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Abstract

Script Knowledge (Schank and Abelson, 1975)
has long been recognized as crucial for lan-
guage understanding as it can help in filling in
unstated information in a narrative. However,
such knowledge is expensive to produce man-
ually and difficult to induce from text due to
reporting bias (Gordon and Van Durme, 2013).
In this work, we are interested in the scientific
question of whether explicit script knowledge
is present and accessible through pre-trained
generative language models (LMs). To this
end, we introduce the task of generating full
event sequence descriptions (ESDs) given a sce-
nario as a natural language prompt. Through
zero-shot probing, we find that generative LMs
produce poor ESDs with mostly omitted, irrele-
vant, repeated or misordered events. To address
this, we propose a pipeline-based script induc-
tion framework (SIF) which can generate good
quality ESDs for unseen scenarios (e.g., bake
a cake). SIF is a two-staged framework that
fine-tunes LM on a small set of ESD examples
in the first stage. In the second stage, ESD gen-
erated for an unseen scenario is post-processed
using RoBERTa-based models to filter irrele-
vant events, remove repetitions, and reorder the
temporally misordered events. Through auto-
matic and manual evaluations, we demonstrate
that SIF yields substantial improvements (1-3
BLEU points) over a fine-tuned LM. However,
manual analysis shows that there is great room
for improvement, offering a new research di-
rection for inducing script knowledge1.

1 Introduction

Scripts are structured commonsense knowledge in
the form of event sequences that characterize com-
monplace scenarios, such as, eating at a restau-
rant (Schank and Abelson, 1975). Scripts are fun-
damental pieces of commonsense knowledge that
humans share and assume to be tacitly understood

1Code and dataset are available at https://github.
com/abhilashasancheti/script-generation

Figure 1: Sample event sequence description (ESD)
from Wanzare et al. (2016) for BAKING A CAKE sce-
nario. We use natural language prompts (Table 2) to
generate completely ordered ESDs for evaluating extent
of script knowledge accessible through LMs.

by each other. When someone says “I went to a
restaurant for lunch", our script knowledge allows
us to infer that a waiter would have taken the order,
the speaker would have eaten the lunch, payed for
it, and tipped the waiter, even if these events are
not explicitly mentioned. Knowledge of scripts,
whether implicit or explicit, has been recognized
as important for language understanding tasks (Mi-
ikkulainen, 1995; Mueller, 2004).

Earlier efforts to automatically induce scripts
from text on a large scale include Chambers and
Jurafsky (2008) who treat the problem of script in-
duction as one of learning narrative chains using
textual co-occurrence statistics. However, report-
ing bias (Gordon and Van Durme, 2013) remains an
obstacle for script induction as many events are not
mentioned explicitly in text, relying on the reader’s
ability to infer missing script-related events. More-
over, manual creation of such knowledge resources
is challenging due to the wide coverage and com-
plexity of relevant scenario knowledge. Although
crowdsourced efforts (Singh et al., 2002; Regneri
et al., 2010; Modi et al., 2017; Wanzare et al., 2016;
Ostermann et al., 2018, 2019) address these issues
and acquire script knowledge in the form of ESDs,
the collected datasets are small, domain-specific,
and crowdsourcing is not scalable.

With the success of pre-trained language mod-
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els (henceforth, PLMs) (Devlin et al., 2018; Liu
et al., 2019; Radford et al., 2019) in various natural
language understanding tasks, we are interested in
investigating the extent and accessibility of explicit
script knowledge present in PLMs. In this work, un-
like cloze-based script evaluations (Chambers and
Jurafsky, 2008; Mostafazadeh et al., 2016) which
LMs are uniquely optimized for (Rudinger et al.,
2015), we evaluate PLMs on the ability to fully gen-
erate event sequence descriptions (ESDs) (Regneri
et al., 2010) in free-form natural language (Fig-
ure 1). This is a challenging task as scripts are
complex structures with varied granularity of de-
scribing a scenario (e.g., starting from going to
grocery store to buy ingredients or starting with
finding a recipe for BAKING A CAKE scenario),
and the requirement to produce all the scenario-
relevant events in the correct temporal order.

To this end, we first probe LMs via carefully
crafted prompts to analyze the quality of ESDs
generated in a zero-shot setting (§3) and find that
the generated ESDs are of poor quality with many
scenario-irrelevant, repeated, temporally misor-
dered, and missing events. To address this we
propose a, LM-agnostic, pipeline-based script in-
duction framework (§4), SIF, which can generate
good quality ESDs for novel scenarios that LM has
not seen during the training phase of the frame-
work. SIF is a two-staged framework with fine-
tuning LM on a small set of ESDs as the first stage
followed by a three-stepped post-processing stage
which corrects the ESDs generated from a fine-
tuned LM for irrelevant, repeated, and temporally
misordered events. This work makes the following
contributions:

• We present an analysis of the extent of script
knowledge accessible through LMs using
probing techniques, in a zero-shot setting, via
the task of generating full ESDs from natural
language prompts.

• We propose script induction framework that
can generate ESDs for held-out and novel sce-
narios drawn from a different distribution.

• We present automatic and manual evaluation
of the generated ESDs, establishing the via-
bility of our framework and paving way for
future research in this direction.

