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Abstract

We present SlotGAN, a framework for training
a mention detection model that only requires
unlabeled text and a gazetteer. It consists of
a generator trained to extract spans from an
input sentence, and a discriminator trained to
determine whether a span comes from the gen-
erator, or from the gazetteer. We evaluate the
method on English newswire data and com-
pare it against supervised, weakly-supervised,
and unsupervised methods. We find that the
performance of the method is lower than these
baselines, because it tends to generate more and
longer spans, and in some cases it relies only on
capitalization. In other cases, it generates spans
that are valid but differ from the benchmark.
When evaluated with metrics based on overlap,
we find that SlotGAN performs within 95% of
the precision of a supervised method, and 84%
of its recall. Our results suggest that the model
can generate spans that overlap well, but an
additional filtering mechanism is required.

1 Introduction

Detecting mentions of entities in text is an impor-
tant step towards the extraction of structured in-
formation from natural language sources. Men-
tion Detection (MD) components can be found fre-
quently in systems for Named Entity Recognition
(NER) (Straková et al., 2019; Wang et al., 2021),
entity linking (Wu et al., 2020; Cao et al., 2021),
relationship extraction (Katiyar and Cardie, 2017;
Zhong and Chen, 2021), and coreference resolu-
tion (Joshi et al., 2019; Xu and Choi, 2020; Kirstain
et al., 2021), where accurately modeling mentions
is crucial for downstream performance.

The MD task is often subsumed under NER,
where most effective approaches employ super-
vised learning with exhaustively annotated datasets.
These methods become less feasible in cases where
we need to rapidly build MD systems, for example,
when moving to a domain with incompatible NER
classes; or when there are not enough resources to

create a labeled dataset. In contrast, we assume
that we have access to an unlabeled corpus, and
a list of known entity names (i.e. a gazetteer).
We propose SlotGAN– a framework for detecting
mentions that uses a generator to extract spans con-
ditioned on some input text, and a discriminator
that determines whether a span comes from the
generator, or from the gazetteer (see Fig. 1). In
contrast with distant supervision methods that re-
quire training with false negatives (Ratner et al.,
2016; Giannakopoulos et al., 2017; Shang et al.,
2018), SlotGAN relies on the discriminator to learn
patterns that are not likely to be names of entities
(such as verb phrases, or very long spans, which
rarely occur in a gazzetteer), thereby improving the
generator’s ability to detect valid mentions.

We evaluate the method in a MD task using the
CoNLL 2003 English dataset (Tjong Kim Sang
and De Meulder, 2003). We observe that the ab-
sence of strong supervision in SlotGAN results in
different, yet valid notions of what constitutes an
entity. For instance, while in the sentence “On the
road to Tripoli airport...” the word Tripoli is se-
lected as a gold mention, SlotGAN selects Tripoli
airport. In this case, exact match metrics for NER
underestimate performance, assigning zero preci-
sion and recall. To account for this, we introduce
overlap-based metrics into the evaluation.

When using exact boundary match metrics, Slot-
GAN exhibits lower performance compared to dif-
ferent baselines. When evaluating overlap, preci-
sion (how much of the predicted span overlaps with
the gold span) is within 95% of the performance of
the supervised baseline, while recall (how much of
the gold span is actually predicted) is within 84%.
We observe that SlotGAN tends to generate more
and longer spans than those in the benchmark, and
in some cases it relies only on capitalization.

Our contributions are the following: 1) A frame-
work towards distantly-supervised MD that avoids
explicit training with false negatives, and an imple-
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Figure 1: SlotGAN consists of a generator G trained to extract spans from an input sentence. We represent spans as
matrices containing embeddings of words in a span, padded with zeros to a fixed length L. True spans are generated
from a gazetteer. A discriminator D is trained to determine if a span was generated from G or from the gazetteer.

mentation via an end-to-end differentiable architec-
ture for extracting distinct spans; 2) Evidence for
the use of overlap-based metrics into the evaluation
of MD methods to account for ambiguous cases
in gold annotations; 3) An analysis of the perfor-
mance of SlotGAN, identifying its failure modes
and outlining directions of improvement.

2 SlotGAN

In the MD task, we are given a sentence from a
corpus as a sequence of words (w1, w2, ..., wn).
The output of the system is a set of spans that con-
tain a mention, and each span is a tuple (is, ie)
where is is an integer indicating the position where
the span starts, and ie the position where it ends.
Additionally, we have access to a gazetteer E =
(e1, e2, ..., eN ) containing names of entities rele-
vant to a particular domain.

