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Abstract

Granular events, instantiated in a document by
predicates, can usually be grouped into more
general events, called complex events. Together,
they capture the major content of the document.
Recent work grouped granular events by defin-
ing event regions, filtering out sentences that
are irrelevant to the main content. However,
this approach assumes that a given complex
event is always described in consecutive sen-
tences, which does not always hold in practice.
In this paper, we introduce the task of complex
event identification. We address this task as
a pipeline, first predicting whether two granu-
lar events mentioned in the text belong to the
same complex event, independently of their po-
sition in the text, and then using this to cluster
them into complex events. Due to the difficulty
of predicting whether two granular events be-
long to the same complex event in isolation,
we propose a context-augmented representa-
tion learning approach CONTEXTRL that adds
additional context to better model the pairwise
relation between granular events. We show that
our approach outperforms strong baselines on
the complex event identification task and fur-
ther present a promising case study exploring
the effectiveness of using complex events as in-
put for document-level argument extraction.1.

1 Introduction

Event extraction aims to identify event predicates
and arguments from text and then identify their
types and roles respectively, helping humans to
easily understand the events. It has attracted con-
siderable interest in the last few years (Chen et al.,
2015; Nguyen et al., 2016; Sha et al., 2018; Lin
et al., 2020; Ebner et al., 2020; Chen et al., 2020b;
Li et al., 2021) due to the vast amounts of unstruc-
tured text available in domains like e-commerce,
healthcare and industry. However, considering each

1The data and code are available at http://cogcomp.
org/page/publication_view/978

Five protesters were (e2:killed) when they were (e3:attacked)
by an armed group. The armed group (e5:attacked) the
demonstrators who have for days been staging their
(e7:protest) against the military government. Many protesters
are supporters of an ultraconservative Islamist candidate in
(e8:elections) who was expelled from the election (e10:race)
when it was (e11:discovered) that his mother held dual
Egyptian-U.S citizenship. The (e13:attack) on Wednesday
(e14:wounded) at least 50 protesters, and the attackers
(e15:used) stones, sticks and Molotov cocktails.

e2: killed

e3: attacked e5: attacked

e7: protest

e13: attack

e14: wounded e15: used

ce1

e8: elections e10: race

e11: discovered

ce2

Figure 1: An example of complex events (ce1 and ce2)
described in the document. For clarity, not all event
mentions are shown in the figure.

granular event instantiated in the document by a
predicate in isolation is not sufficient for under-
standing the entire context of the document. Since
granular events can be grouped into more general
events, called complex events, we suggest using
them to capture the major content of the document.

A document could contain any number of com-
plex events where each complex event contains
more than one granular event. For example, Figure
1 represents 10 granular events appearing in a doc-
ument. One can group the granular events into two
complex events as follows: (i) ce1 (in green) that
includes the granular events related to a protest, (ii)
ce2 (in red) that includes granular events that, taken
together, describe elections. These two complex
events represent the major two events that the text
describes.

Recently, Chen et al. (2020a) used the notion
of event regions, a byproduct of document-level
argument extraction, by filtering out sentences that
are irrelevant to the main content and then parti-

331

http://cogcomp.org/page/publication_view/978
http://cogcomp.org/page/publication_view/978


tioning the text into several parts. Therefore, event
regions are defined as consecutive sentences that
include relevant arguments. However, compared
to the complex event that groups related granular
events together, the event region fails to capture
the following two scenarios: (i) sentences that in-
clude granular events in the same complex event
(e.g. the first and the last sentences in Figure 1) are
separated by sentences that include granular events
in another complex event; (ii) two granular events
belonging to different complex events may appear
in the same sentence.

Therefore, in this paper, we introduce the task of
complex event identification which aims to group
granular events instantiated by predicates into com-
plex events, independently from the position of the
predicates in the text. For example, in Figure 1, e2
and e13 belong to the same complex event (ce1)
while e8 belongs to ce2.

To perform complex event identification, we first
(i) predict whether two granular events belong to
the same complex event, independently of their
positions in the document, and then (ii) cluster
them into complex events based on the pairwise
relation predicted from step (i).