2 Related Work

Narrative Chain Induction There has been a
growing body of research into statistical script
learning systems which can automatically infer im-
plicit events from text. Seminal work by (Cham-
bers and Jurafsky, 2008, 2009) describe a number
of simple event co-occurrence based systems that
infer (verb, dependency) pairs (known as narrative
events) with partial-ordering related to one or mul-
tiple participants (Pichotta and Mooney, 2014) in
discourse (known as narrative chains). As statisti-
cal co-occurrences cannot capture long-range de-
pendencies between events, Pichotta and Mooney
(2016a) represent events using LSTM leading to
improved narrative cloze task performance. How-
ever, much of the information about events is
usually left implicit in text. Moreover, narrative
events are highly abstracted (Ostermann, 2020) and
cloze task is insufficient to evaluate script knowl-
edge (Chambers, 2017). Therefore efforts have
been made to acquire crowdsourced ESDs (Singh
et al., 2002; Regneri et al., 2010; Modi et al.,
2017; Wanzare et al., 2016; Ostermann et al., 2018,
2019) and to learn similar events in a scenario us-
ing unsupervised (Regneri et al., 2010) and semi-
supervised (Wanzare et al., 2017a) approaches.
Temporal Ordering and Relevance Previous
works (Modi and Titov, 2014; Wanzare et al.,
2017b; Lyu et al., 2020) have investigated induction
or prediction of temporal ordering of prototypical
events. Others have predicted next (Pichotta and
Mooney, 2016b) or related (Lyu et al., 2020) events
in natural language form. Zhou et al. (2019) ac-
quire commonsense procedural knowledge directly
from natural language source, like wikiHow, by
learning representations for scenarios and events
which are predictive of both relevance of event to
the scenario and temporal ordering. Zhang et al.
(2020) propose a non-learning based approach to
predict fixed-length events given an unseen sce-
nario and related scenarios with their events. A
recent work (Sakaguchi et al., 2021) generates
partially-ordered scripts using PLMs by predict-
ing events and edges for partial-order while we
are interested in completely ordered event descrip-
tions. Lyu et al. (2021) propose the task of goal ori-
ented script construction for multilingual wikiHow
dataset and propose generation and retrieval-based
approaches. However, their generation-based ap-
proach using LM only involves fine-tuning. We
focus on different LMs to evaluate them on the task
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Prompt Beginnings
here is a sequence of events that 
happen while baking a cake:
these  are  the  things  that  happen  
when  you bake a cake:
describe baking a cake in small 
sequences of short sentences:
here is an ordered sequence of events 
that occur when you bake a cake:

Continuations
None

1.

1. get a cake mix

1. get a cake mix 2. gather 
together other ingredients

Figure 2: Different prompt formulations for BAKING A
CAKE scenario for probing. 16 prompts are created by
combining a prompt beginning with a continuation.

of generating scripts both in zero-shot and fine-
tuning settings. Our proposed framework is shown
to outperform the fine-tuning approach.
Knowledge-acquisition from PLMs With the
success of PLMs (Devlin et al., 2018; Liu et al.,
2019; Radford et al., 2019) in various natural lan-
guage understanding tasks, a number of works
investigate how commonsense knowledge is cap-
tured in these models (Feldman et al., 2019; Petroni
et al., 2020; Weir et al., 2020; Shwartz et al., 2020).
Successful efforts have been made to induce rela-
tional (Bouraoui et al., 2020), numerical (Lin et al.,
2020), temporal (Zhou et al., 2020) and common-
sense knowledge in PLMs using fine-tuning.

Unlike prior works, we focus on investigating
the extent and accessibility of explicit script knowl-
edge from PLMs via probing techniques and induc-
ing such knowledge in them using a pipeline-based
framework to generate full ESDs for novel scenar-
ios in free-form natural language.

3 Probing for Script Knowledge

We design a zero-shot probing experiment to eval-
uate PLMs’ ability to generate ESDs by carefully
selecting natural language prompts, which LMs are
known to be sensitive to (Bouraoui et al., 2020).
We experiment with 16 manually crafted prompts2

(Table 2) with different phrasing and levels of con-
ditioning to enquire large versions of GPT2, BART,
and T5 for script knowledge. The intuition be-
hind these prompts is similar to asking questions
(prompts) to a knowledge source in various ways
to get the required answer (ESD for a scenario).

BART and T5 were not able to output anything
except the input prompt or start, end, and pad to-
kens and hence we only present qualitative outputs
from GPT2, when probed with various prompts
for BAKING A CAKE scenario, in Table 2. We ob-

2We also experiment with capitalized prompts but did not
find significant change in the quality of generations.

1. buy ingredients 
2. get soap 3. put 

the batter in oven 4. 
mix ingredients to 
make a batter 5. 
pre-heat oven 6. 

bake for 45 mins 7. 
buy ingredients …

baking a cake:

Fine-
tuned LM

Relevance 
Classifier

Ordering 
Classifier

1. buy ingredients 
2. get soap 3. put 

the batter in oven 4. 
mix ingredients to 
make a batter 5. 
pre-heat oven 6. 

bake for 45 mins 7. 
buy ingredients …

1. buy ingredients 
2. put the batter in 

oven 3. mix 
ingredients to make 
a batter 4. pre-heat 
oven 5. bake for 45 

mins 6. buy 
ingredients …

Step 1

Post-processing
De-duplicate

Step 2

Step 3

1. buy ingredients 
2. mix ingredients 
to make a batter 3. 
pre-heat oven 4. 
put the batter in 

oven 5. bake for 45 
mins …

1

2 3

5 4

Final ESD

eating in a 
restaurant: 1. enter 
restaurant 2. look 

at the menu 3. 
place order to the 
waiter 4. wait for 

food 5. eat food 6. 
pay the bill 7. tip 

the waiter 8. leave 
the restaurant

ESDs

Pre-
trained LM

Fine-tuning

Figure 3: SIF: Pre-trained LM is fine-tuned on De-
Script (Wanzare et al., 2016). Generated scripts are then
post-processed with RoBERTa-based classifiers to cor-
rect for event relevance (Step 1), repetition (Step 2), and
temporal ordering (Step 3).