SlotGAN is a method for MD based on Gen-
erative Adversarial Networks (Goodfellow et al.,
2014; Mirza and Osindero, 2014). It consists of a
generator trained to extract spans from a sentence,
and a discriminator that determines whether a span
comes from the generator or from the gazetteer.

We define the embedding of a sentence w =
(w1, ..., wn) as a matrix emb(w) ∈ Rd×n, where
emb is a function that maps words to d-dimensional
pretrained embeddings (for example, from the input
embedding layer of BERT (Devlin et al., 2019)).

We represent each mention span in a sequence
as a matrix in a space S = Rd×L, where L is
the length of the sequence. For a span (is, ie), the
matrix contains the embeddings of the words within
the span, from column is to column ie, and is zero
in the remaining columns.

The generator takes as input the embedding ma-
trix emb(w) of a sentence, and assigns each of its
columns to one of k slots. The output is a sequence

of k span representations (Si)
k
i=1 with Si ∈ S,

such that the j-th column of Si contains the j-th
column of the input matrix, if it was assigned to
slot i. Unused columns of Si are filled with zeros.

When sampling a name e of an entity in the
gazetteer, we embed it as emb(e) and then add zero
padding via a pad function until reaching a maxi-
mum length L, to obtain a span representation in
S. The amount of padding is added randomly to
both sides of an entity name, with the purpose of
emulating how in a sentence, a mention can appear
at an arbitrary position. The discriminator takes as
input span representations in S , and outputs a score
that should be high for samples from the gazetteer,
and low for samples from the generator.

Denoting as pw the distribution used to sample
sentences from the corpus, and as pe the distribu-
tion for sampling names from the gazetteer, the
generator and discriminator are trained via gradient
descent using the W-GAN (Arjovsky et al., 2017)
minimax optimization objective:

min
G

max
D

Ee∼pe [D(pad(emb(e)))]−

Ew∼pw

[
k∑

i=1

D(G(emb(w))i)

]
, (1)

where we have denoted as G(emb(w))i the i-th
span representation produced by the generator.

To allow also not extracting any mentions when
not required, we randomly introduce empty spans
in the gazetteer, and we reformulate the genera-
tor objective with an equality constraint. Follow-
ing Bastings et al. (2019), we define the constraint
in terms of a differentiable function C such that
C(G(emb(w)i) counts the number of transitions
from zero to non-zero, and vice versa, in a span rep-
resentation. For valid spans, this should be equal
to 2. We solve the problem introducing a Lagrange

33



multiplier λ, and the term in Eq. 1 that depends on
the generator becomes

min
λ,G

Ew∼pw

[
k∑

i=1

−D(Si(w))− λ(2− C(Si(w))

]
,

(2)
where Si(w) is a shorthand for G(emb(w))i. This
constraint prevents the generator from producing
only empty spans.

At test time, we can use the spans produced by
the generator as predictions for mentions. Alter-
natively, we can balance precision and recall by
leveraging the discriminator, by only keeping spans
with a score D(Si(w)) > t where t is a threshold.

We implement the generator using BERT (De-
vlin et al., 2019), followed by a modified Slot Atten-
tion layer (Locatello et al., 2020) to model discrete
selections of distinct spans. The discriminator is a
temporal CNN. For more details on the architecture,
we refer the reader to Appendix A.

3 Related Work

The task of MD has been addressed under NER
effectively via supervised learning (Devlin et al.,
2019; Straková et al., 2019; Peters et al., 2018; Yu
et al., 2020; Wang et al., 2021). Some works ad-
dress the lack of labeled data in a target domain by
applying adaptation techniques from a source do-
main with labeled data (Zhou et al., 2019; Li et al.,
2019; Zhang et al., 2021). In this work we focus
on the case where annotations are not available.

Closer to our work are methods for weakly
or distantly supervised learning, where heuristics
and domain-specific rules are used to generate a
noisy training set, often using external sources like
gazetteers (Safranchik et al., 2020; Lison et al.,
2020; Zhao et al., 2021; Ratner et al., 2016; Shang
et al., 2018; Li et al., 2021a). These methods are
limited by false negatives that reduce recall in MD.
Furthermore, even though rules can be used to an-
notate a dataset at a large scale, the process of
devising these rules in the first place can be tedious,
and might require domain expert knowledge.

Luo et al. (2020) recently introduced a fully un-
supervised method for NER that uses a pipeline
of clustering over word embeddings, a generative
model, and reinforcement learning to solve the
NER task without any labels or external sources.
These elements are optimized separately, whereas
SlotGAN provides an end-to-end architecture.

