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Abstract

We investigate the extent to which pre-trained
language models acquire analytical and deduc-
tive logical reasoning capabilities as a side ef-
fect of learning word prediction. We present
AnaLog, a natural language inference task de-
signed to probe models for these capabilities,
controlling for different invalid heuristics the
models may adopt instead of learning the de-
sired generalisations. We test four language
models on AnaLog, finding that they have all
learned, to a different extent, to encode in-
formation that is predictive of entailment be-
yond shallow heuristics such as lexical over-
lap and grammaticality. We closely analyse
the best performing language model and show
that while it performs more consistently than
other language models across logical connec-
tives and reasoning domains, it still is sensitive
to lexical and syntactic variations in the reali-
sation of logical statements.

1 Introduction

Logical reasoning (Lakoff, 1970; MacCartney and
Manning, 2007; Smith, 2020) is at the core of
many downstream NLP tasks, such as dialogue
and story generation (Fan et al., 2018; Welleck
et al., 2019); narrative understanding and summari-
sation (Mostafazadeh et al., 2016; Vashishtha et al.,
2020); question answering (Weber et al., 2019; Shi
et al., 2021); relation extraction (Massey et al.,
2015; Kassner et al., 2020; Yanaka et al., 2021);
and visual comprehension (Suhr et al., 2017, 2019;
Sethuraman et al., 2021). Because most of the cur-
rent approaches to these tasks rely on pre-trained
language models (LMs), it is essential to under-
stand whether LMs can perform logical reasoning.

One way of verifying LMs’ reasoning abilities is
using a natural language inference (NLI) task (Da-
gan et al., 2005; Giampiccolo et al., 2007; Bowman
et al., 2015; Bhagavatula et al., 2020; Rudinger
et al., 2020). In NLI, an LM is given a premise

and a hypothesis, and its task is to predict the
logical relation between the two. Yet, LMs typ-
ically learn to solve NLI by using invalid heuris-
tics, for example by extracting overlapping patterns
between premises and hypotheses (McCoy et al.,
2019), or by using specific lexical items and sen-
tence grammaticality as simplistic predictors of
entailment (Poliak et al., 2018).

In this paper, we examine whether pre-trained
LMs rely solely on shallow heuristics, or whether
they can use relevant reasoning abilities to make
inferences. To do so, we develop a new NLI task,
AnaLog,1 that requires LMs to encode different
logical reasoning patterns and we probe the be-
haviour of four masked and autoregressive LMs
on this new dataset. Using interpretability mea-
sures, we find that, as a side effect of learning word
prediction, all LMs under scrutiny have—to some
extent—learned to encode information that is pre-
dictive of entailment relations.

We analyse the behaviour of the best perform-
ing model, BERT (Devlin et al., 2019), across the
various inference categories present in AnaLog,
finding that its reasoning abilities go beyond shal-
low heuristics and yield relatively consistent per-
formance on deductive and analytical reasoning, as
well as across reasoning domains (spatial and com-
parative) and logical connectives. Nevertheless,
the model’s behaviour within connectives varies,
pointing out its sensitivity to lexical and syntactic
variations in the realisation of logical statements.

2 Related Work

2.1 Learning Logic from Text

Recent work has explored which aspects of logi-
cal reasoning are statistically learnable from text.
Examining how well LMs encode the semantics of

1The dataset is available at https://github.com/
dmg-illc/analog
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logical connectives can give us insight into their
reasoning capabilities, i.e., their ability to reach a
conclusion from one or more statements.

Kim et al. (2019b) showed that BERT (Devlin
et al., 2019) achieves 10% higher accuracy than
humans on tasks that involve conjunctions. How-
ever, it has also been shown that LMs fail to encode
the semantics of logical formulas (Traylor et al.,
2021b) and struggle to differentiate between con-
junction and disjunction (Traylor et al., 2021a),
particularly in instances where the operands are
noun phrases (Talmor et al., 2020), suggesting that
the models find it difficult to understand the scope
of the logical operator. It is also known that neu-
ral LMs have difficulty understanding argument
order (Kassner et al., 2020), which is arguably
a pre-requisite for any logical reasoning. Clark
et al. (2020) and Tian et al. (2021) showed that
RoBERTa (Liu et al., 2019), in contrast to BERT,
performs well at encoding instructional texts that
involve conditionals. Good performance on con-
ditionals in LMs is surprising, since humans typ-
ically find reasoning about conditionals challeng-
ing due to the fact that it requires accommodating
degrees of belief (Politzer, 2007). Finally, regard-
ing universal quantification, which implicitly in-
volves encoding a hidden conditional statement
(e.g. ∀x.P (x)→ Q(x)), BERT’s performance has
been shown to vary substantially (Kim et al., 2019b;
Tian et al., 2021).