serve that the quality of generated ESDs vary for
different prompts. Although GPT2 is able to gen-
erate some scenario-relevant events with just the
prompt beginnings and no continuations (e.g., 1
and 2 in Table 2), the ESDs are incomplete with
many auxiliary details, and incorrect event order-
ing (e.g., ‘3. The cake is served at the table’ be-
fore ‘6. The cake is transferred to the oven.’ in
2). It sometimes outputs (e.g., 4) narrations rather
than procedural descriptions. As generation from
scratch is an open-ended task, we use a prompt
with a number to guide GPT2 to generate a proce-
dural script. Although 4 and 5 are more procedural,
the events are still at a coarse-grained level with
most of the intermediate events missing. To further
guide the generation towards a fine-grained level,
we condition the generation on a few events (man-
ually curated by authors looking at sample ESDs)
along with the prompt beginning. This helps us in
examining whether GPT2 has temporal knowledge
about the events related to a scenario. Conditioning
on the events results in a better quality ESD (e.g.,
6, 7, 8). However, there is a repetition of events
(‘let it cool for another 10 minutes’ in 6, ‘add in
your flour and mix by hand’ in 7) in addition to
wrong event ordering, irrelevant (e.g., ‘is it hot?’
in 8) and missing events. As GPT2 produces poor
quality ESDs in this zero-shot setting with BART
and T5 not even being able to output any events,
we propose a script induction framework detailed
in the following section.

4 SIF: Script Induction Framework

In this section, we provide details on our pipeline-
based script induction framework, SIF (Figure 3),
which addresses the limitations of zero-shot ESD
generation. SIF is a two-staged framework which
fine-tunes LM on a small set of ESDs in the first
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1 these are the things that happen when you bake a cake: 3 tablespoons (30ml) of unsalted butter, at room temperature 2 tablespoons (30ml) of granulated sugar 2
tablespoons (30ml) of brown sugar, sifted 1 large egg, at room temperature 1 teaspoon vanilla extract 3 large egg yolks 1 cup (350ml) buttermilk To the bowl of an
electric mixer fitted with a paddle attachment, add the butter, sugar, brown sugar, egg yolks, and vanilla extract and beat until light and fluffy. Add the buttermilk, then
continue beating until fully incorporated. Sift the flour, baking powder, and salt into the bowl of the mixer and beat

2 here is an ordered sequence of events that occur when you bake a cake: 1. The cake is baked. 2. The cake is cooled. 3. The cake is served at the table. 4. The
dessert is placed on the table. 5. The cake is placed in a baking pan. 6. The cake is transferred to the oven. 7. The cake is put to the middle of the oven and baked. 8.
The cake is left in the oven until it is done. 9. The cake is removed from the oven and placed on a plate. 10. The cake is transferred to a cake rack. 11. The cake is
placed on a cake plate.

3 describe baking a cake in small sequences of short sentences: “I want my cake to be soft and moist." (And, you know, don’t do this: “If I use a pastry bag, I can
get it back to me in less than two minutes.") You may be looking for the most simple recipe for cake, but baking requires skill and a lot of practice. You don’t need to
learn how to make a cake recipe. You don’t even need to know the difference between the cake and the sponge. All you need is a great recipe and a couple of ovens
and an oven thermometer. 2. Use a mixer. Mixers are really, really good. (A great idea is to invest in one of those mini, little, portable ones.

4 here is a sequence of events that happen while baking a cake: 1. The cake goes into the oven. 2. The cake cools down in the oven, because the water vapor from
the oven condenses onto the top of the cake. 3. The cake is cooled and the frosting set (the sugar crystals are not allowed to fall off). 4. The frosting is set (a little
more water vapor condenses onto the top of the frosting). 5. The frosting is set (more water vapor condenses onto the top of the frosting). 6. The cake cools down
(the water vapor cools off). 7. The cake comes out of the oven and it is ready to eat. How is this cake not a cake? The first step is that the cake is a cake.

5 here is an ordered sequence of events that occur when you bake a cake: 1. You have a cake. 2. You have a batch of flour (or other ingredient, such as water, sugar
or corn syrup) 3. You have your flour prepared 4. You have your flour mixture 5. You have your flour mixture pre-floured 6. You have your batter prepared 7. You
have your batter made 8. You have your batter placed on a baking sheet 9. You have your batter removed from the oven 10. You have your cake cooled in the tray
(you must place your cake in the tray before you take it out of the oven) 11. You take your cake out of the tray and remove it from the oven 12. You eat your cake, or
leave it out to cool.

6 here is a sequence of events that happen while baking a cake: 1. get a cake mix 2. pour the cake mix into the pan 3. let it bake for 10 minutes 4. get out the oven
lid and turn it on 5. let it bake for another 10 minutes 6. get out the oven lid and flip it on 7. let it bake for another 10 minutes 8. get out the oven lid and switch it
back on 9. let it bake for another 10 minutes 10. get out the oven lid, turn it back on, and let it bake again 11. get out the oven lid and get out the knife 12. bake the
cake again, and then let it cool on a rack 13. use the cake mix to make cupcakes 14. cut the cake, and then use the cupcake for serving!

