
Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 67 - 81
May 27, 2022 c©2022 Association for Computational Linguistics

Predicting Attention Sparsity in Transformers
Marcos Treviso1,2 António Góis5∗ Patrick Fernandes1,2,3

Erick Fonseca6∗ André F. T. Martins1,2,4
1Instituto de Telecomunicações, Lisbon, Portugal

2Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit), Lisbon, Portugal
3Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA

4Unbabel, Lisbon, Portugal
5Mila, Université de Montréal, Canada

6Kaufland e-commerce, Cologne, Germany

Abstract

Transformers’ quadratic complexity with re-
spect to the input sequence length has moti-
vated a body of work on efficient sparse ap-
proximations to softmax. An alternative path,
used by entmax transformers, consists of hav-
ing built-in exact sparse attention; however this
approach still requires quadratic computation.
In this paper, we propose Sparsefinder, a sim-
ple model trained to identify the sparsity pattern
of entmax attention before computing it. We
experiment with three variants of our method,
based on distances, quantization, and cluster-
ing, on two tasks: machine translation (atten-
tion in the decoder) and masked language mod-
eling (encoder-only). Our work provides a new
angle to study model efficiency by doing exten-
sive analysis of the tradeoff between the spar-
sity and recall of the predicted attention graph.
This allows for detailed comparison between
different models along their Pareto curves, im-
portant to guide future benchmarks for sparse
attention models.

1 Introduction

Transformer-based architectures have achieved re-
markable results in many NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020). How-
ever, they also bring important computational and
environmental concerns, caused by their quadratic
time and memory computation requirements with
respect to the sequence length. This comes in ad-
dition to the difficulty of interpreting their inner
workings, caused by their overparametrization and
large number of attention heads.

There is a large body of work developing ways to
“sparsify” the computation in transformers, either
by imposing local or fixed attention patterns (Child
et al., 2019; Tay et al., 2020; Zaheer et al., 2020), by
applying low-rank kernel approximations to soft-
max (Wang et al., 2020; Choromanski et al., 2021),

∗Work done at Instituto de Telecomunicações. Correspon-
dence to marcos.treviso@tecnico.ulisboa.pt

th
e qu

ick
br

ow
n

fox ju
mps

ov
er

th
e

laz
y

do
g

a) Extract α-entmax graph

b) Project and group qi and kj c) Add local + global patterns

Figure 1: (a) Extract sparse attention graphs from a
pretrained α-entmax transformer; (b) Project query and
key vectors to a smaller and appropriated space such
that similar points are likely to fall in the same vicinity;
(c) Additionally, we can combine window and global
patterns (green blocks) with the learned pattern (yellow
blocks) to increase the recall in recovering ground-truth
edges from the sparse graph at the top (starred blocks).

or by learning which queries and keys should be
grouped together (Kitaev et al., 2019; Daras et al.,
2020; Roy et al., 2021; Wang et al., 2021). Most
of the existing work seeks to approximate softmax-
based attention by ignoring the (predicted) tails
of the distribution, which can lead to performance
degradation. An exception is transformers with
entmax-based sparse attention (Correia et al.,
2019), a content-based approach which is natively
sparse – this approach has the ability to let each
attention head learn from data how sparse it should
be, eliminating the need for heuristics or approxi-
mations. The disadvantage of this approach is that
it still requires a quadratic computation to deter-
mine the sparsity pattern, failing to take computa-
tional advantage of attention sparsity.

In this paper, we propose Sparsefinder, which
fills the gap above by making entmax attention
more efficient (§4). Namely, we investigate three

67

methods to predict the sparsity pattern of entmax
without having to compute it: one based on metric
learning, which is still quadratic but with a better
constant (§4.3), one based on quantization (§4.4),
and another based on clustering (§4.5). In all cases,
the predictors are trained offline on ground-truth
sparse attention graphs from an entmax transformer,
seeking high recall in their predicted edges without
compromising the total amount of sparsity. Figure 1
illustrates our method.

More precisely, to evaluate the effectiveness
of our method across different scenarios, we per-
form experiments on two NLP tasks, encompassing
encoder-only and decoder-only configurations: ma-
chine translation (MT, §5) and masked language
modeling (MLM, §6), doing an extensive analysis
of the tradeoff between sparsity and recall (i.e., per-
formance on the attention graph approximation),
and sparsity and accuracy (performance on down-
stream tasks). We compare our method with four
alternative solutions based on efficient transform-
ers: Longformer (Beltagy et al., 2020), Bigbird (Za-
heer et al., 2020), Reformer (Kitaev et al., 2020),
and Routing Transformer (Roy et al., 2021), along
their entire Pareto curves. We complement these
experiments by analyzing qualitatively what is se-
lected by the different attention heads at the several
layers and represented in different clusters/buckets.
Overall, our contributions are:1

• We propose a simple method that exploits learn-
able sparsity patterns to efficiently compute
multi-head attention (§4).

• We do an extensive analysis of the tradeoff be-
tween sparsity and recall, and sparsity and accu-
racy in MT (§5) and MLM (§6), showing that
there is clear room for improvement in the design
of efficient transformers.

• We qualitatively analyze what is selected by the
different attention heads at various layers and
represented in different clusters/buckets.