Besides different logical connectives, some re-
cent work has studied different types of reasoning
domains. Kassner et al. (2020) showed that models
such as BERT and RoBERTa struggle to encode
the semantics of comparative reasoning phrases.
Yet, Kim et al. (2019b) showed that BERT’s perfor-
mance is only 11% less than human performance
on comparative reasoning tasks, and 10% less than
human performance on spatial reasoning tasks.

Overall, there is a lot of variation in LMs’ abili-
ties to interpret different aspects of logical reason-
ing. We suspect that low performance stems from
the fact that LMs are struggling to encode world
knowledge, which is often required in NLI and
logic datasets (Clark et al., 2007; Wang et al., 2018;
Lauscher et al., 2020; Kassner et al., 2020; Ryb and
Van Schijndel, 2021), while high performance may
be due to extracting overlapping heuristics (Beall
et al., 2019; McCoy et al., 2019), or to attending to
shallow predictors such as the presence of specific
words or sentence grammaticality (Poliak et al.,

2018). We control for these factors in AnaLog.

2.2 Diagnostic Probing

A well established way of investigating what type
of linguistic information is tracked by neural LMs
is diagnostic probing (Ettinger et al., 2016; Adi
et al., 2017; Belinkov et al., 2017; Conneau et al.,
2018; Hupkes et al., 2018). Probing typically con-
sists of extracting model representations, feeding
them as input to a supervised classifier trained to
predict a hypothesised linguistic property (e.g., the
grammatical number agreement of the main verb of
a sentence), and testing the probing classifier on a
set of unseen representations. Good probing perfor-
mance cannot directly be taken to indicate that the
hypothesised linguistic property is tracked by the
LM (Belinkov, 2021). It is thus common practice
to compare the true probing performance of classi-
fiers with performance on control representations
(Zhang and Bowman, 2018; Tenney et al., 2018;
Chrupała et al., 2020), tasks (Hewitt and Liang,
2019a), or datasets (Ravichander et al., 2021).

In this paper, we set up a careful evaluation pro-
cedure to interpret the performance of our prob-
ing classifier, by training it on increasingly small
portions of training data, and comparing its perfor-
mance in relation to two baselines.

3 Dataset Design and Construction

We extend the LAKNLI dataset (Ryb and Van Schi-
jndel, 2021) and present AnaLog, an NLI dataset
that explicitly targets different types of logical rea-
soning. The dataset contains a total of 24,000 items
(see Table 2), where each item consists of a premise,
a hypothesis, and their logical relation: entailment
or non-entailment. Premises and hypotheses are
generated from templates, using a restricted and
carefully selected vocabulary. The templates and
the vocabulary can be found in Appendices A.1
and A.2. The dataset is designed to contain a
balanced distribution of logical connectives and
reasoning categories. Examples are provided in
Table 1.

3.1 Premises

Sentences in AnaLog are constructed from tem-
plates designed for specific logical connectives. For
example:

(1) N1 P1 N2 and N3

A premise is constructed through filling a tem-
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Premise HypothesisOVERLAP NO-OVERLAP

AND Jennifer is in front of Elizabeth
and Jennifer is to the north of
Linda.

→ Jennifer is in front of Elizabeth.
9 Elizabeth is to the north of
Linda.

→ A person is behind some woman.
9 A person is behind some man.

OR Jennifer is to the north of
Linda or is below Robert. Jen-
nifer is not below Robert.

→ Jennifer is to the north of Linda.
9 Robert is below Jennifer.

→ Some person is to the south of some
woman.
9 Some boy is to the east of a man.

CON If Elizabeth is older than Jen-
nifer then Linda is smaller
than Jennifer. Elizabeth is
older than Jennifer.

→ Linda is smaller than Jennifer.
9 Jennifer is smaller than Linda.

→ A person is larger than some woman.
9 A woman is arriving later than some boy.

UNI Every director is to the west of
Patricia. James is a director.

→ James is to the west of Patricia.
9 Patricia is to the west of James.

→ Some woman is to the east of some man.
9 Some woman is to the right of some man.

