DD are document
representations from a pretrained model, we follow
the typical classification head setting (Felbo et al.,
2017; Devlin et al., 2019) in using a multi-layer
perceptron classifer as the model (θ) for DD that
is trained over distilled instances x̃ and ỹ. Note
that the parameter initialization is assumed to be
known in this paper, which is the basic setting in
Sucholutsky and Schonlau (2021). Specifically, θ0
values are randomly sampled from Xavier Normal
distribution (Glorot and Bengio, 2010), and are
then repeatedly used in learning synthetic datasets
and retraining the model over distilled datasets.

Evaluation Metrics: Following Ravfogel et al.
(2020), we use overall accuracy as the performance
metric, and the equal opportunity criterion (Hardt
et al., 2016) to measure fairness in the form of
the absolute recall differences (RD) between demo-
graphic groups. For ease of exposition, we report
fairness as 1−RD, where larger is better and a per-
fectly fair model will achieve a score of 1.

In addition to reporting performance and fair-
ness metrics separately, we also report distance
to the optimal point (“DTO”), which quantifies
the accuracy–fairness tradeoff (Marler and Arora,
2004; Han et al., 2021a). DTO measures the nor-
malized Euclidean distance for a given combination
of accuracy and fairness to the optimal point which
denotes the ideal result, e.g., accuracy and fairness
of 1.0. It is typically unachievable in practice.

Training Details: We follow Sucholutsky and
Schonlau (2021) in our hyperparameter settings
for text DD. Specifically, we conduct distillation
for 10 GD steps, with 3 epochs for each iteration.
Within each step, we generate one synthetic text
embedding per target class, resulting in a total of
20 (= 10 steps × 2 classes) and 280 (= 10 steps
× 28 classes) synthetic embeddings for MOJI and
BIOS, respectively.

3.2 Results and Analysis

Table 1 summarizes the experimental results.
STANDARD model is trained over the original train-
ing set without debiasing, while DD denotes mod-
els with the same architecture as STANDARD but
trained over the distilled synthetic dataset. Over
both datasets, DD achieves similar accuracy to
STANDARD, consistent with previous work (Wang
et al., 2018; Sucholutsky and Schonlau, 2021).

How does DD impact fairness? Similar patterns
are observed over both datasets that fairness im-
proves marginally: models trained over the distilled
datasets retained 97.9% and 89.2% of the bias for
MOJI and BIOS, respectively.

Can we ensure fairness of DD? As described in
Section 2.2, we combined DD with two debiasing
methods: BTEO (Han et al., 2021a) and ADV (Li
et al., 2018). The methods are used only at the dis-
tillation stage, and not when training models over
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Figure 2: Evaluation results ± standard deviation with respect to different distilled dataset sizes.

the distilled dataset. Table 1 shows that, over the
MOJI dataset, both STANDARD +BTEO and STAN-
DARD +ADV improve fairness while also achiev-
ing better accuracy, leading to better performance–
fairness trade-off (smaller DTO). This is consis-
tent with previous work (Han et al., 2021c). Both
debiasing methods substantially improve fairness
while retaining accuracy compared to DD, with
DD +BTEO being most effective.

In terms of BIOS, the fairness of DD +BTEO im-
proves while accuracy drops appreciably, combin-
ing to result in a worse DTO. Since BIOS is a multi-
class dataset with label skew, this is largely due
to the naive sampling strategy of BTEO. Specifi-
cally, as suggested by Sucholutsky and Schonlau
(2021), DD is less efficient for complex tasks, and
we hypothesise the number of distilled instances for
BIOS is insufficient for BTEO which additionally
prevents the classifier from leaning unwanted cor-
relations by manipulating the training dataset. DD
+ADV, on the other hand, also improves fairness
while retaining similar accuracy to DD.

Varying the size of distilled dataset To better
understand the influence of the number of instances
per class (= steps) in DD without explicit debiasing,
we vary the number of steps from 1 to 20 (Figure 2).
As the number of instances per class decreases, the
accuracy drops substantially over BIOS, but stays
relatively constant over MOJI, again implying that

BIOS is a more challenging dataset than MOJI, due
to the combination of the much larger label set
and skew. Fairness scores generally increase as
the number of instances per class decreases, but
the combined DTO results are below the debiasing
approaches at the same fairness level.

As for DD +BTEO over the BIOS set, the accu-
racy increases monotonically as the distilled dataset
size increases, confirming our previous hypothesis
that 10 instances per class is insufficient for BTEO.

Ultimately, the best choice of distilled dataset
size is influenced by both the original task and the
debiasing methods, and an important hyperparame-
ter for DD debiasing that needs to be tuned jointly.
For MOJI, an overly-large number of instances per
class leads to worse performance and instability,
while the harder task BIOS is more stable than
MOJI given the same conditions, consisting with
the previous work (Wang et al., 2018).

