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Abstract

This study introduces a novel approach to the
joint extraction of entities and relations by
stacking convolutional neural networks (CNNs)
on pretrained language models. We adopt ta-
ble representations to model the entities and
relations, casting the entity and relation extrac-
tion as a table-labeling problem. Regarding
each table as an image and each cell in a table
as an image pixel, we apply two-dimensional
CNNs to the tables to capture local dependen-
cies and predict the cell labels. The experi-
mental results showed that the performance of
the proposed method is comparable to those of
current state-of-art systems on the CoNLL04,
ACE05, and ADE datasets. Even when freez-
ing pretrained language model parameters, the
proposed method showed a stable performance,
whereas the compared methods suffered from
significant decreases in performance. This ob-
servation indicates that the parameters of the
pretrained encoder may incorporate dependen-
cies among the entity and relation labels during
fine-tuning.

1 Introduction

The purpose of a joint entity and relation extraction
is to recognize entities and relations in a text. A
task can be decomposed into two subtasks: named
entity recognition (NER) and relation extraction
(RE). In recent years, several researchers have built
high-performance NER and RE systems based on
contextualized representations (Yan et al., 2021;
Zhong and Chen, 2021; Wang and Lu, 2020; Eberts
and Ulges, 2020; Lin et al., 2020). These contex-
tualized representations obtained from pretrained
language models, such as bidirectional encoder
representations from transformers (BERT) Devlin
et al., 2019, have significantly improved the perfor-
mance for various NLP tasks. As a result, studies
on NER and RE have focused on the design of
task-specific layers stacked on top of pretrained
language models.

A common idea is to formulate NER and RE
as table-filling problems (Miwa and Sasaki, 2014).
The core concept is to extract entities and relations
by filling a table with entity labels in the diagonal
cells and relation labels in the off-diagonal cells.
Based on this concept, Ma et al. (2022) proposed
TablERT, which is a combined system of NER
and RE based on a pretrained BERT. TablERT
predicts the diagonal cells sequentially and off-
diagonal cells simultaneously. Although the system
is simple and effective, it ignores the dependencies
among predicted relation labels. As noted in Ma
et al. (2022), this does not improve the performance
with label dependencies incorporated through re-
fined decoding orders.

We propose TablERT-CNN, a novel NER and
RE system that encodes the dependencies among
the cells within the table. Our method employs
two-dimensional convolutional neural networks
(2D-CNNs), which are widely used neural architec-
tures for object detection (Krizhevsky et al., 2012).
We considered each table as a 2D image and each
cell as a pixel, transforming the task into a table-
labeling problem at the cell level. By applying
2D-CNNs to the output of BERT, the system is
expected to implicitly perceive local information
and label dependencies from neighboring cells. No-
tably, the range of cells to be processed is expand-
able by stacking multiple CNN layers, we model
the dependencies among distant cells.

We evaluated TablERT-CNN based on multi-
ple benchmarks: CoNLL04 (Roth and Yih, 2004),
ACE05 (Walker et al., 2006), and ADE (Gurulin-
gappa et al., 2012). The experimental results
showed that the performance of the proposed
method is on par with those of current state-of-
art systems. We hypothesized that parameter up-
dates during fine-tuning helped the BERT encoder
capture the necessary dependencies for label pre-
dictions; thus, incorporating dependencies using
the CNN became less helpful. To verify this hy-
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pothesis, we compared the performance of several
NER and RE systems while keeping the BERT
parameters frozen and updating them during fine
tuning. In addition, we used different layers from
which the prediction model extracts token embed-
dings to analyze how parameter updates within
each layer contribute to the performance. As a
result, TablERT-CNN still performed well while
keeping the BERT parameters unchanged, whereas
the performance of the other systems significantly
decreased. This observation indicates the ability
of the BERT architecture to consider token- and
label-wise dependencies during task-specific fine
tuning. The source code for the proposed system is
publicly available at https://github.com/
YoumiMa/TablERT-CNN.