Table 1: Examples of premises and hypotheses for each of the logical connectives. Within the premises, connec-
tives are bolded and spatial and comparative reasoning predicates are highlighted in blue and orange, respectively.

plate’s slots with nouns and predicates. For in-
stance, N1 = Patricia, N2 = James, N3 = Mary,
and P1 = is to the left of would result in:

(2) Patricia is to the left of James and Mary

Logical Connectives AnaLog systematically dis-
tinguishes between the following four types of log-
ical connectives in the premise:
• AND: conjunction (and)

• OR: disjunction (or)

• CON: conditionals (unless, if, if then, only if )

• UNI: universal quantification (every, all)
This is in contrast to both SuperGLUE (Wang et al.,
2020) where the logical connectives vary between
being positioned in the premise or hypothesis, and
LogicNLI (Tian et al., 2021), where premises con-
sist of multiple facts and rules and do not isolate
logical connectives. LogicNLI premises may also
feature negation, existential quantification, and
equivalence. Since negation is often used as a
heuristic to predict non-entailment in NLI tasks
(McCoy and Linzen, 2019), we only include it
within premises when absolutely necessary to asses
LMs’ understanding of a specific reasoning schema
(such as disjunction and certain forms of condition-
als). Existential quantification and equivalence are
implicitly present in our hypotheses construction,
as explained in Section 3.2.

Nouns The noun slots in our premise templates
are filled with proper names, as this avoids possible
confounding factors carried over by the semantics
of common nouns. We choose the eight most fre-
quent male and female first names according to the
1990 U.S. Census Bureau’s Population Division.
For the restrictor noun in universal quantification

premises (e.g., director in the UNI premise in Ta-
ble 1), we use the four most common nouns in
COCA (Davies, 2010) which correspond to the cat-
egory NOUN.PERSON in Wordnet (Fellbaum, 1998),
do not begin with a vowel,2 and are semantically
compatible with our predicates. Selecting high fre-
quency nouns ensures that LMs are not thrown off
by infrequent occurrences, nor heavily influenced
by specific lexical material. This enables LMs to
output representations that are as stable as possible.

Predicates The predicates in our templates are
also instantiated with a restricted vocabulary that
limits interference with additional sorts of knowl-
edge. We focus on two reasoning domains: spa-
tial (3) and comparative (4) reasoning. We select
pairs of spatial reasoning predicates from Kim et al.
(2019a), such as left-right and above-below. To
collect comparative reasoning predicates, we select
pairs from the FraCaS project (Cooper et al., 1996),
such as smaller-larger and weaker-stronger. Rea-
soning about these two types of predicates requires
models to encode truth equivalent relationships,
such as:

(3) N1 is above N2 ⇐⇒ N2 is below N1

(4) N1 is stronger than N2 ⇐⇒ N2 is weaker
than N1

3.2 Hypotheses

Assessing whether a given hypothesis is entailed by
a premise may require different kinds of reasoning.
For example, some hypotheses follow purely on the
basis of structural aspects, i.e., they can be derived
by direct deduction on surface form: e.g., ‘A and

2So that they are all compatible with the article a.
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B’ logically entails ‘A’ as well as ‘B’, as in (5-a).3

Such hypotheses require deductive reasoning. In
contrast, other cases of entailment go beyond ma-
nipulations at the level of surface form and instead
rely on additional semantic knowledge, as in (5-c).
Such hypotheses require analytical reasoning.

To test both types of reasoning, we generate en-
tailment and non-entailment hypotheses for each
type. For the example premise in (5), this results in
the following four hypotheses, where→ denotes
an entailment, and 9 a non-entailment relation:

(5) Patricia is to the left of James and Mary
a.→ Patricia is to the left of James
b. 9 Mary is to the left of James
c.→ Some man is to the right of some other

person
d.9 Some man is older than some woman

For AND, we randomly select one of the conjuncts
to construct the entailed direct logical deduction
hypotheses. That is, (5-a) could have also been
Patricia is to the left of Mary. Details of the other
connectives can be found in Appendix A.2 (Ta-
ble 7).

AnaLog clearly distinguishes between deduc-
tive and analytical reasoning, which gives rise to
a systematic distinction between hypotheses that
exhibit lexical overlap and those that do not ex-
hibit any overlap of content words (see examples
in Table 1). Hence, in addition to isolating LMs’
abilities to both deductively and analytically rea-
son, this offers a way to control LMs’ potential
use of overlap-related heuristics, which have been
shown to artificially inflate previous results on the
NLI task (McCoy et al., 2019). We explain this
distinction in more detail next.

Overlapping Hypotheses Overlapping hypothe-
ses only consist of words reiterated from the
premise. Overlapping entailment (O→) hypothe-
ses are a direct logical deduction (5-a), which cor-
responds to the strictest case of premise overlap
considered by McCoy et al. (2019). Overlapping
non-entailment (O9) hypotheses, in contrast, do
not logically follow from the premise (5-b). We
generate two types of O9 hypotheses: grammati-
cal instances O9

G such as (5-b) and ungrammatical
instances O9

UG, which correspond to an ungram-
matical bag-of-words subset of the premise (e.g.