However, only considering the joint represen-
tations of two granular events is not sufficient to
model the pairwise relation. For example, in Fig-
ure 1, it is difficult to infer that “demonstrators
have for days been staging their protest against the
government” (e7) and “the attackers used stones,
sticks and Molotov cocktails" (e15) belong to the
same complex event until we know that “The armed
group attacked the demonstrators" (e5). Moreover,
since both “demonstrators have for days been stag-
ing their protest against the government” (e7) and
“Many protesters are supporters of a candidate in
elections" (e8) mention some information about the
protest, they might be considered to be in the same
complex event. However, after reading more parts
of the document, we know that e8 belong to the
election complex event (ce2), which occurs before
the protest complex event (ce1) containing e7.

Hence, we propose a context-augmented rep-
resentation learning approach CONTEXTRL that
adds additional context to model the pairwise com-
plex event relation. Specifically, we compute the
attention distribution of other granular events in the
document based on the joint representation of two
granular events and select the one with the highest
score as the context event. Regarding two granular

events as a single entity, if they belong to the same
complex event, the system would add a granular
event in the same complex event, to improve the ex-
pressiveness of their relatedness; if they are not in
the same complex event, then the system would add
an additional granular event to make them more
distinguishable, relative to this context event.

Since there is not a dataset tailored to the task
of complex event identification, we derive the
complex event annotation from the HiEve dataset
(Glavaš et al., 2014) that focuses on event-event
relations. We show that our proposed approach
outperforms strong baselines.

Moreover, since related granular events are
grouped into the same complex event, the scope
of the complex event is supposed to include all the
information required for the prediction of the argu-
ments of its granular events. Hence, we conduct a
case study on the WIKIEVENTS dataset (Li et al.,
2021) to explore the effectiveness of using complex
events as the input for the document-level argument
extraction task. We show that, when enough granu-
lar events are annotated, using complex events as
input filters out noisy and irrelevant information,
motivating the model to only focus on the related
granular events.

The major contributions of this paper can be
summarized as follows:

1. We introduce the complex event identification
task that allows one to group related granular
events, independently from the position of the
predicates in the text, into complex events
that, together, capture the major content of the
document.

2. We present a context-augmented representa-
tion learning approach CONTEXTRL tailored
to this task, showing that this approach outper-
forms strong baselines on the complex event
annotation derived from the HiEve dataset.
We also analyze the effect of the context event.

3. We conduct an exploratory case study on
the WIKIEVENTS dataset, showing that us-
ing complex events as the input for document-
level argument extraction allows the system
to only consider relevant sentences and is a
promising approach for this task.

2 Related Work

Event Extraction In the last few years, most of
the work on event extraction focuses on the sen-
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tence level (Chen et al., 2015; Nguyen et al., 2016;
Sha et al., 2018; Lin et al., 2020). Experiments
are usually performed on the ACE dataset (Walker
et al., 2006). In that setting, events correspond
to predicates and event extraction consists in (i)
identifying the predicates in the sentence (Trig-
ger Identification); (ii) classifying them according
to a predefined ontology (Trigger Classification);
(iii) identifying the arguments (Argument Identi-
fication); (iv) identifying the role of the argument
relative to the predicate (Argument Classification).

However, since arguments are usually scattered
across sentences, recent works (Ebner et al., 2020;
Chen et al., 2020b; Li et al., 2021) extended the
argument extraction components (iii) and (iv) to
the document level, trying to capture arguments
that are not in the same sentence as the predi-
cate. Li et al. (2021) introduced the WIKIEVENTS

dataset, going beyond the RAMS dataset (Ebner
et al., 2020) by annotating several granular events
per document. However, this approach does not
address complex events and focuses on argument
roles relative to granular events. In Section 4.6, we
explore the effectiveness of using complex event
as input for document-level argument extraction,
experimenting on the WIKIEVENTS dataset.

Event Regions Chen et al. (2020a) addressed
document-level argument extraction as well but
they also obtain as byproducts event regions, de-
fined as adjacent sentences that include relevant
arguments. Complex events differ conceptually
from event regions in two main points: (i) sen-
tences that contain predicates of granular events
in the same complex event can be separated in the
text by sentences that include predicates of granu-
lar events in other complex events. (ii) the context
of complex events may be overlapping as granular
events in different complex events may share the
same sentence.