2 Related Work

Interpreting multi-head attention. Several
works analyze the functionalities learned by dif-
ferent attention heads, such as positional and local
context patterns (Raganato and Tiedemann, 2018;
Voita et al., 2019). Building upon prior work on

1https://github.com/deep-spin/
sparsefinder

sparse attention mechanisms (Peters et al., 2019),
Correia et al. (2019) constrain the attention heads to
induce sparse selections individually for each head,
bringing interpretability without post-hoc manip-
ulation. Related approaches include the explicit
sparse transformer (Zhao et al., 2019) and recti-
fied linear attention (Zhang et al., 2021), which
drops the normalization constraint. Raganato et al.
(2020) show that it is possible to fix attention pat-
terns based on previously known behavior (e.g. fo-
cusing on previous token) while improving trans-
lation quality. However, a procedure that exploits
learnable sparsity patterns to accelerate multi-head
attention is still missing.

Low-rank softmax approximations. Methods
based on low-rank approximation to the softmax
such as Linearized Attention (Katharopoulos et al.,
2020), Linformer (Wang et al., 2020), and Per-
former (Choromanski et al., 2021) reduce both
speed and memory complexity of the attention
mechanism from quadratic to linear, but make inter-
pretability more challenging because the scores are
not computed explicitly. On the other hand, meth-
ods that focus on inducing sparse patterns provide
interpretable alignments and also have performance
gains in terms of speed and memory.

Fixed attention patterns. Among fixed pattern
methods, Sparse Transformer (Child et al., 2019)
and LongFormer (Beltagy et al., 2020) attend to
fixed positions by using strided/dilated sliding win-
dows. BigBird uses random and two fixed patterns
(global and window) to build a block sparse ma-
trix representation (Zaheer et al., 2020), taking ad-
vantage of block matrix operations to accelerate
GPU computations. In contrast, we replace the
random pattern with a learned pattern that mimics
pretrained α-entmax sparse attention graphs.

Learnable attention patterns. Learnable pat-
tern methods usually have to deal with assignment
decisions within the multi-head attention mech-
anism. Clustered Attention (Vyas et al., 2020)
groups query tokens into clusters and computes
dot-products only with centroids. Reformer (Ki-
taev et al., 2020) and SMYRF (Daras et al., 2020)
use locality-sensitive hashing to efficiently group
tokens in buckets. More similar to our work, Rout-
ing Transformer (Roy et al., 2021) and Cluster-
Former (Wang et al., 2021) cluster queries and keys
with online k-means and compute dot-products
over the top-k cluster points. Some queries and

68

https://github.com/deep-spin/sparsefinder
https://github.com/deep-spin/sparsefinder

keys are discarded due to this filtering, which af-
fects the overall recall of the method (as we show in
§5 and §6). The ability of Routing Transformer to
benefit from contextual information has been ana-
lyzed by Sun et al. (2021). In contrast, Sparsefinder
learns to cluster based on sparsity patterns from at-
tention graphs generated by α-entmax.

3 Background

3.1 Transformers

The main component of transformers is the multi-
head attention mechanism (Vaswani et al., 2017).
Given as input a matrix Q ∈ Rn×d containing
d-dimensional representations for n queries, and
matrices K,V ∈ Rm×d for m keys and values,
the scaled dot-product attention at a single head is
computed in the following way:

att(Q,K,V) = π

(
QK⊤
√
d

)

︸ ︷︷ ︸
Z∈Rn×m

V ∈ Rn×d. (1)

The π transformation maps rows to distributions,
with softmax being the most common choice,
π(Z)ij = softmax(zi)j . Multi-head attention is
computed by evoking Eq. 1 in parallel for each
head h:

headh(Q,K,V) = att(QWQ
h ,KWK

h ,VWV
h),

where WQ
h , WK

h , WV
h are learned linear transfor-

mations. This way, heads are able to learn spe-
cialized phenomena. According to the nature of
the input, transformers have three types of multi-
head attention mechanism: encoder self-attention
(source-to-source), decoder self-attention (target-
to-target), and decoder cross-attention (target-to-
source). While there are no restrictions to which el-
ements can be attended to in the encoder, elements
in position j > i in the decoder self-attention are
masked at timestep i (“causal mask”).

3.2 Extmax Transformers and Learned
Sparsity

The main computational bottleneck in transformers
is the matrix multiplication QK⊤ in Eq. 1, which
costs O(nmd) time and can be impractical when
n and m are large. Many approaches, discussed
in §2, approximate Eq. 1 by ignoring entries far
from the main diagonal or computing only some
blocks of this matrix, with various heuristics. By

doing so, the result will be an approximation of the
softmax attention in Eq. 1. This is because the orig-
inal softmax-based attention is dense, i.e., it puts
some probability mass on all tokens – not only a
computational disadvantage, but also making inter-
pretation harder, as it has been observed that only
a small fraction of attention heads capture relevant
information (Voita et al., 2019).

An alternative to softmax is the α-entmax trans-
formation (Peters et al., 2019; Correia et al., 2019),
which leads to sparse patterns directly, without any
approximation:

α-entmax(z) = [(α− 1)z− τ(z)1]
1/α−1

+ , (2)

where [·]+ is the positive part (ReLU) function, and
τ : Rn → R is a normalizing function satisfying∑

j [(α − 1)zj − τ(z)]
1/α−1

+ = 1 for any z. That
is, entries with score zj ≤ τ(z)/α−1 get exactly
zero probability. In the limit α → 1, α-entmax
recovers the softmax function, while for any value
of α > 1 this transformation can return sparse
probability vectors (as the value of α increases,
the induced probability distribution becomes more
sparse). When α = 2, we recover sparsemax (Mar-
tins and Astudillo, 2016). In this paper, we use
α = 1.5, which works well in practice and has a
specialized fast algorithm (Peters et al., 2019).