4 Experiments

Datasets We evaluate MD performance using
the CoNLL 2003 English dataset for NER (Tjong
Kim Sang and De Meulder, 2003). For meth-
ods that require a dictionary of entity types or a
gazetteer, we build it using the annotations in the
training set. We also explore a pretraining strat-
egy for SlotGAN, where we sample sentences from
Wikipedia articles, and names of entities from Wiki-
data. Both are obtained from the July 2019 dumps.

Experimental setup We evaluate the perfor-
mance of SlotGAN when trained with the CoNLL
2003 data only, and when pretraining with
Wikipedia and Wikidata. We apply a threshold
to all spans based on the discriminator score, se-
lected using the validation set. Training and hyper-
parameter details can be found in Appendix B. Our
implementation is available online1.

Baselines We consider a string matching baseline
where we label all spans present in the gazetteer,
giving precedence to longer spans. We also
compare with methods ranging from supervised,
weakly supervised, to unsupervised. ACE (Wang
et al., 2021) is a state-of-the-art method for su-
pervised NER. AutoNER (Shang et al., 2018) is a
weakly supervised method that requires a type dic-
tionary. Lastly, we compare with the unsupervised
method of Luo et al. (2020)2.

Evaluation Recent works have highlighted the
presence of unlabeled mentions in the CoNLL
dataset, which has a negative effect when training
and evaluating models based on exact match (Jie
et al., 2019; Li et al., 2021b). Exact match met-
rics also penalize more strongly models that do not
match boundaries exactly, than a model that does
not predict a span at all (Manning, 2006; Esuli
and Sebastiani, 2010). With this motivation, we
also report overlap3 by computing the intersection
between gold and predicted spans. Precision is de-
fined as the length of the intersection divided by the
length of the predicted span, and recall is the length
of the intersection divided by the length of the gold
span. We denote these as OP and OR, respectively.
Overlap F1 (OF1) is the harmonic mean of OP and
OR. We report the average over all gold spans.

1https://github.com/dfdazac/slotgan
2Their implementation is not available. Results for P, R,

and F1 from their paper.
3Partial matches have been considered by Segura-Bedmar

et al. (2013), though not taking span lengths into account.
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Method Data P R F1 OP OR OF1

String matching Gazetteer 76.2 54.0 63.2 57.4 61.3 58.6
ACE (Wang et al., 2021) Gold labels 96.0 97.1 96.5 98.3 98.1 98.1
AutoNER (Shang et al., 2018) Type dictionary 88.4 94.2 91.2 97.4 97.2 96.9
Unsupervised (Luo et al., 2020) Domain concepts 80.0 72.0 76.0 — — —

SlotGAN - no pretraining
Gazetteer

55.9 66.1 60.6 82.9 79.5 82.9
SlotGAN - pretrained 60.1 71.1 65.2 93.2 83.0 84.7

Table 1: Mention detection results evaluated via exact match precision (P), recall (R), and F1 score; and overlap
metrics (preceded with O). The “Data” column indicates what is required to train the model in addition to a corpus.

Gold on the road to [Tripoli] airport
Predicted on the road to [Tripoli airport]

Gold [Belgian] police said on Saturday
Predicted [Belgian police] said on Saturday

Gold [JOHNSON] WINS UNANIMOUS POINTS VERDICT
Predicted [JOHNSON WINS UNANIMOUS POINTS VERDICT]

Gold BASKETBALL - [BENETTON] BEAT [DINAMO] 92 - 81
Predicted [BASKETBALL] - [BENETTON BEAT DINAMO] 92 - 81

Table 2: Comparison of gold spans and spans predicted
by SlotGAN.

Results We present MD results in Table 1. We ob-
serve that pretraining with Wikipedia and Wikidata
entity names helps to improve the performance over
a version trained with the CoNLL 2003 data only.
The higher recall of SlotGAN in comparison with
the string matching baseline shows that the gener-
ator is not simply memorizing the gazetteer and
can thus detect mentions not seen during training.
However, its precision and recall are low compared
to other systems. We attribute this partly to the
lack of strong supervision of the generator, which
results in boundaries that differ from gold spans,
and detection of more mentions than those present
in the dataset. The overlap-based metrics show that
on average, predicted spans overlap 93% and gold
spans overlap 83% with the intersection. This indi-
cates that extra words are added to predicted spans,
and boundary mismatch, though these values of
precision and recall are within 95% and 84% of the
supervised baseline, respectively.