2 Related Work

2.1 NER and RE Using Contextualized
Representations

BERT and its variants have recently achieved signif-
icant performance improvements on various NLP
tasks (Devlin et al., 2019; Lan et al., 2020). These
transformer-based (Vaswani et al., 2017) encoders
learn syntactic and semantic languages, generat-
ing a contextualized representation of each input
token (Jawahar et al., 2019; Rogers et al., 2020).
Owing to the superiority of BERT encoders, recent
studies on NER and RE have tended to focus on
the design of a good prediction model that fully
utilizes BERT embeddings to further improve the
performance.

Promising and straightforward prediction mod-
els for NER and RE have been developed. Eberts
and Ulges (2020) proposed SpERT, which employs
span-level representations obtained from BERT en-
coders for linear classification based on a nega-
tive sampling strategy during training. In addition,
Zhong and Chen (2021) introduced a pipelined sys-
tem, which performs span-based NER similarly to
that of SpERT but re-encodes the input sentence
using BERT to perform RE. In the RE model, the
context and predicted entity labels are jointly en-
coded, enabling the computation of token-label at-
tention. These approaches rely mainly on parame-
ter updates in the BERT encoder during fine-tuning,
where the encoder learns to capture task-specific
dependencies. This study compares our system
with SpERT to distinguish the dependencies cap-
tured by the encoder from those captured by the
prediction model.

Some studies have used NER and RE for gen-
erative NLP tasks. Li et al. (2019) cast NER
and RE as a multiturn question-answering prob-
lem. They designed natural language question tem-
plates whose answers specify the entities and re-
lations within each sentence. In addition, Paolini
et al. (2021) tackled structured language predic-
tion tasks as sequence-to-sequence translations be-
tween augmented languages. Structural informa-
tion can be extracted by postprocessing the target
augmented language. Huguet Cabot and Navigli
(2021) followed their idea and built a translation
system that auto-regressively generates linearized
relation triplets, considering an input text. These
approaches utilize the attention mechanism within
the transformer to capture long-range dependen-
cies; however, they tend to be computationally bur-
densome. Inspired by their study, we have explored
ways to incorporate token and label dependencies
into the prediction model. However, our goal is to
develop a mechanism that is more explainable and
computationally efficient.

Another common approach is building a directed
graph, modelling entity with spans as nodes and
relations as arcs. Luan et al. (2019) and Wadden
et al. (2019) focused on information propagation
among span pairs to obtain effective span repre-
sentations for a prediction. Based on their study,
Lin et al. (2020) explicitly modeled cross-task and
cross-instance dependencies by introducing a pre-
defined set of global features. Instead of manu-
ally defining the global features, Ren et al. (2021)
introduced a text-to-graph extraction model that
automatically captures global features based on
the auto-regressive generation process of a graph.
These approaches are delicately designed to involve
graph propagation and beam search strategies, re-
sulting in a relatively high complexity.

Formulating the task as a table-filling problem
is also a common idea (Miwa and Sasaki, 2014;
Gupta et al., 2016; Zhang et al., 2017). Efforts
have recently been made to incorporate BERT into
this framework. Wang and Lu (2020) designed sep-
arate encoders for entities and relations. To use
word-word interactions captured within the BERT
model, the authors leveraged the attention weights
computed from BERT into a relation encoder. Yan
et al. (2021) applied a partition filter to divide neu-
rons into multiple partitions and generated task-
specific features based on a linear combination of
these partitions. Moreover,Ma et al. (2022) built
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Figure 1: Overview of the proposed TablERT-CNN method when setting the number of CNN layers to 1. An
example of a table-filling representation is shown on the right side. We employ the entire table to represent the
features and the upper triangular part to represent the labels.

the straightforward TablERT system by predicting
entities sequentially and relations simultaneously.
Although the model exhibited state-of-art perfor-
mance when published, it was unable to leverage
the interactions among the table cells, especially
for RE. This study applies their system as a strong
baseline and explores the effect of incorporating
local dependencies at the top of BERT. Because the
proposed system is an extension of TablERT, we re-
cap this approach (Ma et al., 2022) in the following
subsection.