3In this example, ‘B’ is the implicit proposition ‘Patricia
is to the left of Mary’.

‘and to left the of Patricia’).
While it may not be realistic to expect that LMs

have had exposure to ungrammatical sentences dur-
ing training—and hence that they will have learned
to properly reason with them (i.e., to systematically
classify them as non-entailment)—including un-
grammatical instances allows us to test the strength
of possible overlap-based heuristics: if LMs more
frequently incorrectly assign the label entailment
to ungrammatical cases that exhibit lexical overlap,
then we can consider lexical overlap as a stronger
heuristic than grammaticality.

Non-Overlapping Hypotheses Non-
overlapping hypotheses are generated by replacing
proper names with person-related hypernyms and
replacing the predicate with its counterpart (e.g.,
James ; some man, left ; right).4 We generate
both Non-Overlap entailment (NO→) hypotheses
(i.e., proper instances of analytical reasoning, such
as (5-c)) and Non-Overlap non-entailment (NO9)
hypotheses, such as (5-d).

O E G AND OR CON UNI

O→ X X X 1,500 1,500 1,500 1,500
O9

G X 7 X 750 750 750 750
O9

UG X 7 7 750 750 750 750

NO→ 7 X X 1,500 1,500 1,500 1,500
NO9 7 7 X 1,500 1,500 1,500 1,500

6,000 6,000 6,000 6,000

Table 2: AnaLog dataset statistics. The dataset contains
24,000 items in total. Overlap (O), Entailment (E), and
Grammaticality (G) are marked. For each category (nu-
merical cell), half of the items are constructed with spa-
tial, and half with comparative reasoning predicates.

4 Experimental Setup

4.1 Models

We probe four pre-trained Transformer (Vaswani
et al., 2017) language models using AnaLog. To
ensure a fair comparison, we use the large ar-
chitecture size for all models, as available in the
HuggingFace library (Wolf et al., 2020). We com-
pare the following architectures:

BERT (Devlin et al., 2019) A Transformer-based
LM pre-trained on masked language modeling and

4We minimize the risk of the probe memorizing facts in
the dataset by choosing to not have 1-to-1 mappings of proper
names to person-related hypernyms.
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next sentence prediction, known for its high perfor-
mance at sentence and token classification tasks, in-
cluding NLI (Talman and Chatzikyriakidis, 2019).

LUKE (Yamada et al., 2020) A masked LM
with an entity-aware self-attention mechanism, that
builds upon the RoBERTa architecture (Liu et al.,
2019). Using LUKE enables us to investigate the
degree to which entity tracking can assist in solving
logic-based NLI.

StructBERT (Wang et al., 2019) A masked LM
based on BERT with additional word and sentence
order training objectives. We expect StructBERT
to provide insight on whether structural cues are
useful in solving logic-based NLI.

GPT-2 (Radford et al., 2019) An autoregressive
Transformer-based LM which is known for its high
performance across text-generation tasks, yet has
not been frequently tested on NLI datasets. We are
interested in how abstract representations built by
an autoregressive LM compare to those built by
masked LMs.

4.2 Probing Procedure
For each premise-hypothesis pair in AnaLog, we
concatenate the text of the premise with that of
the hypothesis and with the special sentence token
from each LM’s vocabulary.5 We feed this text to
the LM and extract the last layer’s hidden activa-
tions corresponding to the special token; we take
the activations to be the abstract representation of a
premise-hypothesis pair. Repeating this procedure
for all the items in AnaLog, we collect a dataset of
representations, which we split into a training and
a test set (see Section 4.3). We fit a binary logistic
regression classifier6—as more powerful classifiers
have been shown to produce unreliable results (He-
witt and Liang, 2019a)—to the training set, obtain
predictions for the test set, and compute accuracy
and baselined probing scores, as described in the
next section.

4.3 Controlled Evaluation
Diagnostic probes are known for achieving high
accuracy on linguistic tasks despite representations

5For BERT and StructBERT, we prepend the [CLS] to-
ken; for GPT-2, we append the <|endoftext|> token; for
LUKE, we append the </s> token.

6We use the scikit-learn implementation with default hy-
perparameters. We do not tune the hyperparameters to reduce
the risk of overfitting to the collected representations, which
would inflate the probing results. All logistic regression clas-
sifiers are trained until convergence.

not necessarily encoding relevant linguistic infor-
mation (Hewitt and Liang, 2019b; Belinkov, 2021).
To address this issue, following the approach taken
by Zhang and Bowman (2018), we measure prob-
ing performance as the difference between the clas-
sification accuracy of the probing classifier trained
on the original dataset, and the accuracy of a base-
line. We call this baselined probing performance
(BPP), adopting the terminology proposed by He-
witt et al. (2021). To select the strictest baseline
setup, we consider two aspects: 1) the amount
of data, and 2) the type of data—i.e., controlled
baseline representations obtained from the AnaLog
dataset, on which the probe is trained.