Although sparse attention improves interpretabil-
ity and head diversity when compared to dense al-
ternatives (Correia et al., 2019), the learned sparsity
patterns cannot be trivially exploited to reduce the
quadratic burden of self-attention, since we still
need to compute dot-products between all queries
and keys (QK⊤) before applying the α-entmax
transformation. In the next section (§4), we pro-
pose a simple method that learns to identify these
sparsity patterns beforehand, avoiding the full ma-
trix multiplication.

4 Sparsefinder

We now propose our method to extract sparse atten-
tion graphs and learn where to attend by exploiting
a special property of α-entmax: sparse-consistency
(§4.1). We design three variants of Sparsefinder to
that end, based on metric learning (§4.3), quantiza-
tion (§4.4), and clustering (§4.5).

4.1 Attention graph and sparse-consistency
For each attention head h, we define its attention
graph as Gh = {(qi,kj) | pi,j > 0}, a bipartite
graph connecting query and key pairs qi,kj ∈ Rd

69

for which the α-entmax probability pi,j is nonzero.
An example of attention graph is shown in Figure 1.
We denote by |Gh| the total size of an attention
graph, i.e., its number of edges. With α-entmax
with α = 1.5 we typically have |Gh| ≪ nm. In
contrast, softmax attention always leads to a com-
plete graph, |Gh| = nm.

Problem statement. Our goal is to build a model
– which we call Sparsefinder – that predicts Ĝh ≈
Gh without having to perform all pairwise compar-
isons between queries and keys. This enables the
complexity of evaluating Eq. 1 to be reduced from
O(nmd) to O(|Ĝh|d), effectively taking advantage
of the sparsity of α-entmax. In order to learn such a
model, we first extract a dataset of sparse attention
graphs {Gh} from a pretrained entmax-based trans-
former, which acts as a teacher. Then, the student
learns where to pay attention based on this informa-
tion. This procedure is motivated by the following
sparse-consistency property of α-entmax:

Proposition 1 (Sparse-consistency property). Let
b be a binary vector such that bj = 1 if p⋆j > 0,
and bj = 0 otherwise. For any binary mask vector
m “dominated” by b (i.e. m⊙ b = b), we have

α-entmax(z) = α-entmax(z|m), (3)

where zj |m = zj if mj = 1 and −∞ if mj = 0.

Proof. See §A in the supplemental material.

This property ensures that, if Ĝh is such that
Gh ⊆ Ĝh, then we obtain exactly the same result as
with the original entmax attention. Therefore, we
are interested in having high recall,

recall(Ĝh;Gh) =
|Ĝh ∩ Gh|

|Gh|
, (4)

meaning that our method is nearly exact, and high
sparsity,

sparsity(Ĝh) = 1− |Ĝh|
nm

, (5)

which indicates that computation can be made ef-
ficient.2 Although a high sparsity may indicate
that many computations can be ignored, converting
this theoretical result into efficient computation is
not trivial and potentially hardware-dependent. In
this paper, rather than proposing a practical com-
putational efficient method, we focus on showing

2For the decoder self-attention the denominator in Eq. 5
becomes n(n+ 1)/2 due to “causal” masking.

that such methods do exist and that they can be
designed to outperform fixed and learned pattern
methods while retaining a high amount of sparsity
when compared to the ground-truth graph.

Our strategies. We teach the student model to
predict Ĝh ≈ Gh by taking inspiration from the
Reformer model (Kitaev et al., 2020) and the Rout-
ing Transformer (Roy et al., 2021). Formally, we
define a set of B buckets, B = {1, . . . , B}, and
learn functions fq, fk : Rd → 2B \ {∅}, which
assign a query or a key to one or more buckets. We
will discuss in the sequel different design strategies
for the functions fq, fk. Given these functions, the
predicted graph is:

Ĝh = {(qi,kj) | fq(qi) ∩ fk(kj) ̸= ∅}, (6)

that is, an edge is predicted between qi and kj iff
they are together in some bucket.

We present three strategies, based on distance-
based pairing (§4.3), quantization (§4.4) and clus-
tering (§4.5). As a first step, all strategies require
learning a metric that embeds the graph (projecting
queries and keys) into a lower-dimensional space
Rr with r ≪ d, such that positive query-key pairs
are close to each other, and negative pairs are far
apart.

4.2 Learning projections
According to the α-entmax sparse-consistency
property, in order to get a good approximation of
Gh, we would like that fq and fk produce a graph
Ĝh that maximizes recall, defined in Eq. 4. How-
ever, maximizing recall in this setting is difficult
since we do not have ground-truth bucket assign-
ments. Instead, we recur to a contrastive learning
approach by learning projections via negative sam-
pling, which is simpler and more scalable than
constrained clustering approaches (Wagstaff et al.,
2001; de Amorim, 2012).

For each head, we start by projecting the orig-
inal query and key q,k ∈ Rd vectors into lower
dimensional vectors q′,k′ ∈ Rr such that r ≪ d.
In practice, we use a simple head-wise linear pro-
jection for all queries and keys gθ : Rd → Rr. To
learn the parameters of the projection layer we min-
imize a hinge loss with margin ω for each head h:

Lθ(Gh) =
[
ω+∥q′−k′

P∥22−∥q′−k′
N∥22
]
+
, (7)

where (q′,k′
P) ∈ Gh is a positive pair and

(q′,k′
N) /∈ Gh is a negative pair sampled uniformly

70

at random. In words, we want the distance between
a query vector to negative pairs to be larger than
the distance to positive pairs by a margin ω. This
approach can also be seen as a weakly-supervised
learning problem, where the goal is to push dissim-
ilar points away while keeping similar points close
to each other (Xing et al., 2002; Weinberger and
Saul, 2009; Bellet et al., 2015).