2.2 TablERT

TablERT (Ma et al., 2022) is a simple and effec-
tive method for a combined system applying both
NER and RE. As shown on the right side of Fig-
ure 1, the method uses the upper triangular part of
a table to represent the label spaces of NER and
RE. The diagonal entries of the table are filled by
entity labels, adopting the BILOU scheme to iden-
tify the beginning, inside, last words of multi-word
and unit-length spans (Ratinov and Roth, 2009).
The off-diagonal entries in the table are filled with
relation labels, with directions hard-coded onto
each label. For each entity, the corresponding rela-
tion is annotated for all component words. For the
sentence shown in Figure 1, the relation “LiveIn”
pointing from “Richard Jones” to “Denison” is la-
beled as

−−−−→
LIVEIN for the entries (i = 1, j = 5)

and (i = 2, j = 5), corresponding to (Richard,
Denison) and (Jones, Denison), respectively.

Ma et al. (2022) designed two separate predic-
tion models for NER and RE. For NER, they se-
quentially assign a label to each word using fea-
tures at the current and previous timesteps. For

RE, they concatenate word embeddings with their
corresponding entity label embeddings as relation
embeddings. The relation scores of each word pair
are computed based on a matrix multiplication of
the linearly transformed relation embeddings.

Despite its simplicity, TablERT has shown
promising performance. However, the system pre-
dicts the relation labels simultaneously, discarding
label dependencies between the table cells. It has
been reported that the performance of TablERT
has shown little improvement, even when the off-
diagonal cells are decoded individually following a
predefined order Ma et al. (2022). In this study, we
are interested in the effect of incorporating label
dependencies at the top of contextualized represen-
tations. In contrast to Ma et al. (2022), we address
this problem using 2D-CNNs.

3 Proposed Method

3.1 Problem Formulation

The goal of NER and RE systems is to extract enti-
ties and relations between pairs of entities, based
on word sequences. Specifically, we consider a
sentence w1, · · · , wN . NER aims to identify every
word span si = wb, · · · , we that forms an entity
with entity type ti ∈ E . By contrast, RE aims
to extract every relation triple (s0⟨t0⟩, r, s1⟨t1⟩),
where r ∈ R represents the relation type between
s0 and s1. Here, E and R represent the label sets
of entities and relations, respectively.

3.2 TablERT-CNN

We propose TablERT-CNN as an extension of
TablERT (Ma et al., 2022), considering the depen-
dencies among labels by applying 2D-CNNs. Fig-
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ure 1 shows an overview of TablERT-CNN under a
setting in which the prediction model contains only
one CNN layer. Based on existing studies (Miwa
and Sasaki, 2014; Gupta et al., 2016; Zhang et al.,
2017; Ma et al., 2022), we use the upper triangular
part of a table to represent the entity and relation
labels. The table representation is formally defined
as follows:

Table Representation We define a matrix Y ∈
RN×N and use the upper triangular part to repre-
sent the label space of NER and RE. A diagonal
entry Yi,i represents the entity label of word wi,
and an off-diagonal entry Yi,j(j > i) represents
the relation label of the word pair (wi, wj). We
adopt the labeling rules of NER and RE, as in Ma
et al. (2022); i.e., we annotate an entity using the
BILOU notation and annotate a relation to every
composing word of an entity span, with the direc-
tion hard-encoded into the label.

Word Embeddings We obtain word embed-
dings from contextualized representations gen-
erated from the pretrained BERT model (De-
vlin et al., 2019). Based on the existing study,
we compute the embedding of each word by
max-pooling its composing sub-words (Liu et al.,
2019; Eberts and Ulges, 2020; Ma et al., 2022).
Specifically, for word wi composed of subwords
start(i), · · · , end(i), the embedding of ei is com-
puted as follows:

ei := max(x
(l)
start(i), · · · ,x

(l)
end(i)). (1)

Here, x(l) ∈ Rdemb is the output of the pre-
trained BERT model, where l is the layer index1,
demb is the dimension size, and max(·) is the max-
pooling function. Therefore, we obtain ei ∈ Rdemb .