Event-Event Relations Event-event relations in-
clude coreference and subevent relations. Event
coreference (Lee et al., 2017; Barhom et al., 2019;
Yu et al., 2022) allows one to group granular
events referring to the same granular event while a
subevent relation (Aldawsari and Finlayson, 2019;
Wang et al., 2020) indicates that one granular event
is a parent or child of another granular event. How-
ever, the notion of complex events is broader than
both of them: (i) granular events in the same com-
plex event also have other relations than subevent

relations, such as temporal and causal relations;
(ii) granular events in the same complex event can
have different content. For example, e3: “attacked”
and e14: “wounded” in Figure 1 are in the same
complex event although they are not coreferred.

...

granular
events  
in the

document

argmax

Figure 2: CONTEXTRL framework. gi,gj are contextu-
alized representations of predicate i and j respectively.
g(i, j) denotes the concatenation of two granular event
representations and go denotes the context event repre-
sentation. gc(i, j) denotes the concatenation of g(i, j)
and go. p(i, j) denotes the probability of belonging to
the same complex event.

3 Method

In this section, we present our context-augmented
learning approach CONTEXTRL. We address the
complex event identification task as a pipeline, first
predicting whether two granular events belong to
the same complex event, independently of their
position in the text, and then grouping them into
complex events based on pairwise predictions. We
first introduce our pairwise complex event relation
extraction model in Section 3.1 and then introduce
the granular event clustering step in Section 3.2.

3.1 Context-Augmented Pairwise Complex
Event Relation Extraction

Our context-augmented model takes two sentences
that contain predicates and the representations of
other granular events (context event candidates) in
the document as input, outputting a score indicating
how likely two granular events belong to the same
complex event. Since it is time-consuming and
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computationally expensive to encode all other gran-
ular events every time, we propose an efficient and
effective way to obtain the representations of some
granular events except the two granular events with-
out further computation and regard them as context
event candidates. During training and evaluation,
with a batch size of n, we obtain representations
of 2n granular events and use 2(n − 1) granular
events except the two granular events as context
event candidates. To make sure these 2(n−1) gran-
ular events are in the same document as the two
granular events, we only shuffle pairs within each
document instead of shuffling across documents.
We show its effectiveness in Section 4.5.

Given two granular events i and j, as shown in
Figure 2, we first concatenate the sentences where
their predicates appear using [CLS] and [SEP] and
then encode the sequence using RoBERTa (Liu
et al., 2019) to learn a contextualized representation
for each token in the sequence. The concatenation
of two sentences allows each token to learn the con-
text from both sentences. Since granular events are
instantiated by predicates, which are consecutive
spans within the sentence, we sum up representa-
tions of tokens in the predicates element-wisely to
obtain the predicate representations gi and gj .

Next, to select the context event, we first use the
concatenation of two granular event representations
g(i, j) and the representations of other granular
events in the document s to compute the attention
distribution α(i, j) as follows:

ek(i, j) = v⊺tanh(Wgg(i, j) +Wssk + be)
α(i, j) = Softmax(e(i, j))

where v, Wg, Ws are learnable matrix, be is a bias
vector, sk is the representation of kth granular event
and e(i, j) is attention scores.

Then we select the granular event with the high-
est attention score as the context event and con-
catenate its representation go with the representa-
tions of two granular events to obtain the context-
augmented representation gc(i, j) as follows:

o = argmax(α(i, j))
gc(i, j) = [gi; gj ; go]

We also manually set an attention distribution
threshold to guarantee that there is a granular event
highly related to the two granular events. If the
highest attention score is lower than the threshold,
we mask the context event with 0.

Finally, we forward the context-augmented rep-
resentation gc(i, j) into a linear layer to output the

probability of belonging to the same complex event
as follows:

p(i, j) = Softmax(Wcgc(i, j) + bc)

where Wc and bc are a learnable weight matrix and
a bias vector respectively.

3.2 Granular Event Clustering
After obtaining the pairwise complex event relation
for each pair of granular events in the document,
similar to the clustering step of previous work on
the event coreference task (Choubey and Huang,
2017; Kenyon-Dean et al., 2018; Barhom et al.,
2019; Cattan et al., 2020), we cluster them into
complex events using agglomerative clustering. We
define the distance between two granular events as
the likelihood of not belonging to the same com-
plex event. Agglomerative clustering merges event
clusters until no cluster pairs have a linkage dis-
tance lower than the threshold, where the linkage
distance is defined as the average distance of all the
event pairs across two clusters.