4.3 Distance-based pairing
To take advantage of the proximity of data points
on the embedded space, we first propose a sim-
ple method to connect query and key pairs whose
Euclidean distance is less than a threshold t, i.e.
Ĝh = {(qi,kj) | ∥q′

i − k′
j∥2 ≤ t}. Although

this method also requires O(n2) computations, it
is more efficient than a vanilla transformer since
it reduces computations by a factor of d/r by us-
ing the learned projections. This method is also
useful to probe the quality of the embedded space
learned by the projections, since the recall of our
other methods will be contingent on it.

4.4 Buckets through quantization
Our second strategy quantizes each dimension
1, . . . , r of the lower-dimensional space into β bins,
placing the queries and keys into the corresponding
buckets (B = rβ buckets in total). This way, each
qi and kj will be placed in exactly r buckets (one
per dimension). If qi and kj are together in some
bucket, Sparsefinder predicts that (qi,kj) ∈ Ĝh.
Note that for this quantization strategy no learn-
ing is needed, only the hyperparameter β and the
binning strategy need to be chosen. We propose a
fixed-size binning strategy: divide each dimension
into β bins such that all bins have exactly ⌈n/β⌉
elements. In practice, we append padding symbols
to the input to ensure that bins are balanced.

4.5 Buckets through clustering
The clustering strategy uses the low-dimensional
projections and runs a clustering algorithm to as-
sign qi and kj to one or more clusters. In this
case, each cluster corresponds to a bucket. In our
paper, we employed k-means to learn B centroids
{c1, . . . , cB}, where each cb ∈ Rr, over a small
portion of the training set. This strategy is simi-
lar to the Routing Transformer’s online k-means
(Roy et al., 2021), but with two key differences: (a)
our clustering step is applied offline; (b) we assign
points to the top-k closest centroids rather than
assigning the closest top-k closest points to each

centroid, ensuring that all queries are assigned to a
cluster.3 At test time, we use the learned centroids
to group queries and keys into k clusters each:

fq(qi) = arg top-k
1≤b≤B

−∥qi − cb∥22, (8)

fk(kj) = arg top-k
1≤b≤B

−∥kj − cb∥22, (9)

where the arg top-k operator returns the indices of
the kth largest elements. As in the quantization-
based approach, queries and keys will attend to
each other, i.e., Sparsefinder predicts (qi,kj) ∈ Ĝh

if they share at least one cluster among the k closest
ones. Smaller values of k will induce high sparsity
graphs, whereas a larger k is likely to produce a
denser graph but with a higher recall.

4.6 Computational cost

Let L be the maximum number of elements in a
bucket. The time and memory cost of bucketed
attention computed through quantization or clus-
tering is O(BL2). With balanced buckets, we get
a complexity of O(n1.5) by setting B =

√
n. Al-

though this cost is sub-quadratic, leveraging the
sparse structure of Ĝh in practice is challenging,
since it might require specialized hardware or ker-
nels. In general, we have |Ĝh| =

∑B
b=1 nbmb ≪

nm, where nb and mb are the number of queries
and keys in each bucket, since we have small com-
plete bipartite graphs on each bucket. Instead of
viewing quadratic methods only in light of their
performance, we adopt an alternative view of as-
sessing the tradeoff of these methods in terms of
sparsity and recall of their approximation Ĝh. This
offers a theoretical perspective to the potential per-
formance of each approximation on downstream
tasks, helping to find the best approximations for a
desired level of sparsity.

4.7 Combining learned and fixed patterns

As pointed out in prior work (Voita et al., 2019),
several attention heads rely strongly in local pat-
terns or prefer to attend to a particular position,
more promimently in initial layers. Therefore,
we take inspiration from the Longformer (Beltagy
et al., 2020) and BigBird (Zaheer et al., 2020) and
combine learned sparse patterns with window and

3The difference relies on the dimension on which the top-
k operation is applied. Routing Transformer applies top-k
to the input dimension, possibly leaving some queries unat-
tended, whereas Sparsefinder applies to the centroids dimen-
sion, avoiding this problem.

71

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

Baseline BigBird Longformer Reformer Routing Sf. distance Sf. k-means Sf. quant.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

10

20

30

40

BL
EU

Figure 2: Sparsity-recall (left) and sparsity-BLEU (right) tradeoff averaged across all layers and heads on IWSLT
EN→DE (top) and EN→FR (bottom). The vertical dashed line represents the gold sparsity obtained by the original
α-entmax transformer (which requires quadratic computation), and the starred marks depict its BLEU score: 34.47
on EN→DE and 42.65 on EN→FR.

global patterns by adding connections in the pre-
dicted graph Ĝh to improve the recall of all meth-
ods. Figure 1 illustrates how these patterns are
combined in the last step.