7 these are the things that happen when you bake a cake: 1. get a cake mix 2. gather together other ingredients that you’ll need for your cake (coconut oil,
powdered sugar, eggs, etc.) 3. preheat oven to 350 4. pour on flour and mix by hand 5. pour in egg and mix by hand 6. add in powdered sugar and mix by hand 7. add
in coconut oil and mix by hand 8. let it all sit for a minute 9. add in your flour and mix by hand 10. add in your sugar and mix by hand 11. add in your flour and mix
by hand 12. add in your flour and mix by hand 13. add in your flour and mix by hand 14. add in your flour and mix by hand 15. add in your egg and mix by hand 16.
add in your salt

8 describe baking a cake in small sequences of short sentences: 1. get a cake mix 2. gather together other ingredients 3. start to bake 4. bake a cake 5. take it to
the oven 6. the cake is done 7. is it done? 8. is it still hot? 9. what is that crust? 10. what does the cake look like? If we think of a sequence of a few hundred or so
words, we can take the basic idea of this example and say that we could write an equivalent, yet shorter, sentence: 1. Get a cake mix 2. Get together the ingredients 3.
Bake a cake 4. Take it to the oven 5. The cake is done 6. Is it done? 7. is it hot? 8. what is that crust? 9. what does the cake look like

Table 1: Scripts generated from GPT2-L for BAKING A CAKE scenario with bold-faced prompts.

SEQUENCE here is a sequence of events that happen while
baking a cake: 1. e1 2. e2
EXPECT these are the things that happen when you bake a
cake: 1. e1 2. e2
ORDERED here is an ordered sequence of events that occur
when you bake a cake: 1. e1 2. e2
DESCRIBE describe baking a cake in small sequences of
short sentences: 1. e1 2. e2
DIRECT baking a cake: 1. e1 2. e2
TOKENS ⟨SCR⟩ baking a cake ⟨ESCR⟩: 1. e1 2. e2
ALLTOKENS ⟨SCR⟩ baking a cake ⟨ESCR⟩: ⟨BEVENT⟩
e1 ⟨EEVENT⟩ ⟨BEVENT⟩ e2 ⟨EEVENT⟩

Table 2: Different prompt formulations for BAKING A
CAKE scenario with two events (e1 and e2).

stage. In the second stage, ESDs generated using
the fine-tuned LM are passed through a sequence
of RoBERTa-based classifiers (Liu et al., 2019) to
identify relevant events, remove redundant events,
and predict pair-wise temporal ordering between
the events. These pair-wise orderings are then used
to create a full event ordering using topological
sorting on a directed graph created from the pre-
dicted orderings.

4.1 Stage I: Fine-tuning PLMs

PLMs fine-tuned on commonsense datasets like
ATOMIC (Sap et al., 2019) can generalize beyond
the scenarios observed during fine-tuning (Bosselut
et al., 2019). Hence, we investigate the learning
capability of LMs when a small number of script
examples are available. We fine-tune LMs on ESDs

using different natural language and pseudo-natural
language prompt formulations for encoding ESDs
(Table 2) to study the effect of prompt formula-
tions on this task as observed during the probing
experiments. We fine-tune LMs using negative log-
likelihood objective.

4.2 Stage II: Post-processing Generated ESDs

We sample ESDs for an unseen scenario using
the fine-tuned LMs and employ a 3-step post-
processing method to correct them for relevance,
repetitions, and ordering.

4.2.1 Step 1: Irrelevant Events Removal
The first post-processing step is to remove non-
scenario-relevant events from an ESD. An event
is not relevant for a scenario if it is not a part of
the scenario (e.g., ‘tipping a waiter’ is not a part of
BAKING A CAKE scenario). For irrelevant events
removal, we first need to identify irrelevant events
for a scenario. We pose this identification prob-
lem as a binary classification task to predict if a
given event belongs to a given scenario. For train-
ing purpose, a positive example is constructed by
pairing a scenario with an event belonging to that
scenario; negative samples are drawn from another
scenario in the training data. Using this data, we
train a RoBERTa-L-based (Liu et al., 2019) classi-
fier and remove those events from an ESD which
are predicted as irrelevant by this classifier.
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4.2.2 Step 2: Event De-duplication
The second step involves the identification and re-
moval of repeated events. Repetition of events can
occur by an exact copy of an event or by a para-
phrase of an event (e.g., ‘6. You have your batter
prepared‘ and ‘7. You have your batter made’ in 5
of Table 1). To identify such de-duplications, we
train a RoBERTa-L-based paraphrase identification
system using MRPC (Dolan and Brockett, 2005)
dataset. However, we observe many false-positives
(e.g., ‘open a faucet’ and ‘close a faucet’ were
identified as paraphrases) with this system. Since
false-positives can lead to unnecessary removal of
events, we employ a conservative approach of only
identifying repeated events. We find edit distance
between each pair of events in an ESD and remove
multiple occurrences of an event from the ESD, as
identified by the edit distance score of 0.

4.2.3 Step 3: Temporal Order Correction
The final step is to correct the order of events in
an ESD. We correct the ESDs for ordering by first
obtaining pair-wise event orderings and then using
a graph-based approach to get the final overall or-
dering. We pose the problem of pair-wise event
ordering as a binary classification task to predict if
the order of a given pair of events is correct with re-
spect to the given scenario. We sample event pairs
from gold ESDs to construct positive (sequence or-
der) and negative (reverse order) examples to train
a RoBERTa-L-based classifier. Topological sort is
then used to get the final ESD for a scenario from
the ordering predictions for all the

(
N
2

)
pairs of

events in an ESD. We construct a directed graph
G = (V, E) of events in a scenario with events as
nodes (V) of the graph and a directed edge from
node v1 ∈ V to v2 ∈ V if event represented by v2
is predicted to occur after the event represented by
v1. We keep the original ordering of events in case
the constructed graph is cyclic3 due to incorrect
predictions from the classifiers.