Partial Training Sets We split AnaLog into a
main training and testing set using an 80-20 split.
To prevent overfitting of the probing classifier, we
evaluate it by varying the quantity of data it is
exposed to: we create partial training sets by sam-
pling increasingly larger fractions of our main train-
ing set (1%, 2%, 4%, 6%, 8%, 10%, 12.5%, 25%,
50%, 100%), using an approach similar to that
of Zhang and Bowman (2018). The testing set
remains fixed, so that regardless of the split and
baseline probe, we evaluate on a consistent set of
sentences. All the resulting training sets and the
testing set are balanced with respect to the two clas-
sification labels (entailment and non-entailment),
logical connectives, reasoning predicates, and over-
lap vs. non-overlap.

Baselines We train the probing classifier on two
baseline settings. For the Scrambled baseline, we
scramble words in the premises and hypotheses
separately, and train the probing classifier on their
concatenation. Humans should achieve 50% accu-
racy on this version of the dataset because random
word order impedes logical reasoning. For the Ran-
dom baseline, we train the probing classifier on
randomly initialised vector representations.

We consider these baselines as sufficient to en-
sure that entailment relations can only be predicted
by using logical reasoning and not by exploit-
ing dataset artifacts. For example, if the probes
were solely learning associations between proper
names and person-related hypernyms, the scram-
bled probe could suffice to achieve the same per-
formance as the probe optimised on the original
AnaLog testing set.

We train the probing classifier from scratch for
each LM, training split, and baseline. As shown in
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Figure 1: Accuracies of the original (true) vs. baseline (scrambled, random) probes for different training splits.

Figure 1, the Scrambled baseline achieves the high-
est accuracy (around 60%) across all LMs and train-
ing splits. The Random baseline achieves chance-
level accuracy across LMs and training splits, con-
firming that the complexity of our probing clas-
sifier is appropriate for this task.7 We therefore
use Scrambled to compute BPP scores, as it yields
the strictest (or most selective; Hewitt and Liang,
2019a) baseline setup.

5 Results across Models

All four LMs achieve positive average BPP scores:
the average accuracy is above baseline by ca. 20
percentage points (see Figure 2). These overall
results indicate that the LMs encode information
that is predictive of entailment relations above and
beyond simple heuristics which can be captured by
a baseline. We also observe that the highest BPP
scores are obtained at a relatively small training
split size. This suggests training probes on more
data can decrease their ability to extract the targeted
linguistic features, and cause them to overfit on the
dataset instead.

BERT and StructBERT are the best performing
models with BPP scores ranging roughly between
15 and 40 (except for the smallest training split
sizes). Their similar performance across all splits
shows that StructBERT’s explicit modelling of sen-
tence and discourse structure does not produce
more informative representations for our AnaLog
task than BERT’s simpler next word and next sen-
tence prediction training objectives.

GPT-2’s high standard deviation across splits
(on average, 20.82) indicates a severe instability in
its capacity to correctly encode logical reasoning
cues. A closer look at GPT-2’s performance shows

7We would have seen an accuracy greater than 50% for
Random if the complexity of the classifier had been excessive.

that its representations are predictive of entailment
relations when there is lexical overlap between
premises and hypotheses, and of non-entailment
relations when there is no lexical overlap. While
GPT-2 is an autoregressive LM, as opposed to the
other masked LMs, we are not certain that this fac-
tor is what causes this learning pattern. We leave
exploring this further to future work.

Lastly, LUKE’s performance, with an average
score of 15.05, is significantly lower than that of the
other three models (t-tests against BERT, Struct-
BERT and GPT-2 yield p-values approaching zero),
suggesting that its ability to track entities does not
significantly help in solving logical deductions.

For the detailed results presented in the next
sections, we focus on the model that achieves the
highest BPP score with the lowest standard devi-
ation. As can be seen in Figure 2, this model is
BERT, probed with a classifier trained on 12.5% of
the full training split.

Figure 2: BPP scores for different training splits.
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(a) Overlap (all grammatical) (b) Grammaticality (O9) (c) Reasoning domains (d) Logical connectives

Figure 3: BERT probing results across dataset categories. Overall bar height indicates accuracy, broken down by
baseline accuracy (dark blue) and BPP score (light blue with superimposed average score and standard deviation).