Training cost of DD Similar to pre-training, DD
incurs a one-time cost in generating the distilled
dataset. However, the computational cost of DD
can be much more expensive than training the same
model over the original datasets. Tables 2a and 2b
show the computational cost for DD in seconds
over MOJI and BIOS, respectively.

Table 3 compares the training time for the non-
DD methods with DD (with 10 instances per class)
over the two datasets. ADV incurs additional cost
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Size Distillation Train
DD DD + ADV DD + BTEO

1 144 139 74 < 0.5
2 195 203 95 < 0.5
3 252 259 115 < 0.5
4 307 302 141 < 0.5
5 377 352 165 < 0.5
6 442 411 181 1
7 477 463 212 1
8 531 524 227 1
9 581 621 248 1

10 632 629 268 1
11 716 722 292 1
12 770 774 314 1
13 840 864 345 1
14 882 852 363 1
15 931 923 408 2
16 961 1051 417 2
17 998 991 438 2
18 1064 1052 473 2
19 1124 1158 488 2
20 1162 1268 525 2

(a) MOJI

Size Distillation Train
DD DD + ADV DD + BTEO

1 474 462 108 < 0.5
2 783 756 153 1
3 1137 1107 199 1
4 1459 1578 249 1
5 1919 1856 292 1
6 2325 2208 346 1
7 2485 2462 394 1
8 2802 2876 447 2
9 3037 3114 502 2

10 3453 3848 508 2
11 3769 3862 577 3
12 4225 4179 647 3
13 4620 4607 694 4
14 5370 4799 741 4
15 5084 5097 865 4
16 5442 6012 824 4
17 6139 6399 865 5
18 6007 6171 938 5
19 6685 6566 937 5
20 6728 6971 1025 5

(b) BIOS

Table 2: Computational cost (sec) to: (a) learn synthetic instances through distillation; and (b) train the model over
the synthetic instances.

Training Time

Model MOJI BIOS

STANDARD 35 96
STANDARD + ADV 40 135
STANDARD + BTEO 19 32

DD 1 2

Table 3: Training time (sec) over MOJI and BIOS.

over STANDARD due to the discriminator training,
while BTEO results in faster training due to the
reduction in training set size.

In terms of DD, the debiasing is only employed
as part of learning the synthetic instances, and does
not affect the classifier training over the distilled
dataset. As such, the training time for DD, DD +
ADV, and DD + BTEO is identical. As it can be
seen, training a model over a pre-distilled dataset is
much faster than the STANDARD training, but when
the combined cost of dataset distillation and model
training is taken into account, it is around an order
of magnitude slower than STANDARD training.

To further analysis how the upfront task of DD
compares to the training cost, Figure 3 shows the
reuse factor w.r.t. different DD sizes. For example,
for a naively trained model, the reuse factor for
size 10 is calculated as 3453

96−2 ≈ 36.73, where 3453
and 2 are the distillation time and training time of

Figure 3: Reuse factor of DD on the BIOS dataset.

DD w.r.t. size 10 (Table 2b), and 96 is the training
time of STANDARD (Table 3). It can be seen that
the ratio of neutralization and distilled dataset size
are positively correlated, and debiasing methods
(ADV and BTEO) requires less time to neutralize
the pre-cost of DD.

4 Conclusion

This paper evaluated the effect of dataset distilla-
tion on fairness in the context of two text classifi-
cation tasks. Empirically, we showed that distilled
datasets retain unwanted biases. In order to learn
fairer synthetic datasets, we employ adversarial
learning and balanced training for bias mitigation,
which results in substantial fairness improvements.
We conclude that DD can be effective for fair and
efficient text classification, specifically for simpler
tasks where a small distilled data set is sufficient.
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Limitations

Hyperparameter Tuning Taking ADV debias-
ing as an example, the current practice is to fine-
tune the trade-off hyperparameter to find the best-
performing model. However, tuning the trade-off
hyperparameter is too expensive for DD due to the
high cost of distillation. In this paper, we assume
that the trade-off hyperparameters for bias mitiga-
tion are only affected by the training dataset and
model architecture. Based on this assumption, we
adopted the best trade-off hyperparameter settings
from STANDARD training for DD, but further ex-
ploration of this interaction is warranted in future
work.

Parameter Initialization We adopted the DD
framework of Sucholutsky and Schonlau (2021),
including its strong assumptions about the initial
parameters of the classifiers that are trained over the
synthetic datasets. Specifically, the initial weights
(θ0) are assumed to be either fixed and known, or
drawn from a fixed and known distribution, before
and after distillation. This implies, for example,
that the classifier architecture has to be the same
as what was used during distillation. However, this
assumption underlies most existing DD work, and
is outside the scope of this research.

Ethical Considerations

This work aims to detect and mitigate bias in dis-
tilled datasets in NLP. For DD, both the distillation
over original datasets and the classifier training
over the distilled datasets do not access the pro-
tected attributes. However, consistent with previ-
ous work, the fairness definition and evaluation are
based on the protected attributes. Briefly, the pro-
tected attributes are unobserved during distillation,
model training, and inference, and are only used
for evaluation purposes.