In addition, we assume the scope of the complex
event is the set of sentences that contain granular
event predicates. Since a sentence may contain mul-
tiple predicates, the overlapping of scope between
complex events is allowed by nature, which also
contrasts with the event region definition shown in
Section 2.

4 Experiments and Results

We conduct experiments on the complex event iden-
tification task, using our context-augmented repre-
sentation learning approach CONTEXTRL to first
extract pairwise relations and then group granular
events into complex events through agglomerative
clustering. We further present a promising case
study on the WIKIEVENTS dataset (Li et al., 2021),
showing the effectiveness of using only complex
events as input for document-level argument extrac-
tion in Section 4.6.

# Doc. # Pairs # CE # Events/ CE

Train 60 38124 121 7.01
Dev 20 13810 44 6.93
Test 20 16227 54 7.07

Table 1: Statistics for the HiEve dataset and the complex
event annotation derived from the HiEve dataset. CE
denotes complex event.
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4.1 Dataset

Since there is not a dataset tailored to the complex
event identification task, we derive the complex
event annotation from HiEve dataset (Glavaš et al.,
2014) that annotates subevent and coreference re-
lations. For each document, we first build an undi-
rected acyclic graph where vertices are granular
events connected by subevent relations (i.e., two
events have either Parent-Child or Child-Parent re-
lation) as edges, and then regard granular events in
the same graph as belonging to the same complex
event. We summarize the data statistics in Table
1. Note that the replication of this work on other
texts requires the annotation of subevent relations
with the constraint of not having two parents for
the same subevent, unless they are co-referred, as
in HiEve. Then, complex events can be derived
from the annotation, as described here. We plan
to explore the direct annotation of complex events
in future work, which requires the compilation of
fine-grained guidelines.

4.2 Baselines and Evaluation Metrics

We compare our model with three baselines. The
first baseline is a Sequence Classification model
(SC) plus the clustering step, where the Sequence
Classification model encodes concatenated sen-
tences using RoBERTa (Liu et al., 2019) and for-
wards the contextualized [CLS] token to a linear
layer to compute the probability of belonging to
the same complex event.

The second baseline is a strong predicate repre-
sentation learning model (PRL) plus the clustering
step, which replaces the contextualized [CLS] to-
ken with the concatenation of two predicate rep-
resentations. The difference from our proposed
model is that it does not use the context event.

Furthermore, since our complex event annotation
is derived from the HiEve dataset that annotates
subevent and coreference relations, we also com-
pare our model with Wang et al. (2020), a SOTA
joint constrained learning framework for extract-
ing subevent, coreference and temporal relations,
plus the clustering step. Since the HiEve dataset
does not have temporal annotation, we only use
its constraints related to subevent and coreference
relations.

In terms of the clustering step, we use agglom-
erative clustering for the first two baselines that
directly identify complex events. However, for
the third baseline that extracts subevent relations to

build complex events, since not all pairs of granular
events in the same complex event have a subevent
relation, using the probability of having subevent
relations as distance would hinder such pairs from
being grouped together. Thus, we follow the same
graph-based clustering method as in Section 4.1.

In addition, we note that the method of Chen
et al. (2020a) for event regions is not comparable
with our method for complex event identification
for the following reasons:

• The complex event and event region defini-
tions are conceptually different, as the latter
does not group granular events instantiated by
predicates but rather partitions the document
into segments, based on arguments.

• In the complex event annotation derived from
the HiEve dataset, the proportion of com-
plex events with consecutive sentences is
only 91/219 = 41.6%, hindering Chen et al.
(2020a)’s method from achieving competitive
performance.

• Current datasets do not include gold data al-
lowing such a comparison. Specifically, the
HiEve dataset does not include argument an-
notation while the datasets CFEED and MUC-
4 used in Chen et al. (2020a) do not annotate
granular events.

Since both complex event identification and
coreference resolution build clusters of granular
events, we use coreference evaluation metrics 2 for
evaluation, including MUC (Vilain et al., 1995), B3

(Bagga and Baldwin, 1998), CEAFe (Luo, 2005)
and BLANC (Recasens and Hovy, 2011), and re-
port the results in Table 2. We also report CoNLL
F1 which is the average of MUC, B3 and CEAFe.