5 Experiments: Machine Translation

Setup. We pretrain a transformer-large model (6
layers, 16 heads) on the Paracrawl dataset (Esplà
et al., 2019). Next, we finetune it with α-entmax,
fixing α = 1.5 for all heads, on EN→DE and
EN→FR language pairs from IWSLT17 (Cettolo
et al., 2017). We use the 2011-2014 sets as valida-
tion data and the 2015 set as test data. We encode
each word using byte pair encoding (BPE, Sen-
nrich et al. 2016) with a joint segmentation of 32k
merges. As Vaswani et al. (2017), we finetune our
models using the Adam optimizer with an inverse
square root learning rate scheduler, with an initial
value of 5× 10−4 and a linear warm-up in the first
4000 steps. We evaluate translation quality with
sacreBLEU (Post, 2018). Training details, hyper-
parameters, and data statistics are described in §C.

Learning projections. To learn projections for
queries and keys (§4.2), we randomly selected 10K
long instances (n > 20 tokens) from the training
set and extracted the α-entmax attention graphs
Gh from the decoder self-attention for each head.
This led to an average of 8M and 9M positive pairs
(qi,kj) per layer for EN→DE and EN→FR, respec-
tively. In practice, due to the small number of pa-
rameters for each head (only 4,160), a single epoch

with Adam was sufficient to optimize the loss in
Eq. 7. The hyperparameters and the training details
for learning projections can be found in §C.

Pareto-curves. Using the learned projections,
we investigate the recall and the accuracy of all
Sparsefinder variants by comparing them with
Longformer, BigBird, Reformer, and Routing
Transformer. To get a fair comparison, we ana-
lyze each method for different levels of sparsity by
varying the following hyperparameters:

• Distance-based methods: the threshold t within
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.

• Bucketing-based methods: the number of buck-
ets B within {2, 4, 6, 8, 10, 12, 16, 20}.

• Fixed-pattern methods: the number of random
blocks of size 1 within {2, 4, 6, 8, 10, 12, 16, 20}
for BigBird; and the number of random global to-
kens within {2, 4, 6, 8, 10, 12, 16, 20} for Long-
former.

We also add global and local patterns to
all methods, varying the window size within
{0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27} to get different
levels of locality. We further compare all meth-
ods with a simple window baseline that only in-
duces the window and global patterns. Since all
methods exhibit a tradeoff between sparsity and re-
call/accuracy, we plot the scores obtained by vary-
ing the hyperparameters and draw their respective
Pareto frontier to see the optimal Pareto-curve.

72

Methods whose points lie below this frontier are
said to be Pareto-dominated, meaning that their
recall/accuracy cannot be increased without sac-
rificing sparsity, or vice-versa. Concretely, each
point on the curve is measured as a function of the
approximation to the ground-truth α-entmax atten-
tion graph Gh by replacing it by Ĝh at test time.

Sparsity-recall tradeoff. Pareto-curves for the
sparsity-recall tradeoff are shown on the left of
Figure 2 for both language pairs. Overall, both
language pairs have similar trends for all meth-
ods. Sparsefinder’s distance-based and clustering
approaches Pareto-dominates the other methods,
followed by Routing Transformer. Interestingly,
Longformer, BigBird, Routing Transformer, and
Sparsefinder’s bucketing approach perform on par
with the baseline, indicating that a simple local
window is a hard baseline to beat. Since the LSH
attention in Reformer shares queries and keys be-
fore hashing, the resultant buckets are also shared
for queries and keys, explaining the high recall and
the low sparsity of Reformer.

Sparsity-accuracy tradeoff. We show the trade-
off between sparsity and BLEU on the right of
Figure 2. For lower levels of sparsity, all meth-
ods perform well, close to the full entmax trans-
former. But as sparsity increases, indicating that
only a few computations are necessary, we see
that the distance-based and k-means variants of
Sparsefinder Pareto-dominate other methods, keep-
ing a very high BLEU without abdicating sparsity.
In particular, Sparsefinder’s distance and clustering
approaches perform on par with the full entmax
transformer when the amount of sparsity is close
to the original entmax transformer (around the ver-
tical dashed line). Overall, these plots show that
methods with a high recall for higher levels of spar-
sity also tend to have a higher BLEU score.

Learned patterns. We select some heads and
show in Figure 3 examples of the pattern learned
by our k-means variant on EN→FR. More exam-
ples can be found in §E. We note that the window
pattern is useful to recover local connections. We
can see that the k-means variant groups more query
and key pairs than the actual number of ground-
truth edges (left plots). However, due to the sparse-
consistency property (right plots), most of these
predictions receive zero probability by α-entmax,
resulting in a very accurate approximation.

Figure 3: Learned patterns by Sparsefinder k-means
(left) and the subsequent attention weights (right).
Starred blocks represent ground-truth edges.

6 Experiments: Masked LM

Setup. Following Beltagy et al. (2020), we initial-
ize our model from a pretrained RoBERTa check-
point. We use the roberta-base model from
Huggingface’s transformers library, with 12 layers
and 12 heads.4 We finetune on WikiText-103 (Mer-
ity et al., 2017), replacing softmax by α-entmax
with α = 1.5 for all heads. Training details, model
hyperparameters, and data statistics can be found
in §D.

Learning projections. As done for MT experi-
ments, we learn to project keys and queries from
the original 64 dimensions into r = 4 dimensions.
To this end, we use 1K random samples from the
training set, each with length of 512, keeping half
for validation. We extract the α-entmax attention
graphs Gh but from the encoder self-attention of
each head, leading to an average of 3M positive
pairs per layer. Due to the small number of learn-
able parameters for each head (256), training was
done with Adam for one epoch.