6 Detailed Results with BERT

6.1 Solving Inference without Heuristics
We start by analysing the extent to which the per-
formance of the best model, BERT, may be the
result of exploiting heuristics unrelated to logical
reasoning.

Overlap If lexical overlap were used as a heuris-
tic to predict entailment, we would expect lower
performance for overlap-non-entailment O9 and
no-overlap-entailment NO→ instances, where us-
ing the overlap heuristic yields incorrect predic-
tions. This is not the pattern we observe. As shown
in Figure 3a, accuracy is highest in these two cases.
We see that O9 items yield the lowest BPP scores
and NO→ the highest (this difference is statisti-
cally significant and in principle compatible with
the heuristics). However, there is no significant dif-
ference between no-overlap items with entailment
vs. non-entailment labels. This indicates a lexical
overlap heuristic is not prominently at play.

As pointed out in Section 3.2, the overlap vs.
non-overlap distinction also corresponds to the con-
trast between direct deduction and analytical rea-
soning. We do not observe any significant differ-
ences in performance across these two reasoning
types. More generally, the fact that BPP scores are
positive across the board for overlapping and non-
overlapping cases shows that the model is solving
our logic-based NLI task by using information that
goes beyond simple heuristic cues.

Grammaticality If a model were to judge entail-
ment relations purely on the basis of grammatical-
ity, we would expect it to wrongly predict entail-
ment for O9

G (overlap-non-entailment grammati-
cal) instances and correctly predict non-entailment
for O9

UG (overlap-non-entailment ungrammatical).

This is not what we observe: BPP scores are posi-
tive and not significantly different between O9

G and
O9
UG, which indicates grammaticality is not being

used as a heuristic to predict entailment.
Finally, we find that performance on ungram-

matical sentences is more unstable (standard devi-
ation is almost 8 times higher than for O9

G ); this
may be due to BERT producing noisier representa-
tions for out of distribution, partially ungrammati-
cal, strings.

6.2 Consistency across Reasoning Domains
Having established that two plausible heuristics are
not behind our probing results, we now turn to com-
paring reasoning domains. We have already seen
that BERT’s representations seem to be amenable
to both deductive and analytical reasoning. We
next hypothesize that if LMs can indeed reason
logically, their performance should not be signif-
icantly affected by the specific choice of lexical
items. We therefore compare the probes’ perfor-
mance on spatial vs. comparative reasoning pred-
icates in AnaLog (see Figure 3c). We find no sig-
nificant difference (t = 0.442, p = 0.662) in BPP
scores across predicate types. This indicates that
BERT’s encoding of lexical semantic relations (in
particular, antonymy) is stable across reasoning do-
mains. This result is in line with the findings of
Kim et al. (2019b), who show no substantial differ-
ences between spatial and comparative reasoning
for BERT and humans.

6.3 Logical Connectives
Finally, we break down the results per logical con-
nective. As can be seen in Figure 3d, BPP scores
are positive and similar across operators, suggest-
ing that BERT representations encode the seman-
tics of logical connectives in a relatively stable way.
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We observe the lowest BPP scores with conjunc-
tion and conditionals (in both cases significantly
lower than UNI, p < 0.05). This is somewhat
surprising, particularly for conjunction, given the
previous results by Kim et al. (2019b) mentioned
in Section 2.1. In the next section, we conduct two
case studies to further examine whether there are
specific linguistic phenomena linked to conjunction
and conditionals that may be confusing BERT.

7 Analysis

7.1 Case Study 1: Parsing Conjunction
In AnaLog, the arguments of a conjunction can be
sentences (S), noun phrases (NP), or verb phrases
(VP).8 For example, the AND premise in Table 1
includes sentential conjuncts, while the one in ex-
ample (5) features conjuncts that are NPs. We test
two related hypotheses regarding aspects that may
lead to lower performance in some of these condi-
tions: (i) We conjecture that, when the conjuncts
are NPs or VPs, deducing information to the right
of the conjunct may be more difficult because this
involves parsing long-range dependencies. For ex-
ample, in instances such as David is to the left of
John and Linda→ Some girl is to the right of a boy,
predicting the entailment relation requires encod-
ing syntactic and semantic information to both the
left and right of the logical connective. (ii) Conse-
quently, we hypothesise that identifying the argu-
ments of a conjunction may be easier for the model
when these arguments are sentential rather than
phrasal, since the former does not require parsing
long-range dependencies; this would be compatible
with the results by Talmor et al. (2020), who found
that models struggle at making correct predictions
when the conjunction is positioned between NPs.