Prediction Model We adopt a 2D-CNN to cap-
ture the local dependencies among neighboring
cells. 2D-CNNs are widely used for extract-
ing image-classification and object-detection fea-
tures (Krizhevsky et al., 2012). To apply a 2D-CNN
to jointly extract entities and their relations, we
treat the 2D table as an image and each cell within
the table as a pixel. We then employ the 2D-CNN
to encode the representation of each cell, as shown
in Figure 1. The convolution network enables the
model to capture local dependencies, and for each

1Previous studies have adopted the top layer (Li et al.,
2019; Wadden et al., 2019; Eberts and Ulges, 2020) or the av-
erage of the top three layers (Wang and Lu, 2020) to generate
word representations.

cell, a 2D-CNN layer yields a weighted linear com-
bination among all surrounding cells within the
convolutional window. The dependency range can
be extended by stacking multiple 2D-CNN layers.

Specifically, for each word pair (wi, wj), we con-
catenate the word embeddings ei, ej , and construct
the bottom layer H(0) ∈ RN×N×2demb (i.e., layer 0)
of the 2D-CNN.

H
(0)
i,j,: = h

(0)
i,j := [ei; ej ]. (2)

Here, [·; ·] represents the concatenation of two
vectors. Hence, the representation of each cell is a
vector of dimension 2× demb, which is denoted as
d0. Similarly, we denote the dimension number of
the vector representation for each cell in layer l as
dl.

We then compute the output of the first 2D-CNN
layer H(1) based on the output of the bottom layer
H(0). Analogously, the output of any layer l can be
computed by applying convolutions to the output
of the previous layer, l − 1. For any word pair
(wi, wj), we obtain its corresponding output at the
lth layer H(l)

i,j,: = h
(l)
i,j ∈ Rdl as follows:

H
(l)
i,j,: = h

(l)
i,j := b(l)+

dl−1∑

c=0

(K(l)
c,:,: ∗H(l−1)

:,:,c )i,j , (3)

where H(l−1) ∈ RN×N×dl−1 is the output of layer
l − 1, K(l) ∈ Rdl×dh×dw is a convolution kernel
with window size dh × dw, and b(l) ∈ R(l) is the
bias. Thus, for any dimension (i.e., channel) c,
we have K

(l)
c,:,: ∈ Rdh×dw and H

(l−1)
:,:,c ∈ RN×N .

A ∗B represents the operation of computing 2D
correlations. Given that A ∈ R(2α+1)×(2β+1), the
computation is defined as follows:

(A∗B)m,n :=
α∑

h=−α

β∑

w=−β

Aα+h,β+wBm+h,n+w.

(4)
The last layer of the 2D-CNN is a convolutional

classifier for RE. That is, for the last layer L, we set
its output dimension number to be the same as the
number of relation labels; i.e., dL := |R|. Thus,
for each word pair (wi, wj) where i ̸= j, we obtain
the relation label distribution Pθ(Ŷi,j) by applying
a softmax function to H

(L)
i,j,::

Pθ(Ŷi,j) := softmax(H
(L)
i,j,:), (5)
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where P is the estimated probability function, and
θ represents the model parameters.

For NER, we linearly transform the representa-
tions of the diagonal cells at layer L to compute
the entity label distribution of each word wi.

Pθ(Ŷi,i) := softmax(W · H(L)
i,i,: + b), (6)

where W ∈ R|E|×|R| and b ∈ R|E| are the trainable
weight matrix and the bias vector, respectively.

Training and Prediction During training, we
use the sum of cross-entropy losses of NER and RE
as the objective function. Given the ground-truth
label matrix of table Y ∈ RN×N , we compute the
cross-entropy loss for NER (LNER) and RE (LRE).