In addition, we report intermediary perfor-
mances. For the pairwise complex event relation
extraction task, the precision, recall and F1 scores
are reported in Table 3. For the subevent relation
extraction task, we use the same evaluation setting
as Wang et al. (2020), testing the model using 20%
of the documents. The macro average precision, re-
call and F1 scores of Parent-Child and Child-Parent
relations are also reported in Table 3. Note that
Wang et al. (2020) only kept 40% negative NoRel
examples of the test set during evaluation while we
evaluate on the entire test set.

2https://github.com/conll/reference-coreference-scorers
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Model MUC B3 CEAFe BLANC CoNLL F1

Using Subevent Relations for Complex Event Identification

Wang et al. (Baseline) 72.68 60.38 55.39 47.22 62.82

Direct Complex Event Identification

SC (Baseline) 51.69 59.94 43.34 48.9 51.66
PRL (Strong Baseline) 76.97 80.51 80.57 74.06 79.35
CONTEXTRL (Ours) 77.21 81.99 81.72 77.08 80.31

Table 2: Complex event identification performance on the complex event annotation derived from the HiEve. The
columns correspond to different evaluation metrics. CoNLL F1 is the average of MUC, B3 and CEAFe. We present
our approach with 3 baselines. Wang et al. extracts subevent relations and then builds complex events by grouping
granular events in the same acyclic graph to the same complex event. The last three models directly identify pairwise
complex event relations and then cluster granular events into complex events through agglomerative clustering.

4.3 Experimental Setup
We encode the concatenated sequence using
RoBERTa-large (Liu et al., 2019) to obtain 1024
dimensional token representations. Since the clus-
tering step requires the pairwise prediction prob-
ability for each pair of granular events within the
document, we set the max sequence length to 140
so that all pairs in the development set could fit
in. The model contains 358.5M parameters in total.
We use AdamW (Loshchilov and Hutter, 2017) to
optimize the parameters, with a learning rate of 1e-
6. For each setting, we train 12 epochs with a batch
size of 16, and each epoch takes about 25 minutes.
The attention distribution threshold of 0.047 is set
based on the performance of the development set.
The agglomerative clustering threshold for each
setting is finetuned on the development set. We run
all experiments on TITAN Xp GPU of size 12 GB.

Model Precision Recall F1

Subevent Relation Extraction

Wang et al. 15.88 60.81 25.03

Pairwise Complex Event Relation Extraction

SC 44.65 13.70 20.96
PRL 56.39 62.19 59.15

CONTEXTRL 55.75 64.85 59.96

Table 3: Subevent relation extraction performance on
HiEve and Pairwise complex event relation extraction
performance on the complex event annotation derived
from the HiEve dataset. For Wang et al., we report
the macro average scores of Precision, Recall and F1.
SC denotes the Sequence Classification model. PRL
denotes the predicate representation learning model.

4.4 Complex Event Identification Results

In Table 2, we report evaluation metric scores
for our approach and baselines. Our context-
augmented representation learning approach CON-
TEXTRL outperforms all baselines, with a CoNLL
F1 score of 80.31. Besides, since it outperforms
the SOTA subevent relation extraction model by
a large margin, it motivates the study of complex
event identification as an independent task.

We also show an example of complex events in
the document predicted by CONTEXTRL in Figure
3. Granular events in green belong to a complex
event describing the recent filing while granular
events in red belong to another complex event de-
scribing the crime. These two complex events are
interleaved in the document.

4.5 Context Event Analysis

As shown in Table 3, CONTEXTRL outperforms
both baselines on the pairwise complex event rela-
tion extraction task. It achieves a F1 score of 59.96,
which is 0.81 higher than the strong baseline PRL.
Compared with PRL, CONTEXTRL has a much
higher recall which indicates it has fewer false neg-
atives and more true positives. However, more true
positives but a slightly lower precision indicates
it contains more false positives. We discuss the
reasons in the following paragraphs.