4.3 Implementation Details

4.3.1 Dataset pre-proccessing
We fine-tune LMs on ESDs from DeScript (Wan-
zare et al., 2016) dataset which consists of 100
ESDs each for 40 scenarios, collected via crowd-
sourcing. The scenarios are randomly partitioned
into 8 folds with each fold consisting of ESDs from

366±15% (averaged across all the input variants and folds)
of the complete graphs are acyclic for GPT2.

5 scenarios to perform 8-fold cross-validation of
SIF for each of the prompt formulation. We low-
ercase and enclose each ESD within a begin of sce-
nario ⟨BOS⟩ and an end of scenario ⟨EOS⟩ token
for fine-tuning. The input to the relevance classifier
is: scenario ⟨/s⟩ e and to the temporal classi-
fier is scenario name ⟨/s⟩ e1 ⟨/s⟩ e2, where
⟨/s⟩ is a separator token and e, e1, e2 are events.

4.3.2 Training details
We use huggingface’s transformers library (Wolf
et al., 2020) to fine-tune LMs on each of the 7
prompt formulations, leading to 7 variations for
each LM, for 1 epoch with a batch size of 1, gra-
dient accumulation per 16 steps, and block size
of 150. At inference time, 5 ESDs are sampled
for each of the given scenarios with top 50 prob-
able tokens, nucleus sampling (Holtzman et al.,
2019) probability of 0.9, and maximum length set
at 150. We use RoBERTa-L architecture from the
transformers library for relevance and temporal or-
der classifiers. Relevance (Temporal) classifier is
trained for 10 (5) epochs with average validation
accuracy of 84.50% (83.87%) across the folds. The
model with the best accuracy on the valid split is
used in the post-processing stage. We use python’s
editdistance library to compute edit distance for
the de-duplication step. We use Adam optimizer
with an initial learning rate of 2e−5, warm-up steps
set at 0.06 of total steps, batch size of 16, and max-
imum input length 150 for both the classifiers. All
the models are trained and tested on NVIDIA Tesla
V100 SXM2 16GB GPU machine.

5 Evaluation

We use SIF to induce script knowledge in GPT2,
BART, and T5, and evaluate full ESDs generated
for a given unseen scenario using BLEU metric (Pa-
pineni et al., 2002), following Pichotta and Mooney
(2016b) who use BLEU to score individual LM-
generated events. As BLEU is a precision-based
metric, we measure n-gram overlap of the sampled
ESDs against multiple gold-reference ESDs4 for
each scenario in the test fold.

Additionally, for deeper analysis of the gener-
ated ESDs, two of the authors evaluate a subset
of the generated ESDs (blinded to the identity of
the models and prompt variants) on three levels –

4We use NLTK python library to calculate BLEU score
with add-1 smoothing function and n-grams upto n = 4. We
convert the outputs of different variants & gold references into
numbered form, 1. e1 2. e2 . . .n. en for a fair comparison.
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Models TOKENS EXPECT SEQUENCE ALLTOKENS DESCRIBE DIRECT ORDERED
(1) Zero-shot 03.1 (5.2) 03.6 (5.5) 05.4 (2.8) 03.1 (5.2) 03.2 (3.6) 03.9 (5.1) 06.2 (6.6)
(2) GPT2-LSCRATCH 17.2 (3.1) 19.3 (3.7) 16.8 (2.9) 18.6 (4.5) 17.6 (2.6) 14.4 (3.9) 17.7 (3.2)
(3) BART-FT 15.5 (6.0) 20.8 (3.5) 19.6 (3.5) 19.7 (9.2) 19.2 (3.9) 18.0 (6.6) 11.7 (4.8)
(4) GPT2-FT 30.7 (5.1) 31.3 (5.5) 32.4 (6.3) 30.7 (6.6) 32.3 (5.9) 31.4 (5.8) 31.0 (4.8)
(5) BART-SIF 16.8 (5.1) 21.1 (4.2) 19.9 (3.7) 20.5 (11.1) 20.0 (3.8) 19.6 (7.2) 13.7 (5.0)
(6) GPT2-SIF 33.6 (5.4) 33.9 (5.6) 35.2 (6.9) 32.5 (6.9) 34.2 (5.3) 33.6 (5.7) 33.2 (5.5)

Table 3: Automatic evaluation results: Mean BLEU scores (and std. dev.) over 8 folds of held-out scenarios
are reported. (1) is pre-trained GPT2 (no fine-tuning or post-processing); (2) is randomly initialized GPT2 with
fine-tuning; (3-4) are fine-tuned BART and GPT2; (5-6) are SIF applied to BART and GPT2.

Models TOKENS EXPECT SEQUENCE ALLTOKENS DESCRIBE DIRECT ORDERED
(1) GPT2-FT 30.7 (5.1) 31.3 (5.5) 32.4 (6.3) 30.7 (6.6) 32.3 (5.9) 31.4 (5.8) 31.0 (4.8)
(2) GPT2-FT+Relevance (R) 33.1 (5.1) 33.1 (4.9) 34.7 (6.9) 31.9 (6.7) 33.7 (5.0) 32.6 (5.8) 33.2 (5.2)
(3) GPT2-FT+R+De-duplicate (D) 33.5 (5.2) 33.6 (5.2) 35.1 (6.9) 32.1 (6.7) 34.3 (5.0) 32.9 (5.7) 33.6 (5.5)

(4) GPT2-FT+R+D+Reorder (GPT2-SIF) 33.6 (5.4) 33.9 (5.6) 35.2 (6.9) 32.5 (6.9) 34.2 (5.3) 33.6 (5.7) 33.2 (5.5)