A closer analysis of the length of overlapping
spans shows that in 69.4% of the cases the length is
the same as gold spans, in 21.1% the predicted span
is longer, and in 9.5% it is shorter. This often leads
to mentions that are actually correct, as shown in
Table 2. However, SlotGAN also produces spans
that do not overlap with any gold span. This can be
observed by plotting the average number of words
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Figure 2: Number of words assigned to a mention per
sentence, computed over gold and predicted spans.

assigned to a mention by the model versus the gold
annotations, as shown in Fig 2. We see that across
different numbers of mention words for the gold
annotations, SlotGAN produces a higher number
in average. We also find cases where it relies on
capitalization only, which becomes problematic in
upper case sentences: for regular sentences, there
is no exact boundary match in 11% of the cases.
For sentences in upper case, this increases to 23%.

5 Conclusion

We have presented SlotGAN, a method for training
a mention detector that only requires unlabeled text
and a list of entity names, that relies on implicit
supervision provided by a discriminator that is also
optimized during training. This results in spans that
overlap well with gold spans, but also a tendency
towards generating more and longer spans, and
relying on capitalization only. This suggests that
spans predicted by SlotGAN are likely to be correct,
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but an additional mechanism is needed to filter
them. This can be enforced via tighter constraints
on generated spans, or a stronger discriminator.

Even though its performance is close to a su-
pervised model according to overlap-based met-
rics, it cannot match other methods that also use
a gazetteer or are unsupervised. In spite of this,
we consider SlotGAN a promising framework for
other IE tasks with less supervision, for example,
where relations between slots could be induced.
The end-to-end architecture also presents an oppor-
tunity for fine-tuning with gold labels, which we
plan to explore in future work.
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A Architectures

In our implementation of SlotGAN, the embed-
ding function emb(w) used to obtain embeddings
of sentences and names in the gazetteer uses the
pretrained WordPiece embeddings from the input
layer of BERT (Devlin et al., 2019).

The generator consists of BERT, which for
an input sentence of length n, outputs a matrix

Layer Output features Activation

3× 3 Conv 128 ReLU
3× 3 Conv 64 ReLU
3× 3 Conv 64 ReLU
3× 3 Conv 64 —
Flatten —
Linear 32 ReLU
Linear 1 —

Table 3: Architecture of the discriminator used in our
experiments.

H ∈ Rd×n where d is the dimension of the
output layer of BERT, equal to 768. We use
the bert-base-cased implementation in Hugging-
Face’s Transformer library (Wolf et al., 2019).

The output matrix is passed to a modified Slot
Attention layer (Locatello et al., 2020), which we
use as a differentiable mechanism to assign n input
embeddings to k slots. In the original implemen-
tation, Slot Attention would assign each of the n
outputs in the columns of H to k slots, by using a
differentiable clustering algorithm. This algorithm
works for a variable number of slots, by sampling
k initial slot representations from a Gaussian distri-
bution. In our experiments we use k = 10, and the
number of iterations of the clustering algorithm is
set to 3.

In the MD case, for words that do not belong
to any mention, we want the generator to be able
to assign them to a “default” slot. We achieve this
by introducing an extra slot, whose representation,
instead of sampled, is a single vector with a learned
representation. Slot Attention in the generator thus
contains k+1 slots, but the default slot is discarded
when passing generated spans to the discriminator.

After discarding the default slot, the result is an
attention mask M ∈ Rk×n where the mij entry
indicates the fraction of input j assigned to slot i,
and each column is normalized to 1. The i-th span
representation is then obtained as

Si = emb(w)⊙Mi:, (3)

where Mi: is the i-th row of M, and ⊙ is broadcast
element-wise multiplication.

For the discriminator we use a temporal CNN,
where convolutions are applied along the sequence
axis. The input is a matrix of span representations
of shape d × L, and the output is a scalar. The
architecture is described in Table 3.
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B Training Procedure

We train SlotGAN with mini-batches of 32 sen-
tences. We update the generator once for every 5
updates of the discriminator. To let the discrimina-
tor accept empty spans as valid, we replace names
from the gazetteer with an empty span with a prob-
ability of 0.5. We use a gradient penalty coeffi-
cient (Gulrajani et al., 2017) of 10 when computing
the discriminator loss.

We use a learning rate of 2 × 10−5, with a lin-
ear warm-up schedule for the first 10% of epochs.
For the Lagrange multiplier, we use the Modified
Differential Method of Multipliers (Platt and Barr,
1987) with a constant learning rate of 1× 10−3.

We run our experiments in a workstation with
an Intel Xeon processor, 1 NVIDIA GeForce GTX
1080 Ti GPU with 11GB of memory, and 60GB
of RAM. When pretraining with Wikipedia and
Wikidata, we train SlotGAN with 20,000 updates
of the generator, and 5,000 when training with the
CoNLL 2003 dataset.
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