LNER = −
∑

1≤i≤N

logPθ(Ŷi,i = Yi,i), (7)

LRE = −
∑

1≤i≤N
i<j≤N

logPθ(Ŷi,j = Yi,j). (8)

We minimize LNER + LRE to update the model
parameters θ.

To predict the entity label of each word wi, we se-
lect the label yielding the highest probability from
Pθ(Ŷi,i) as the predicted result. When a conflict
occurs with regard to the entity type within an en-
tity span, we select the entity type labeled to the
last word as the final prediction. To predict the
relation label for each entity pair (si, sj), we select
the last words of both entity spans to represent the
corresponding span si, sj . For example, suppos-
ing the last word of entity span si, sj is indexed as
end(i), end(j), the predicted relation label for en-
tity pair (si, sj) is determined as the label yielding
the highest probability from Pθ(Ŷend(i),end(j)).

4 Experiments

4.1 Datasets
We evaluated the performance of our proposed
system on CoNLL04 (Roth and Yih, 2004),
ACE05 (Walker et al., 2006), and ADE (Gurulin-
gappa et al., 2012), the statistics of which are listed
in Table 1. Based on the conventional evaluation
scheme for CoNLL04 and ACE05, we measured
the micro F1-scores, and for ADE, we measured
the macro F1-scores.

CoNLL04 is an annotated corpus collected
from newswires. We processed the data released

Dataset # Sentences |E| |R|train dev test
CoNLL04 922 231 288 4 5
ACE05 10,051 2,424 2,050 7 6
ADE 4,272 (10-fold) 2 1

Table 1: Statistics of each dataset used in this study.

by Eberts and Ulges (2020)2 to obtain the BILOU
notations of the entities. Thus, our data split is the
same as that in Eberts and Ulges (2020).

ACE05 is an annotated corpus collected from
various sources, including newswires and online
forums. We used the data preprocessing scripts
provided by Wadden et al. (2019)3 and Luan et al.
(2019), which inherits that of Miwa and Bansal
(2016)4. After preprocessing, an entity is regarded
as correct if its label and head region are identical
to the ground truth.

Adverse Drug Effect (ADE, Gurulingappa et al.,
2012) is a corpus constructed based on the medical
reports of drug usages and their adverse effects.
Based on existing studies (Eberts and Ulges, 2020;
Wang and Lu, 2020), we removed overlapping enti-
ties from the dataset, which comprises only 2.8%
of the total number of entities.

4.2 Experimental Settings

We implemented the proposed system using Py-
Torch (Li et al., 2020) and applied the pretrained
BERT model provided by the Huggingface li-
braries (Wolf et al., 2020). Except for those within
the pretrained BERT model, the parameters were
randomly initialized. During training, we adopted
the AdamW algorithm (Loshchilov and Hutter,
2019) for parameter updates. The details of hy-
perparameters are listed in Appendix A.

All experiments were conducted on a single GPU
of an NVIDIA Tesla V100 (16 GiB). Throughout
this study, we report the average values of 5 runs
with different random seeds for all evaluation met-
rics.

4.3 Main Results

The main results of the proposed method are pre-
sented in Table 2. We adopted TablERT (Ma et al.,
2022) for the primary comparison and trained the
system from scratch with different pretrained en-

2https://github.com/lavis-nlp/spert
3https://github.com/dwadden/dygiepp
4https://github.com/tticoin/LSTM-ER
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Dataset Method Encoder NER RE RE+

CoNLL04△

SpERT (Eberts and Ulges, 2020) BERTBASE 88.9 - 71.5
Table-Sequence (Wang and Lu, 2020) ALBERTXXLARGE 90.1 73.8 73.6
TablERT (Ma et al., 2022) BERTBASE 90.2 72.8 72.6
TablERT (Ma et al., 2022) BERTLARGE 90.5 73.8 73.8
TablERT-CNN (Ours) BERTBASE 90.5 73.2 73.2