Table 4: Ablation analysis of each step in the proposed pipeline for GPT2. Mean BLEU scores (and std. dev.)
over 8 folds of held-out scenarios are reported. (1) fine-tuned GPT2; (2-4) are fine-tuned GPT2 with successive
post-processing steps.

individual events (Relevance (R)), pairwise events
(Order (O)), and the overall sequence (Missing
(M)). R measures the % of generated events rele-
vant to a scenario; O measures the % of consecutive
event pairs correctly ordered given a scenario; and
M measures the degree to which important events
are missing on a 4-point Likert scale defined as (1)
no or almost no missing events, (2) some insignif-
icant missing events, (3) notable missing events,
and (4) severe missing events. As scripts are com-
plex structures and require an understanding of
scenarios, we chose not to resort to a crowdsourc-
ing platform for manual analysis. We manually
analyze the outputs to evaluate SIF as well as per-
form an error analysis to identify opportunities for
future research directions.

We evaluate our framework on scenarios in each
of the eight folds as well as novel scenarios from
Regneri et al. (2010), and day-to-day activities. As
we do not have access to gold-reference ESDs for
the novel scenarios, we demonstrate our frame-
work’s performance only using manual evaluation.

6 Results and Analysis

6.1 Automatic Evaluation

We present the automatic evaluation results on held-
out scenarios in Table 3. As baselines, we report
scores from non-fine-tuned GPT2-L (Zero-shot), a
randomly-initialized GPT2-LSCRATCH model fine-
tuned on DeScript ESDs, and BART-FT and GPT2-
FT models which are fine-tuned in the first stage of
SIF. We do not report any results for T5 as it was
even struggling to learn the input ESD formulations
during fine-tuning. We explain the findings from

automatic evaluation below.

SIF significantly outperforms fine-tuning base-
lines. Both GPT2-SIF and BART-SIF have higher
BLEU scores as compared to their correspond-
ing fine-tuned (GPT2-FT and BART-FT) models
across all the prompt variants. This clearly reflects
the advantage of the post-processing stage in SIF
framework. Improvement across different LMs re-
inforces the LM-agnostic nature of our framework.
Variation in the extent of induction across prompt
variants indicates the sensitivity of LMs to prompt
formulations.

Script knowledge is best accessible through
GPT2 than other LMs. As previously mentioned
in probing experiments, BART and T5 were not
able to output anything useful in the zero-shot set-
ting while GPT2 could produce ESDs, although
erroneous and of poor quality. We observe same
trends even after fine-tuning these LMs or using
SIF to induce script knowledge in these LMs. In-
terestingly, a randomly initialized and fine-tuned
GPT2 (GPT2-LSCRATCH) is able to perform com-
parable to a pre-trained BART fined-tuned using
DeScript (BART-FT), and even better for TOKENS

and ORDERED variants. Overall, GPT2 is found
to be better than BART in terms of the presence
and accessibility of script knowledge through them.
One possible explanation for this is that GPT2 is a
generative language model while BART and T5 are
encoder-decoder-based language models making it
challenging to encode complete script knowledge
within a scenario name.

Performance across LMs is sensitive to prompt
formulation and scenario. We consistently ob-
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Variants BLEU↑ Manual Evaluation
R↑ O↑ M↓

TOKENS 19.2/22.8 77.2/84.3 72.3/89.3 2.6/2.6
EXPECT 22.8/26.0 81.9/82.7 74.5/86.5 3.0/3.0
SEQUENCE 27.8/33.4 73.3/83.2 74.0/87.5 2.5/2.5
ALLTOKENS 33.5/35.0 83.5/85.7 82.7/89.5 2.6/2.6
DESCRIBE 27.1/28.6 80.7/86.3 83.9/85.9 2.8/2.8
DIRECT 30.9/34.1 81.2/84.2 88.5/86.1 2.6/2.6
ORDERED 31.9/31.5 84.9/86.2 78.6/86.8 2.6/2.6

Table 5: Manual and BLEU scores on fine-tuned GPT2
(GPT2-FT) SIF applied to GPT2 (FT/SIF), computed
for a stratified sample of outputs (one ESD per sce-
nario across two folds). Mean scores across two an-
notators are reported. Annotator agreement is mea-
sured with Cohen’s Kappa (Cohen, 1960) (κ=0.61 for
O, κ=0.56 for R) and Spearman’s correlation (ρ=0.64
for M). Underline and bold denotes the best across vari-
ants, and between FT and Ours, respectively. O scores
are calculated only when both the events are marked as
relevant by the two annotators.

serve variation in performance across prompt vari-
ants. Moreover, this variation is also observed
across LMs. For BART, EXPECT outperforms other
prompt variants while SEQUENCE performs the
best for GPT2. High variance across folds also
shows that different prompts perform differently
depending upon a scenario. This indicates the sen-
sitivity of LMs to prompt formulations and thus
justifies our experiments with different prompt for-
mulations to study the extent of script knowledge
that can be accessed through PLMs.

6.2 Ablation Analysis of SIF

We next analyze the contribution of each the stage
of SIF and each step of stage II leading to improve-
ment in the performance via an ablation study, on
GPT2, in Table 4. As expected stage I contributes
maximum to the performance boost. and There is
a consistent improvement in BLEU after each of
the post-processing steps except in the case of DE-
SCRIBE and ORDERED wherein, reordering leads
to a slight decrease in BLEU as the trained classi-
fiers are not perfectly accurate. We present qual-
itative outputs when SIF is used to induce script
knowledge in GPT2 in Table 7.