Results. Our full transformer trained with α-
entmax achieved a perplexity score of 3.5004 with
an overall sparsity of 0.9804 on WikiText-103.
As in sentence-level MT experiments, we mea-
sure the sparsity-recall and the sparsity-perplexity
tradeoff via the change of Gh with Ĝh at test
time. Moreover, since MLM has longer inputs,
we increased the range of the window pattern to
{31, 41, 51, 75, 101, 125, 151, 175, 201, 251}.

We show in Figure 4 the Pareto curves for the
tradeoff between sparsity and recall (left), and the
tradeoff between sparsity and perplexity (right).
The curves for the sparsity-recall tradeoff are simi-
lar to the ones found in MT experiments, with the
distance-based method outperforming all methods,

4https://huggingface.co/roberta-base

73

https://huggingface.co/roberta-base

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

Baseline BigBird Longformer Reformer Routing Sf. distance Sf. k-means Sf. quant.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity

0.70

0.75

0.80

0.85

0.90

0.95

Re
ca

ll

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity

6.0

5.5

5.0

4.5

4.0

3.5

Ne
g.

 P
er

pl
ex

ity

Figure 4: Sparsity-recall and sparsity-(neg-)perplexity tradeoff averaged across all layers and heads on WikiText-103.
The vertical dashed line represents the gold sparsity obtained by the full α-entmax transformer.

followed by the k-means variant of Sparsefinder
and Routing Transformer. In terms of perplexity,
our distance-based approach also Pareto-dominates
other methods, followed by our clustering vari-
ant and Routing Transformer. As in the MT ex-
periments, the window baseline yields a similar
sparsity-recall curve to other approaches, reinforc-
ing the importance of local patterns. Although the
distance-based method requires a quadratic num-
ber of computations, it reduces them by a factor
of d/r = 64/4 = 16, as described in §4.3, and
achieves better recall and perplexity than any other
tested method. This finding indicates clear room
for improvement in designing efficient attention
methods that have a better tradeoff between effi-
ciency and accuracy than existing approaches.

Learned patterns. In Figure 5 we show
Sparsefinder k-means’ predicted attention graphs
for a specific attention head that originally learned
to focus on coreference tokens. We can see that the
pattern induced by Sparsefinder keeps the behav-
ior of attending to coreferences. Concretely, our
method achieves a high recall score (∼ 80%) with
a high sparsity rate (∼ 75%) on this attention head.

Figure 5: Attention pattern learned by Sparsefinder k-
means that focus on coreference tokens.

Cluster analysis. To understand what is repre-
sented in each cluster learned by Sparsefinder k-
means, we run the following experiment: we obtain
POS tags using spaCy,5 and calculate the distribu-
tion of each tag over clusters for all heads. We
show an example in Figure 6, where Sparsefinder
learned a cluster that makes verbs and nouns attend
to themselves, and additionally to most auxiliary
verbs.

ADJ
ADP

ADV
AUX

CCONJ
DET INTJ

NOUN
NUM

PA
RT

PR
ON

PR
OPN

PU
NCT

SC
ONJ

SP
ACE

SY
M

VER
B X

0%

20%

40%

60%

80% Queries
Keys

Figure 6: Percentage of POS tags assigned to a given
cluster on the entire Wikitext 103 validation set.

7 Conclusions

We proposed Sparsefinder, a method to identify
the sparsity pattern of entmax-based transformers
while avoiding full computation of the score matrix.
Our method learns a low-dimensional projection of
queries and keys with a contrastive objective, and
comes with three variants: distance, quantization,
and clustering-based. We compared these variants
against competing approaches on two tasks: ma-
chine translation and masked language modeling.
We obtained favorable sparsity-recall and sparsity-
accuracy tradeoff curves. Our theoretical sparsity
provides a lower bound for how much computa-
tional sparsity can be achieved, and may guide
future research on efficient transformers.

5https://spacy.io/

74

https://spacy.io/

Acknowledgments

This work was supported by the European Re-
search Council (ERC StG DeepSPIN 758969),
by the P2020 project MAIA (LISBOA-01-
0247- FEDER045909), and by the Fundação
para a Ciência e Tecnologia through project
PTDC/CCI-INF/4703/2021 (PRELUNA) and con-
tract UIDB/50008/2020.

References
Aurélien Bellet, Amaury Habrard, and Marc Sebban.

2015. Metric learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 9(1):1–151.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems (NeurIPS), volume 33, pages 1877–1901.
Curran Associates, Inc.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the iwslt 2017 evaluation campaign. In
Proceedings of the 14th International Workshop on
Spoken Language Translation (IWSLT), pages 2–14.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. 2021. Re-
thinking attention with performers. In International
Conference on Learning Representations (ICLR).

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2174–
2184, Hong Kong, China. Association for Computa-
tional Linguistics.

Giannis Daras, Nikita Kitaev, Augustus Odena, and
Alexandros G Dimakis. 2020. Smyrf - efficient at-
tention using asymmetric clustering. In Advances in
Neural Information Processing Systems, volume 33,
pages 6476–6489. Curran Associates, Inc.

Renato Cordeiro de Amorim. 2012. Constrained clus-
tering with minkowski weighted k-means. In 2012
IEEE 13th International Symposium on Computa-
tional Intelligence and Informatics (CINTI), pages
13–17. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Miquel Esplà, Mikel Forcada, Gema Ramírez-Sánchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII Volume 2:
Translator, Project and User Tracks, pages 118–119,
Dublin, Ireland. European Association for Machine
Translation.