Effectiveness of Using Other Granular Events
in the Batch as Context Event Candidates As
shown in Table 4, in the test set, there are 2256 pairs
of granular events belonging to the same complex
event (positive pairs) and 13971 pairs of granular
events not belonging to the same complex event
(negative pairs). Of all positive pairs, 2238 (99.2%)
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A new lawyer for OJ Simpson has filed a new attempt to
gain his release from prison, alleging he was so badly
(e4: represented) by lawyers in his (e6: trial) that he
deserves a retrial. A 94-page document (e7: filed) in
Court faults the (e8: trial) performance of attorneys
Galanter and Grasso. It says he wanted to recover from
sports memorabilia dealers family photos and personal
mementoes (e10: stolen) from him. Simpson was
convicted of charges including (e14: kidnapping) and
armed (e15: robbery) in a hotel room crammed with
two memorabilia dealers and a middle man, Simpson
later (e16: convicted) of (e17: felonies). Simpson, 64,
was (e18: sentenced) to nine to 33 years behind bars.
The (e19: filing) is a common next-step appeals
strategy to blame trial and initial appeals attorneys for a
defendant's conviction. Almost all grounds that lawyer
(e21: cited) in the document fault Mr Galanter and Mr
Grasso. Mr Grasso said "I'm behind OJ and I hope this
(e25: petition) helps him get out of prison".

Complex Event Prediction

Figure 3: An example showing the prediction of com-
plex events described in a document from the HiEve
development set. Granular events in green belong to
one complex event while granular events in red belong
to another complex event. For clarity, not all event men-
tions are shown in the figure.

have at least one context event candidate that be-
longs to the same complex event as the pair of
granular events, providing the opportunity of using
an additional context event in the same complex
event to improve the expressiveness of their relat-
edness. Of all negative pairs, 9440 (67.57%) have
at least one context event candidate that belongs
to the same complex event as one of the granular
events in the pair. Of the rest of 4531 negative pairs,
4038 (89.12%) have both granular events that are
not in any complex event. Such statistics indicate
that negative pairs could select an additional con-
text event from diversified candidates to make the
pair of granular events distinguishable, relative to
this context event.

Use Context Event in Positive Examples As
we can see in Table 4, of all 2238 positive pairs
that contain at least one context event candidate
belonging to the same complex event as the pair
of granular events, 655 mask the context event and
the prediction accuracy is 64.12%. Of the rest of
1583 positive pairs, 942 use an additional context
event that belongs to the same complex event as the
pair of granular events, achieving an accuracy of
66.03%, while 641 pairs use other context events,
having an accuracy of 64.12%. Therefore, adding
an additional context event that belongs to the same

complex improves the accuracy, which is equiva-
lent to the number of true positives, and adding a
context event not in the same complex event for
positive pairs does no harm to the prediction.

Positive Pairs

Same CE Real Context Mask Total

Yes 1583 (1033) 655 (420) 2238
No 12 (6) 6 (3) 18

Total 1595 661 2256

Negative Pairs

Same CE Real Context Mask Total

Yes 5989 (5261) 3451 (3063) 9440
No 2700 (2670) 1831 (1816) 4531

Total 8689 5282 13971

Table 4: Analysis of the Pairwise complex event rela-
tion extraction performance of CONTEXTRL on com-
plex event annotation. Real Context and Mask denote
whether the pair uses a non-masked context event or
not. Same CE (Yes or No) denotes whether the batch
contains a context event candidate that belongs to the
same Complex Event as one (for negative pairs) or two
(for positive pairs) of the granular events in the pair.
Number in parenthesis denotes the number of pairs pre-
dicted correctly.

Use Context Event in Negative Examples As
shown in Table 4, of all 13971 negative pairs, 5282
mask the context event and the prediction accu-
racy is 92.37%. Of the rest of 8689 pairs, 2559
use a context event that belongs to the same com-
plex event as one of the granular events in the pair,
achieving an accuracy of 84.16%, while 6130 pairs
use other context events, having an accuracy of
94.27%. Therefore, adding a context event in the
same complex event as one of the granular events
in a negative pair motivates the model to identify
them to belong to the same complex event, increas-
ing the number of false positives. Besides, since
the model regards two granular events that describe
different things as a single entity when computing
the attention distribution, it is likely to select a con-
text event not related to any of them in isolation,
thus predicting the pair as negative with a great
chance.