6.3 Manual Evaluation and Error Analysis

We manually evaluate a total of 140 ESDs (for M)
comprising 652 individual events (for R) and 582
consecutive pair of events (for O) generated from
GPT2-FT and GPT2 SIF across all the prompt
variants (Table 5). BLEU scores are also reported
for the same set of ESDs to study the correlation

Scenario R↑ O↑ M↓
Order fastfood online 81.5 84.6 2.6
Cook in a microwave 89.5 92.0 2.4
Answer telephone 65.5 91.7 2.0
Buy from vending machine 77.1 81.3 3.4
Tie shoe laces 65.8 66.7 3.6
Brush teeth 75.9 71.4 2.6
Make ginger paste 41.5 85.7 3.4
Attend a wedding 71.9 100.0 2.4
Wash a car 85.7 90.0 3.0
Take out trash 88.5 92.3 2.2
Take a taxi 85.7 76.2 2.0
Surf the internet 73.3 62.5 2.8
Watch television 77.4 73.7 3.0
Go to a club to dance 100.0 93.5 1.4
Average Score 77.1 83.0 2.6

Table 6: Manual evaluation of ESDs for novel scenarios.
Averaged across 5 sampled ESDs per scenario generated
using the best performing SEQUENCE variant of GPT2-
SIF as per automatic measure.

between manual and automatic metrics. We find
that outputs from SIF have higher BLEU, R, and
O scores than FT across all prompt variants (except
O for DIRECT and BLEU for ORDERED). M scores
do not change, which shows that significantly im-
portant events are not dropped during the irrelevant
events removal step. Different prompts perform
well in different aspects. DESCRIBE generates most
relevant events, ALLTOKENS has the best temporal
ordering knowledge, and SEQUENCE leads to least
severe missing events after Stage II of SIF. To our
surprise, we find no statistically significant correla-
tion between BLEU and any of the manual evalu-
ation metrics (pearson correlation between BLEU
and R, O and M was r = 0.23,−0.06,−0.49 with
p> 0.1, respectively), emphasizing a need for more
sophisticated automatic metrics than BLEU for
evaluating full ESDs, having a complex structure.
The best performing variant as per BLEU score
differs from the best one in Table 3 due to variance
in performance across scenarios as well as different
sampled ESDs of the same scenario in Table 5.

Manual evaluation revealed that a model can
miss significant events, even though it can gener-
ate many relevant ones. As we only de-duplicate
multiple occurrences of exactly the same events in
a scenario, we observe repeated paraphrases (4.6%
across all prompt variants) of the same event, such
as ‘pour some milk in the pot’ and ‘pour the milk
into the coffee pot’ (MAKING COFFEE scenario).
23.9% of the irrelevant events (13.5% across all
prompt variants) are incoherent (‘take the flat to the
bathroom’ for CLEANING A FLAT), 11.4% mixed
(‘sit in front of coffee shop’ for MAKING COF-
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Good quality generations

GOING ON A
TRAIN

FT 1. get dressed 2. go to station 3. buy ticket 4. get on train 5. wait for train 6. get on train 7. sit in seat 8. read newspaper 9. wait for
train 10. get off train 11. get dressed 12. leave station

SIF 1. go to station 2. buy ticket 3. wait for train 4. get on train 5. sit in seat 6. get off train 7. leave station

FLYING IN AN
AIRPLANE

FT 1. go to airport 2. get boarding pass 3. go to the airline counter 4. present boarding pass and boarding pass id to attendant 5. present
ticket and id to attendant 6. sit down in seat 7. make sure you are in seat 8. board airplane

SIF 1. go to airport 2. go to the airline counter 3. present ticket and id to attendant 4. present boarding pass and boarding pass id to
attendant 5. get boarding pass 6. board airplane 7. make sure you are in seat 8. sit down in seat

Poor quality generations

CLEANING UP
A FLAT

FT 1. get the flat 2. take the flat to the bathroom 3. take some water 4. take the flat to the sink 5. turn on the water 6. let it wash the flat 7.
then put in some dryer sheet 8. get a sponge 9. scrub the flat 10. put the flat in the dryer 11. when done dry the flat with a towel 12.
put away the flat

SIF 1. get the flat 2. take the flat to the bathroom 3. take some water 4. take the flat to the sink 5. turn on the water 6. let it wash the flat 7.
then put in some dryer sheet 8. get a sponge 9. scrub the flat 10. put the flat in the dryer 11. when done dry the flat with a towel 12.
put away the flat

TAKING THE
UNDER-

GROUND

FT 1. arrive at the designated location 2. get in car 3. park in car 4. walk into the designated area 5. enter the room 6. find a chair 7. sit on
a chair 8. watch movie

SIF 1. walk into the designated area

Table 7: Scripts generated using SEQUENCE variant of GPT2 for held-out scenarios. FT denotes output from the
fine-tuned model and SIF refers to outputs from our framework applied to GPT2.

Good quality generations
BRUSHING

TEETH

FT 1. go into bathroom 2. turn on faucet 3. remove any dirt or debris 4. grab a brush 5. scrub and floss the teeth 6. leave the bathroom
SIF 1. go into bathroom 2. grab a brush 3. scrub and floss the teeth 4. leave the bathroom

GOING TO A
CLUB TO
DANCE

FT 1. choose which club to attend. 2. drive or park your car. 3. get in your car. 4. go to the club. 5. enter the club. 6. get up and dance.
SIF 1. choose which club to attend. 2. get in your car. 3. go to the club. 4. drive or park your car. 5. enter the club. 6. get up and dance.