Our two hypotheses, however, are not confirmed.
On the one hand, we find no significant difference
between left and right for any conjunct type (S, NP,
and VP). This suggests that BERT’s representations
consistently encode information regardless of its
position relative to the conjunction operator, which
could be due to BERT’s bidirectional training. On
the other hand, as can be seen in Figure 4a, we
observe that when the conjunction is positioned be-
tween sentences, the results are in fact significantly
worse than when it is positioned between NPs or
VPs.9 Why this may be the case remains an open
question that we leave for future work.

8These three types appear with equal frequency.
9All relevant t-tests yielded p > 0.05.

(a) Conjunction (b) Conditionals

Figure 4: BERT results within logical connectives.

7.2 Case Study 2: Types of Conditional

In this second case study, we investigate whether
BERT’s representations struggle to encode some
types of conditionals more than others.10 We ex-
pect to observe the highest performance for if then
sentences, as BERT and RoBERTA reason well
about modus-ponens (Clark et al., 2020). How-
ever, as shown in Figure 4b there is no significant
differences between if then, if, and unless(infix).
The most challenging types are only if and un-
less(prefix). We find that unless(prefix) is signifi-
cantly outperformed by unless(infix). This again
shows that BERT is able to successfully encode
relevant information to both the left and right of a
connective.

8 Conclusions

We present a new NLI dataset, AnaLog, designed
to test LMs’ abilities to deductively and analyti-
cally reason. We choose diagnostic probing as an
interpretability technique, and probe using AnaLog
to inspect whether LMs acquire such logical reason-
ing abilities from text-based pre-training. We find
that masked LMs, in particular BERT and Struct-
BERT, can solve the inference task through encod-
ing properties of both deductive and analytic logic,
rather than solely relying on shallow heuristics such
as lexical overlap and sentence grammaticality.

One main benefit of AnaLog is that it isolates
different reasoning types, domains, and logical con-
nectives, in order to gain a better understanding of
which of these factors makes inference more chal-
lenging for an LM. We choose high frequency lex-
ical items to ensure that the LMs’ representations
are as stable as possible, and not thrown off by sur-
prising low frequency occurrences. We also use a
fine-grained probing setup consisting of different

10The conditionals present in AnaLog are: if, if then, only
if, unless(prefix), unless(infix); see Appendix A.2.
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training splits and multiple baselines to ensure that
probes are using relevant linguistic and logical in-
formation, rather than learning the dataset artifacts,
to solve the task.

We perform an in-depth analysis of BERT’s be-
haviour. Its overall stable performance is promis-
ing, though our case studies show some variance at
the level of different natural language formulations
of the same logical connective or their arguments
as opposed to at higher reasoning levels. Overall,
we think that BERT learns to encode approxima-
tions of the types of logical reasoning information
necessary to solve AnaLog, although its sensitivity
to surface forms can make these approximations in-
consistent. While extending the AnaLog test set to
also include lower frequency items may be helpful
to ensure generalizability over noun and predicate
relations (which we leave for future work), we hope
that as it currently stands, AnaLog can be used as a
benchmark to check whether LMs reason correctly
by using elementary linguistic knowledge and logi-
cal semantics, as opposed to surface heuristics.
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Appendix

A Dataset Construction Details

A.1 Lexical Items

Tables 3 and 6 respectively, show the noun, spatial
and comparative analytic reasoning phrases used
in AnaLog.

Name Gender % Freq. Count
James M 3.318 4,840,833
John M 3.271 4,772,262
Robert M 3.143 4,585,515
Michael M 2.629 3,835,609
William M 2.451 3,575,914
David M 2.363 3,447,525
Richard M 1.703 2,484,611
Charles M 1.523 2,221,998
Mary F 2.629 3,991,060
Patricia F 1.073 1,628,911
Linda F 1.035 1,571,224
Barbara F 0.98 1,487,729
Elizabeth F 0.937 1,422,451
Jennifer F 0.932 1,414,861
Maria F 0.828 1,256,979
Susan F 0.794 1,205,364

Table 3: Noun phrases. Source: 1990 U.S. Census Bu-
reau’s Population Division.

As mentioned in Section 3.1, for the restrictors
of the universal quantification premises (i.e., the
UNIN slot in the Table 7 template), we used the
four most common nouns in COCA (Davies, 2010)
which do not begin with a vowel, and that cor-
respond to the category NOUN.PERSON in Word-
net (Fellbaum, 1998), ensuring grammaticality
when used within our templates (see Table 4).
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Restrictor Noun POS Frequency
model n 191,448
director n 158,028
participant n 81,371
soldier n 78,276

Table 4: UNIN restrictor noun entries. Source: Corpus
of Contemporary American English. POS stands for
Part of Speech.