ADE▲

SpERT (Eberts and Ulges, 2020) BERTBASE 89.3 - 79.2
Table-Sequence (Wang and Lu, 2020) ALBERTXXLARGE 89.7 80.1 80.1
PFN (Yan et al., 2021) BERTBASE 89.6 - 80.0
PFN (Yan et al., 2021) BERTLARGE 91.3 – 83.2
TablERT(Ma et al., 2022) BERTBASE 89.9 80.6 80.6
TablERT-CNN (Ours) BERTBASE 89.7 80.5 80.5

ACE05△

DyGIE++ (Wadden et al., 2019) BERTBASE 88.6 63.4 -
Table-Sequence (Wang and Lu, 2020) BERTLARGE 88.2 67.4 -
Table-Sequence (Wang and Lu, 2020) ALBERTXXLARGE 89.5 67.6 64.3
PURE (Zhong and Chen, 2021) BERTBASE 88.7 66.7 63.9
PURE (Zhong and Chen, 2021) BERTXXLARGE 89.7 69.0 65.6
PFN (Yan et al., 2021) ALBERTXXLARGE 89.0 - 66.8
TablERT (Ma et al., 2022) BERTBASE 87.6 66.2 62.6
TablERT (Ma et al., 2022) BERTLARGE 88.4 67.5 64.6
TablERT (Ma et al., 2022) ALBERTXXLARGE 89.8 67.7 65.2
TablERT-CNN (Ours) BERTBASE 87.8 65.0 61.8

Table 2: Comparison between the existing and the proposed method (TablERT-CNN). Here, △ and ▲ denote the use
of micro-and macro-average F1 scores for evaluation, respectively. The results of TablERT are our replications,
and the results of the others are reported values from the original papers. To ensure a fair comparison, the reported
values of PURE follow the single-sentence setting.

coders5.
We evaluated the RE performance based on two

criteria: RE and RE+. Specifically, REregards each
predicted relation triple as correct if the relation
label and spans of both entities are identical to the
ground truth, whereas RE+ requires the labels of
both entities to be correct. Because comparing sys-
tems using different encoders is unfair, we discuss
the condition in which the encoders are aligned.

With regard to the CoNLL04 and ADE datasets,
we observed that TablERT-CNN achieved high and
stable performance on all datasets, on par with that
of TablERT. In particular, for CoNLL04, the perfor-
mance of the proposed method surpassed TablERT
for both NER and RE. One possible explanation
for this performance gain is that CoNLL04 is a rela-
tively small dataset, as listed in Table 1. Such a low-
resource setting possibly brought out the advantage
of TablERT-CNN, as the CNN layers helped to uti-
lize rich information about dependencies among
entities and relations.

However, regarding the ACE05 dataset, we did
not observe any performance gain by stacking the
CNN layers. As listed in Table 2, TablERT-CNN
lagged its competitor TablERT for around 1.0 point
on the F1 score of RE. The reason for this can be
multifactorial, and the nature of the ACE05 dataset

5The code is available at https://github.com/
YoumiMa/TablERT.

might provide an answer. The dataset contains
entities that do not contribute to any relation triple,
which significantly confuses the model during the
RE.

5 Analysis

Although our system exhibited a good performance
based on multiple datasets, no significant improve-
ment was observed against TablERT (Ma et al.,
2022). We hypothesize that the reason for this is
the parameter updates within the BERT encoder
during fine-tuning, which overshadowed the abil-
ity of the CNNs in the prediction model. Self-
attention modules within BERT potentially learn to
encode the dependencies between word pairs dur-
ing fine-tuning, overlapping with those captured by
the CNNs.