TAKING A
TAXI

FT 1. get in car 2. get into car 3. wait for taxi 4. enter the car 5. pay the fare 6. get out the driver 7. get out the door 8. exit car
SIF 1. get into car 2. get in car 3. wait for taxi 4. enter the car 5. pay the fare 6. get out the driver 7. exit car 8. get out the door

Poor quality generations

MAKING
GINGER PASTE

FT 1. get your hot water 2. get your bowl 3. turn on the hot water 4. whisk a bowl of sugar into a paste 5. put the bowl on the stove 6. turn
on the hot water 7. boil the paste 8. add salt to the paste 9. turn off the water 10. put the bowl on a rack 11. pour the hot water into a
saucepan 12. put some salt and sugar in the saucepan 13. turn the heat on 14. pour the sauce on to the bowl 15. eat the paste

SIF 1. get your hot water 2. get your bowl 3. turn on the hot water 4. whisk a bowl of sugar into a paste 5. put the bowl on the stove 6. boil
the paste 7. add salt to the paste 8. put the bowl on a rack 9. pour the hot water into a saucepan 10. put some salt and sugar in the
saucepan 11. turn the heat on 12. pour the sauce on to the bowl 13. eat the paste

SURFING THE
INTERNET

FT 1. get in the car. 2. drive to the beach. 3. rent a surfboard. 4. go to the beach. 5. put on my sunglasses. 6. get in my car. 7. drive to my
beach. 8. go to the surfing.

SIF 1. 1. rent a surfboard. 2. get in the car. 3. go to the surfing.

ATTENDING A
WEDDING

FT 1. schedule an appointment for the reception 2. drive to the venue 3. show your guest information 4. present your wedding ceremony/
reception to the guests 5. invite the friends/ family/ coworkers/ etc. to the wedding 7. present your wedding present to the guests 8.
make the guest list 9. take the invitation 10. go to the reception 11. pay the fee/ gratuity 12. give your guest his/her ticket 13. leave the
venue

SIF 1. schedule an appointment for the reception 2. drive to the venue 3. show your guest information 4. present your wedding ceremony/
reception to the guests 5. invite the friends/ family/ coworkers/ etc. to the wedding 6. present your wedding present to the guests 7.
make the guest list 8. take the invitation 9. go to the reception 10. leave the venue

BUYING FROM
A VENDING

MACHINE

FT 1. enter the shop 2. look for the item you wish to purchase 3. go into the register to purchase the item 4. pay for the item 5. take your
item to your car 6. take the item to the car and remove the card 7. leave the shop 8. return the card 9. leave the shop

SIF 1. enter the shop 2. look for the item you wish to purchase 3. go into the register to purchase the item 4. pay for the item 5. take your
item to your car 6. take the item to the car and remove the card 7. leave the shop 8. return the card

Table 8: Scripts generated using SEQUENCE variant of GPT2 for novel scenarios. FT denotes output from the
fine-tuned model and SIF refers to outputs from our framework applied to GPT25.

FEE), 61.4% unrelated (‘add shampoo’ for WASH-
ING DISHES), and rest ungrammatical.

We present a manual evaluation of novel sce-
narios to gauge the generalizability of our frame-
work in Table 6. The framework generalizes to
most of the novel scenarios except for those which
involve very granular events like MAKING GIN-
GER PASTE or TYING SHOE LACES. Although
GPT2 is a contextualized model, it confuses BUY-
ING FROM VENDING MACHINE with buying from
a store, SURFING THE INTERNET with the ‘surfing’
activity, or ATTENDING A WEDDING with ‘getting
married’. Additionally, we provide a few good and
bad quality outputs from GPT2 models for held-out
(Table 7) and novel (Table 8) scenarios to identify
the avenues for improving script induction in LMs.

7 Limitations

De-duplication of Events. As mentioned previ-
ously, SIF cannot de-deuplicate paraphrased ver-
sion of an event. Therefore, more sophisticated
paraphrase identification systems could be used
to de-duplicate such events. There could be sce-
narios where multiple occurrence of same event is
required. For instance, WASHING DISHES wherein
faucet needs to be opened and closed once at the
starting before applying soap and secondly after
applying soap (when washed by hands). Hence, it
is required to differentiate between desirable and
undesirable repetition of events.

Full vs Partial Temporal Ordering. While we
consider the task of generating full event sequence
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descriptions for a scenario, we acknowledge that
many scenarios may not have strict ordering of
events (e.g., either wet ingredients can be mixed
first or dry ones in a BAKING A CAKE scenario) or
there can be overlapping events (e.g., while oven
is pre-heating, batter can be prepared). Instead of
considering partial ordering of events (Sakaguchi
et al., 2021), we focus on generating multiple possi-
ble full sequence of events for a scenario and report
the averaged scores.

8 Conclusion and Future Work

We investigate whether pre-trained language mod-
els are capable of generating full event sequence
descriptions with minimal prompting and find that
pre-trained GPT2 has an incomplete understanding
of scripts, while BART and T5 did not even pro-
duce anything useful through zero-shot probing ex-
periments. We propose SIF, an LM-agnostic script
induction framework, that is shown to produce
meaningful ESDs for unseen scenarios and mit-
igate errors (such as scenario-irrelevant, repeated,
and misordered events) that were observed during
probing experiments, as measured by automatic
and manual evaluation. We also provide evidence
for the generalization capability of our framework
to novel scenarios. However, there is great room for
improvement which is evident from manual error
analysis and qualitative outputs. Future work may
focus on developing more sophisticated automatic
metrics as well as an end-to-end system for script
induction which might help in mitigating cascading
of errors, due to each component, common to any
pipeline-based approaches.
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