We replace the nouns from Table 3 with lexical
entries from Table 5 within non-overlapping entail-
ment (NO→) and non-overlapping non-entailment
(NO9) sentences, to ensure that models (and
probes) are not using non-linguistic heuristics when
solving the inference task.

Gender Hypernyms
Female a girl, some girl, some other girl, a

woman, some woman, some person, a
person

Male a boy, some boy, some other boy, a
man, some man, some person, a person

Table 5: Noun hypernyms used within AnaLog.

A.2 Premise Constructions
Premises are constructed according to different tem-
plates (see Table 7). Let N be some noun (e.g.
Patricia, David ...) and P be some spatial or com-
parative reasoning predicate (e.g. is to the right
of, is younger than ... ). We use the ¬ symbol
to denote negation. See Table 8 for information
pertaining to the Specificity.

B Computing Infrastructure and Budget

Our experiments were carried out using a single
GPU on a computer cluster with Debian Linux OS.
The GPU nodes on the cluster are GPU GeForce
1080Ti, 11GB GDDR5X, with NVIDIA driver ver-
sion 418.56 and CUDA version 10.1. The total
computational budget required to perform all our
experiments amounts to 15 hours.
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Spatial Reasoning Comparative Reasoning
N1 is to the left of N2 ⇐⇒ N2 is to the right of N1 N1 is smaller than N2 ⇐⇒ N2 is larger than N1

N1 is on top of N2 ⇐⇒ N2 is below N1 N1 is faster than N2 ⇐⇒ N2 is slower than N1

N1 is to the north of N2 ⇐⇒ N2 is to the south of N1 N1 is arriving earlier than N2 ⇐⇒ N2 is arriving later than N1

N1 is in front of N2 ⇐⇒ N2 is behind N1 N1 is stronger than N2 ⇐⇒ N2 is weaker than N1

N1 is to the east of N2 ⇐⇒ N2 is to the west of N1 N1 is younger than N2 ⇐⇒ N2 is older than N1

Table 6: Predicates and their reasoning categories.

LC Specificity Premise Overlap Entailment
AND S N1 P1 N2 and N3 P2 N4. Random[N1 P1 N2, N3 P2 N4].

AND NP N1 P1 N2 and N3. Random[N1 P1 N2, N1 P1 N3].

AND VP N1 P1 N2 and P2 N3. Random[N1 P1 N2, N1 P2 N3].

OR S N1 P1 N2 or N3 P2 N4. Random[N1 ¬ P1 N2, N3

¬ P2 N4].
The non-negated non-selected random
sentence.

OR NP P: N1 P1 N2 or N3. Random[N1 ¬ P1 N2, N1 ¬ P1

N3].
The non-negated non-selected random
sentence.

OR VP N1 P1 N2 or P2 N3. Random[N1 ¬ P1 N2, N1 ¬
P2 N3].

The non-negated non-selected random
sentence.

CON UNLESS Prefix Unless N1 P1 N2, N3 P2 N4. N1 ¬ P1 N2. N3 P2 N4.

CON UNLESS Infix N1 P1 N2 unless N3 P2 N4. N3 ¬ P2 N4. N1 P1 N2.

CON IF N1 P1 N2 Random[if, when, even though] N3 P2

N4. N3 P2 N4.
N1 P1 N2.

CON IF THEN If N1 P1 N2 then N3 P2 N4. N1 P1 N2. N3 P2 N4.

CON ONLY IF N1 P1 N2 only if N3 P2 N4. N1 P1 N2. N3 P2 N4.

UNI Each Each UNIN P1 N1. N2 is a UNIN . N2 P1 N1.

UNI Every Every UNIN P1 N1. N2 is a UNIN . N2 P1 N1.

Table 7: Syntactic templates for premises and their corresponding overlapping entailment hypotheses. The logi-
cal connectives (LC) are bolded within each premise. Specificity indicates the lexical representation and/or the
position in which the LCs are used within premises.

Specificity Definition
S Conjunction/disjunction is positioned between sentences.
NP Conjunction/disjunction is positioned between between noun phrases.
VP Conjunction/disjunction is positioned between verb phrases.
UNLESS Prefix The logical conditional connective is denoted by the word unless prefixed to the premise.
UNLESS Infix The logical conditional connective is denoted by the word unless within the premise.
IF The logical conditional connective is denoted by the word if.
IF THEN The logical conditional connective is denoted by the phrase if ... then ....
ONLY IF The logical conditional connective is denoted by the phrase only if.
Each The universal quantifier is denoted by the word each.
Every The universal quantifier is denoted by the word every.

Table 8: Specificity definitions.
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