This work relies on benchmarks to evaluate
model fairness and accuracy. Like much pre-

vious work, these benchmarks propose an over-
simplified, binary notion of the protected attributes.
We acknowledge that both gender (Sun et al., 2019)
and race (Field et al., 2021) are more nuanced. As
a result of such oversimplification specifically, and
the controlled nature of benchmarks in general, we
recommend to additionally consult user studies and
application scenarios to obtain holistic measure of
model fairness.

In terms of the DD debiasing, the employed
method requires access to training datasets with
protected attributes, consistent with previous work
on adversarial training and other bias mitigation
methods. After distillation, it is important to note
that the model trained over the debiased distilled
dataset can make fairer predictions without any
requirement of demographic information for either
synthetic instances or test instances.

We only use attributes that the user has self-
identified in our experiments. All data in this study
is publicly available and used under strict ethical
guidelines.
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Algorithm 1 Fair Dataset Distillation
Input: θ0 = initial weights of the main model; α = DD step
size; T = number of optimization iterations; ỹ0 = initial value
for ỹ; η̃0 = initial value for η̃; λ = strength of the adversarial
regularization

1: Initialize distilled dataset with M instances
x̃ = {x̃i}Mi=1 randomly,
ỹ = {ỹi}Mi=1 ← ỹ0,
η̃ ← η̃0

2: for each training step t = 1 to T do
3: Get a mini-batch of n real training instances

(xt,yt) = {xt,j , yt,j}nj=1

4: Compute updated model parameters with GD
θ1 = θ0 − η̃∇θ0ℓ (x̃, ỹ, θ0)

5: Evaluate the objective function on real training data:
L = ℓ (xt,yt, θ1)

6: if ADV then
7: Update the discriminator ϕ

ϕ = ϕ− ηadv∇ϕℓ (xt,gt, θ1, ϕ)
8: Incorporate adversarial loss

L = L − λℓ (xt,gt, θ1, ϕ)
9: end if

10: Update distilled data
x̃← x̃− α∇x̃

∑
j L,

ỹ← ỹ − α∇ỹ

∑
j L,

η̃ ← η̃ − α∇η̃

∑
j L

11: end for
Output: distilled data x̃; labels ỹ; and learning rate η̃

A Algorithm

The algorithm for combined DD with debiasing
techniques is detailed in Algorithm 1.

B Experimental Details

B.1 Dataset Splits

We use the same data split as previous work (Rav-
fogel et al., 2020), resulting in train, dev, and test
splits of 100k/8k/8k for MOJI, and 257k/40k/100k
for BIOS.

B.2 Fairness Metric

We follow the previous work (Han et al., 2021c)
in reporting the RMS recall (TPR) disparities. The
calculation of RMS TPR GAP consists of aggre-
gations at the group and class levels. At the group
level, we measure the absolute TPR difference of
each class between each group and the overall TPR
GAP TPR

G,y =
∑

g∈G |TPRg,y−TPRy|, and at the
class level, we further perform the RMS aggrega-
tion at the class level to get the RMS TPR GAP as
GAP =

√
1
|Y |

∑
y∈Y (GAP TPR

G,y )2.

B.3 Models
We follow Ravfogel et al. (2020) in using Deep-
Moji (Felbo et al., 2017) as the encoder to get
2304d representations of the input texts. For the
BIOS dataset, we follow Han et al. (2021a) in
taking 768d ‘AVG’ representations from BERT-
base (Devlin et al., 2019), which takes the average
of all contextualized token embeddings.

The number of trainable parameters of the clas-
sifier is about 1M for both tasks. The synthetic
datasets can also be treated as trained parame-
ters, and the total number of trainable parame-
ters are influenced by, dimension of the embed-
ding space (nd), the number of classes (nc), and
the number of distillation steps (ns), resulting in
ns× (nd×nc+nc×nc+1, which are 4613×ns
and 22289× ns for MOJI and BIOS, respectively.

We notice that DD is slow to converge for some
random initializations. When running DD with
different random seeds, we set dataset-specific ac-
curacy thresholds to filter unconverged runs, which
are 0.65 and 0.6 for MOJI and BIOS, respectively.

B.4 Computing Infrastructure
We conduct our experiments on a Windows server
with a 16-core CPU (AMD Ryzen Threadripper
PRO 3955WX), two NVIDIA GeForce RTX 3090s
with NVLink, and 256GB RAM, and on a HPC
cluster instance with 4 CPU cores, 32GB RAM,
and one NVIDIA V100 GPU.

B.5 Hyperparameter Tuning
We use the same model architectures and hyperpa-
rameters as previous work (Han et al., 2022), which
are shown to achieve better results than the results
in the original paper of BTEO (Han et al., 2021a)
and ADV (Li et al., 2018). We vary the size of
the distilled dataset from 1 to 20 for each method
and run experiments 7 times with different random
seeds for each hyperparameter combination. Corre-
sponding scripts are included in the submitted code
file.
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