Experiments were conducted to verify this hy-
pothesis. Specifically, we trained multiple BERT-
based NER and RE systems (i.e., systems using
a pretrained BERT as the encoder) while freezing
the BERT parameters (§ 5.1). In this manner, we
prevented the encoder from obtaining task-specific
features during fine-tuning. The performance of
these encoder-frozen systems was compared with
that of their counterparts, whose encoder parame-
ters were updated during fine-tuning. Based on this
comparison, we investigated the extent to which
the parameter updates within BERT contribute to
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Method Parameter Encoder Layer
Updates 0 1 2 4 6 8 10 12

SpERT (Eberts and Ulges, 2020) No 27.4 30.9 32.1 36.5 41.0 40.6 37.2 8.0
Yes 51.0 70.7 79.9 85.4 85.9 86.9 86.5 87.7

TablERT (Ma et al., 2022) No 62.4 68.0 74.8 78.6 81.4 82.0 81.5 80.2
Yes 66.9 78.2 84.1 87.4 88.7 88.2 88.5 88.5

TablERT-CNN (Ours) No 80.3 81.1 83.1 85.1 86.6 86.2 86.0 85.9
Yes 80.5 83.7 85.6 87.0 88.4 88.4 88.3 88.0

Table 3: Micro-average NER F1 scores on the CoNLL04 development set with/without parameter updates within
the encoder (BERTBASE) during fine-tuning. We fed the hidden states at different encoder layers into the prediction
model for task-specific predictions.

Method Parameter Encoder Layer
Updates 0 1 2 4 6 8 10 12

SpERT (Eberts and Ulges, 2020) No 3.0 3.3 3.7 4.6 7.8 6.0 5.8 0.0
Yes 16.4 35.4 49.6 64.7 67.2 69.3 70.2 69.1

TablERT (Ma et al., 2022) No 28.8 37.4 39.3 47.1 53.0 54.0 55.9 51.7
Yes 36.0 47.9 60.9 66.5 71.3 70.5 71.0 70.7

TablERT-CNN (Ours) No 53.5 54.8 57.6 64.4 66.2 67.1 64.4 61.5
Yes 54.0 59.9 62.3 67.8 70.6 70.3 70.1 70.6

Table 4: Micro-average F1 scores of the RE on the CoNLL04 development set with/without parameter updates
within the encoder (BERTBASE) during fine-tuning. We fed the hidden states at different encoder layers into the
prediction model for task-specific predictions.

the performance of NER and RE.

In addition, we are interested in how each BERT
layer encodes dependencies that are helpful for
NER and RE. Previous studies have utilized the
outputs of the top BERT layers to produce word
representations (Wadden et al., 2019; Eberts and
Ulges, 2020; Ma et al., 2022; Wang and Lu, 2020).
However, we are curious whether the bottom or
middle BERT layers also store useful information
for solving the NER and RE. Therefore, we fed
hidden states at the {0, 1, 2, 4, 6, 8, 10, 12}th BERT
layer into the prediction model and examined the
difference in performance (§ 5.2). Here, the 0th
layer denotes the embedding layer of the BERT
encoder.

Our analysis includes SpERT (Eberts and Ulges,
2020), TablERT (Ma et al., 2022) and the proposed
method. We included TablERT for comparison be-
cause it is a counterpart of our system, incorporat-
ing no dependencies while performing RE. We in-
cluded SpERT for comparison because it is a strong
baseline utilizing a pretrained BERT encoder. Sys-
tems were trained on the CoNLL04 (Roth and Yih,
2004) training set and evaluated on the develop-
ment set, using BERTBASE (Devlin et al., 2019) as
the encoder. The experimental results are listed in
Tables 3 and 4. The plots corresponding to these
results are presented in Appendix B. Finally, we
analyze the effect of 2D-CNNs (§ 5.3).

5.1 Effect of Parameter Updates within BERT

As listed in Tables 3 and 4, while freezing the pa-
rameters within BERT, we observed a decrease in
the performance of both NER and RE for all tar-
get systems. SpERT exhibits a drastic decrease
in performance while disabling the parameter up-
dates within the encoder. This observation suggests
that the system relies heavily on parameter updates
of the encoder during task-specific fine-tuning to
solve specific tasks.

By contrast, TablERT-CNN exhibited the best
performance among the target systems, even with
BERT parameters frozen. This result indicates that
in a situation in which the parameter updates within
the encoder are infeasible (e.g., computational re-
sources are limited), TablERT-CNN can be more
promising than TablERT or SpERT in terms of
achieving high performance.