Patrick Fernandes, Kayo Yin, Graham Neubig, and An-
dré F. T. Martins. 2021. Measuring and increasing
context usage in context-aware machine translation.
In Joint Conference of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP), Virtual.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret.
2020. Transformers are rnns: Fast autoregressive
transformers with linear attention. In Proceedings of
the International Conference on Machine Learning
(ICML).

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In In-
ternational Conference on Learning Representations
(ICLR).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International Confer-
ence on Machine Learning (ICML), volume 48 of
Proceedings of Machine Learning Research, pages
1614–1623, New York, New York, USA. PMLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations (ICLR).

75

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.18653/v1/D19-1223
https://proceedings.neurips.cc/paper/2020/file/47d40767c7e9df50249ebfd9c7cfff77-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47d40767c7e9df50249ebfd9c7cfff77-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/W19-6721
https://www.aclweb.org/anthology/W19-6721
https://arxiv.org/abs/2105.03482
https://arxiv.org/abs/2105.03482
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://openreview.net/forum?id=rkgNKkHtvB
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
http://proceedings.mlr.press/v48/martins16.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research
(JMLR), 12:2825–2830.

Ben Peters, Vlad Niculae, and André F. T. Martins. 2019.
Sparse sequence-to-sequence models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1504–1519, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-
mann. 2020. Fixed encoder self-attention patterns
in transformer-based machine translation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 556–568, Online. Association
for Computational Linguistics.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287–297, Brussels, Belgium. Association for Com-
putational Linguistics.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions
of the Association for Computational Linguistics
(TACL), 9:53–68.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context? In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 807–
822, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and
Da-Cheng Juan. 2020. Sparse sinkhorn attention.
In International Conference on Machine Learning
(ICML), pages 9438–9447. PMLR.

Constantino Tsallis. 1988. Possible generalization of
boltzmann-gibbs statistics. Journal of Statistical
Physics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30, pages 5998–
6008. Curran Associates, Inc.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

A. Vyas, A. Katharopoulos, and F. Fleuret. 2020. Fast
transformers with clustered attention. In Proceedings
of the International Conference on Neural Informa-
tion Processing Systems (NeurIPS).

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan
Schrödl. 2001. Constrained k-means clustering with
background knowledge. In International Conference
on Machine Learning (ICML), page 577–584.

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun
Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and Jingjing
Liu. 2021. Cluster-former: Clustering-based sparse
transformer for question answering. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3958–3968, Online. Association
for Computational Linguistics.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Kilian Q Weinberger and Lawrence K Saul. 2009. Dis-
tance metric learning for large margin nearest neigh-
bor classification. Journal of Machine Learning Re-
search (JMLR), 10(2).

Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart
Russell. 2002. Distance metric learning with applica-
tion to clustering with side-information. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 15, page 12.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems (NeurIPS), 33.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2021.
Sparse attention with linear units. arXiv preprint
arXiv:2104.07012.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection. arXiv preprint arXiv:1912.11637.

76

https://doi.org/10.18653/v1/P19-1146
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/2021.emnlp-main.62
https://aclanthology.org/2021.emnlp-main.62
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/2021.findings-acl.346
https://doi.org/10.18653/v1/2021.findings-acl.346

A Sparse Attention

A natural way to get a sparse attention distribution is by using the sparsemax transformation (Martins
and Astudillo, 2016), which computes an Euclidean projection of the score vector onto the probability
simplex △n := {p ∈ Rn | p ≥ 0, 1⊤p = 1}, or, more generally, the α-entmax transformation (Peters
et al., 2019):

α-entmax(z) := arg max
p∈△n

p⊤z+Hα(p), (10)

where Hα is a generalization of the Shannon and Gini entropies proposed by Tsallis (1988), parametrized
by a scalar α ≥ 1:

Hα(p) :=

{
1

α(α−1)

∑
j(pj − pαj), α ̸= 1

−∑j pj log pj , α = 1.
(11)

Setting α = 1 recovers the softmax function, while for any value of α > 1 this transformation can return
a sparse probability vector. Letting α = 2, we recover sparsemax. A popular choice is α = 1.5, which
has been successfully used in machine translation and morphological inflection applications (Peters et al.,
2019; Correia et al., 2019).

Proof to Proposition 1.

Proof. From the definition of z|m and from Eq. 2, we have that
{
zj |m = zj >

τ(z)
α−1 if p∗j > 0

zj |m ≤ zj ≤ τ(z)
α−1 if p∗j = 0.

(12)

We first prove that τ(z|m) = τ(z). From the definition of τ(z) we have that
∑

j [(α−1)zj−τ(z)]
1/α−1

+ = 1.
Plugging the (in)equalities from Eq. 12, we thus have

1 =
∑

j

[(α− 1)zj − τ(z)]
1/α−1

+ =
∑

j

[(α− 1)zj |m − τ(z)]
1/α−1

+ . (13)

Since τ(z) satisfies the second equation – which is the condition that defines τ(z|m) – we thus conclude
that τ(z|m) = τ(z). Combining the results in Eqs. 12–13, we see that the supports of α-entmax(z) and
α-entmax(z|m) are the same and so are the thresholds τ , and therefore from Eq. 2 we conclude that
α-entmax(z|m) = α-entmax(z).

B Computing infrastructure

Our infrastructure consists of 4 machines with the specifications shown in Table 1. The machines were
used interchangeably, and all experiments were executed in a single GPU. Despite having machines with
different specifications, we did not observe large differences in the execution time of our models across
different machines.