4.6 Complex Event as the Input of
Document-level Argument Extraction

Since arguments are usually scattered across
sentences, recent works on Argument Extrac-
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Train Dev Test

# Event types 49 35 34
# Arg types 57 32 44

# Docs 206 20 20
# Sentences 5262 378 492

# Events 3241 345 365

Table 5: Statistics for WIKIEVENTS dataset.

tion (Ebner et al., 2020; Chen et al., 2020b; Li
et al., 2021) move from the sentence-level to the
document-level (i.e., extracting the arguments from
the whole document rather than a single sentence).
However, the document not only has many noisy
and irrelevant entities that prevent the model from
extracting the arguments correctly, but also is too
long to fit into a transformer-based model which
limits the max sequence length.

Since granular events in the same complex event
usually describe the same general content and they
are unrelated to the granular events in other com-
plex events, we assume the complex event should
contain all the information required for the predic-
tion of the arguments of its granular events.

Therefore, we conduct a case study on the
WIKIEVENTS dataset to investigate the effective-
ness of using complex events as input for document-
level argument extraction. If the granular event
belongs to a complex event, we use the sentences
that contain granular event predicates in the same
complex event as input; If the granular event does
not belong to any complex event, we still use the
entire document as input. We summarize the data
statistics in Table 5.

Since WIKIEVENTS dataset does not have com-
plex event annotation, we directly use our model
CONTEXTRL trained on the complex event anno-
tation derived from the HiEve dataset to group
granular events in each document into complex
events. Since the average number of annotated
events per sentence in the test set is only 0.74, only
using annotated granular events is not sufficient
to build complex events. Therefore, we leverage
an off-the-shelf verbal and nominal SRL system3

to extract more granular events from documents.
Consequently, 260/365 granular events belong to
a complex event and using complex events as in-
put reduces the average word count from 787.90 to
539.25.

3https://github.com/CogComp/SRL-English

After training the argument extraction model
proposed in Li et al. (2021), we evaluate it on the
test set with complex events as input and compare
the performance with using the whole document as
input. When using the whole document as input,
the argument identification and classification head
word F1 scores are 71.21 and 66.55 respectively
while using the complex event as input results in F1

scores of 71.07 and 66.25 respectively. We could
see that the model still achieves fairly close perfor-
mance with much shorter inputs. Moreover, note
that the complex event identification system is not
trained on the WIKIEVENTS dataset, thus directly
using the pre-trained model to identify complex
events may also result in low performance.

We further show an “attack" granular event from
the document, which has the largest improvement
on the argument identification, in Figure 4. Using
the complex event as input motivates the model to
focus on the “attack" granular event, whereas using
the whole document as input adds much irrelevant
information (i.e. what is included in the interviews),
distracting the model from the “attack" event and
thus extracting incorrect arguments. Such differ-
ence in input and performance demonstrates the
effectiveness of using complex events as the input
for document-level argument extraction.

Complex Event as the Context

Osama bin Laden is charged to have had a role in the
October 2000 attack on the USS Cole in the Yemeni
port of Aden. This report features reporting by a
Pulitzer-Prize-nominated team of New York Times
reporters.

Whole Document as the Context

photo © 2001 corbis images all rights reserved web site
copyright 1995-2014 WGBH educational foundation
Hunting Bin Laden Osama bin Laden is charged to
have had a role in the October 2000 attack on the USS
Cole in the Yemeni port of Aden. This report features
reporting by a Pulitzer-Prize-nominated team of New
York Times reporters. Tracing the trail of evidence
linking bin Laden to terrorist attacks, this report includes
interviews with Times reporters. They discuss the
terrorist attacks linked to bin Laden's complex network
of terrorists, outline the elements of his international
organization and details of its alliances and tactics.

Figure 4: An example showing the difference between
using the complex event as the input and using the whole
document as the input of document-level argument ex-
traction. The predicate “attack" is in blue. Arguments
in green are correctly extracted; arguments in red are
missed; arguments in orange are extracted incorrectly.
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5 Conclusion

In this work, we introduce the task of com-
plex event identification and present a context-
augmented approach CONTEXTRL tailored to this
task. We show that our approach outperforms
strong baselines on the annotation derived from
the HiEve dataset and analyze positive effects of
the context event. We further show the potential
usefulness of using complex events as input for
document-level argument extraction. For future
work, we plan to directly annotate complex events
from scratch with fine-grained guidelines. We also
seek to extend our approach towards an end-to-end
system with granular event extraction.
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