GPU CPU

1. 4 × Titan Xp - 12GB 16 × AMD Ryzen 1950X @ 3.40GHz - 128GB
2. 4 × GTX 1080 Ti - 12GB 8 × Intel i7-9800X @ 3.80GHz - 128GB
3. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
4. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB

Table 1: Computing infrastructure.

C Machine Translation

C.1 Setup
Data. Statistics for all datasets used in MT experiments can be found below in Table 2.

77

DATASET # TRAIN # TEST AVG. SENTENCE LENGTH

IWSLT17 (EN→DE) 206K 1080 20 ±14 / 19 ±13
IWSLT17 (EN→FR) 233K 1210 20 ±14 / 21 ±15

Table 2: Statistics for MT datasets.

Training and Model. We replicated the sentence-level model of Fernandes et al. (2021) with the
exception that we used α-entmax with α = 1.5 instead of softmax in all attention heads and layers. Table 3
shows some architecture (transformer large) and training hyperparameters used for MT experiments. We
refer to the original work of Fernandes et al. (2021) for more training details.

HYPERPARAM. VALUE

Hidden size 1024
Feedforward size 4096
Number of layers 6
Number of heads 16
Attention mapping π 1.5-entmax
Optimizer Adam
Number of epochs 20
Early stopping patience 10
Learning rate 0.0005
Scheduling Inverse square root
Linear warm-up steps 4000
Dropout 0.3
CoWord dropout 0.1
Beam size 5

Table 3: Hyperparmeters for neural machine translation models.

C.2 Projections setup
Data. Statistics for the subsets of IWSLT used in the projection analysis can be found below in Table 4.

TRAIN VALIDATION

PAIR # SENT. # POS. PAIRS AVG. SENT. LENGTH # SENT. # POS. PAIRS AVG. SENT. LENGTH

EN→DE 9K 8M ±1M 35 ±16 1K 330K ±56K 36 ±17
EN→FR 9K 9M ±1M 37 ±17 1K 334K ±58K 37 ±16

Table 4: Statistics for subsets of IWSLT used for training and evaluating projections.

Training. After extracting the α-entmax graphs, we optimize the learnable parameters of Equation 7 with
Adam over a single epoch. Moreover, we used the k-means implementation from scikit-learn (Pedregosa
et al., 2011) for our clustering-based approach. The hyperparameters used both for training the projections
and for clustering with k-means are shown in Table 5.

Projection analysis. We compare Sparsefinder, varying B ∈ {2, 4, 6, 8, 10, 12} for bucket-based
methods, and t ∈ {0.5, 1.0, 1.5, 2.0, 2.5} for the distance-based variant, with the following methods:

• Window baseline: connect all query and key pairs within a sliding window of size w ∈
{0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27}.

• Learnable patterns: Reformer by varying the number of buckets within {2, 4, 6, 8, 10, 12}; Routing
transformer by varying the number of clusters within c ∈ {2, 4, 6, 8, 10} with top-k set to ⌈n/c⌉ (i.e.
balanced clusters).

• Fixed patterns: BigBird by varying the number of random blocks within {2, 4, 6, 8, 10} with a block
size of 1; Longformer by varying the number of random global tokens within {4, 8, 12, 16, 20}.

78

HYPERPARAM. VALUE

Projection dim. r 4
Loss margin ω 1.0
Batch size 16
Optimizer Adam
Number of epochs 1
Learning rate 0.01
ℓ2 regularization 0
k-means init k-means++
k-means max num. inits 10
k-means max iters 300

Table 5: Hyperparmeters for MT projections.

Sparsity-recall tradeoff per layer and head. Plots are shown in Figures 7 and 8 for EN→DE and
EN→FR, respectively.

Figure 7: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→DE.

Figure 8: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→FR.

D Masked Language Modeling

D.1 Setup
Data and model. In order to have a transformer model trained with α-entmax, we finetuned RoBERTa-
Base (Liu et al., 2019) on WikiText-103 (Merity et al., 2017) over 3000 steps with Adam (learning rate of

79

3× 10−5). To mimic the finetuning approach adopted by Longformer, we employed a batch size of 2 by
accumulating gradients over 32 steps due to GPU memory constraints. Table 6 shows some architecture
(transformer large) and training hyperparameters used for MT experiments. We refer to the original work
of Liu et al. (2019) for more architecture details.

HYPERPARAM. VALUE

Hidden size 64
Feedforward size 3072
Max input length 514
Number of layers 12
Number of heads 12
Attention mapping π 1.5-entmax
Optimizer Adam
Number of steps 3000
Learning rate 0.00003

Table 6: Hyperparmeters for masked language modeling models.

D.2 Projections setup
Data and training. The subset used for Masked LM projections experiments contains 500 instances for
training and 500 instances for validation. Moreover, all instances have a sentence length of 512 tokens.
We got 3M (±1M) positive pairs for training and 2.5M (±1M) for validation. The hyperparameters for
Masked LM are the same as the ones used in the MT experiments, shown in Table 5.

Projection analysis. We perform the same analysis as in MT, but now we vary the window size of the
baseline within {0, 1, 3, 7, 11, 25, 31, 41, 51, 75, 101, 125, 151, 175, 201, 251, 301, 351, 401, 451, 501,
512}.

Sparsity-recall tradeoff per layer and head. Plots are shown next in Figure 9.

Figure 9: Sparsity-recall tradeoffs with a fixed window pattern of size 25 for MLM.

E Attention plots

Examples of attention maps can be seen in Figure 10 and 11.

80

Figure 10: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred
blocks represent ground-truth edges.

Figure 11: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred
blocks represent ground-truth edges.

81