Furthermore, while freezing the BERT parame-
ters, utilizing the hidden states of the top layers (i.e.,
layer 10 and higher) hindered the performance of
all target systems. This phenomenon corresponds
to the study by Rogers et al. (2020), which con-
cluded that the final layers of BERT are usually the
most task-specific. For a pretrained BERT encoder
without any parameter updates, the top layers of
the model are specified to the pretraining task, i.e.,
the masked-language modeling (MLM) task. It can
therefore be assumed that while using the hidden
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Figure 2: Micro-F1 scores of all target systems while
varying the encoder layer whose outputs were fed into
the prediction model (CoNLL04 development set).

states of the top layers of BERT without any task-
specific parameter updates, the specificity toward
the MLM task adversely affects the performance
of the prediction model for both NER and RE.

5.2 Effect of BERT Layer

To visualize the performance change caused by the
choice of BERT layer, the hidden states of which
were utilized as word embeddings, we plotted the
micro-F1 scores of all target systems, as shown in
Figure 2.

Incorporating outputs from deeper BERT lay-
ers generally improves the prediction of all target
systems. The improvement was significant at the
bottom layers, but subtle at the top. Specifically, as
shown in Figure 2, from layers 0 to 6, we observed
a significant boost in the performance of NER and
RE for all target systems. The change in perfor-
mance was more evident with RE than with NER.
By contrast, the performance of all target systems
remained flat, starting from layer 8. This tendency
suggests that, while building a BERT-based NER
and RE system, it may be sufficient to employ up
to 8 layers for text encoding.

Our findings match those reported by Jawahar
et al. (2019), suggesting that BERT encodes a hi-
erarchy of linguistics from bottom to top. Jawahar
et al. (2019) found that BERT learns to encode long-
distance dependencies, e.g., subject-verb agree-
ments at deeper layers, which possibly explains
the significant improvement in the RE performance
while using outputs of the deeper BERT layers.

5.3 Effect of 2D-CNNs

As shown in Figure 2, while employing the outputs
from the bottom BERT layers (i.e., from layers 0
to 4), TablERT-CNN outperformed the other sys-
tems by a relatively large margin. We owe the
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Figure 3: Performance of all target systems while vary-
ing the number of trainable parameters, as measured
using the RE micro-F1 score (CoNLL04 development
set).

performance gap to the ability of TablERT-CNN
to capture local dependencies. As noted in an ex-
isting study, the bottom BERT layers encode the
surface information, for example, the phrasal syn-
tax and word order (Jawahar et al., 2019; Rogers
et al., 2020). As a result, the outputs at the bot-
tom BERT layers lack contextualized information
incorporating long-range dependencies, which are
crucial for extracting relations. Therefore, whereas
SpERT and TablERT suffer from the absence of
word-word interactions, TablERT-CNN overcomes
this issue by encoding them in the prediction model.
By observing the table representation as a 2D im-
age and each cell as a pixel, our method captures
the local dependencies within each convolution ker-
nel using 2D-CNNs. This advantage is apparent
when word embeddings are not properly contextu-
alized.

However, the superiority of TablERT-CNN be-
comes inconspicuous when the depth of the BERT
layers increases. This phenomenon indicates that,
when the contextualization ability of the encoder
improves, the strength of a 2D-CNN to incorporate
dependencies diminishes because the encoder has
already captured the necessary information.

Notably, although we have shown the superiority
of TablERT-CNN when utilizing the bottom BERT
layers, it is natural to suspect that the performance
gain resulted from the additional parameters in-
troduced by the convolutional layers. Compared
with SpERT and TablERT, TalERT-CNN introduces
more trainable parameters, thereby increasing the
ability of the system to fit the training data. To
determine whether the performance gain resulted
from the ability of the CNN to capture local de-
pendencies or merely from an increased number
of parameters, we replotted Figure 2, as shown in
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Figure 3, the result of which shows the relationship
between the RE micro-F1 scores and the number of
trainable parameters of each target system. From
Figure 3, we observed that TablERT-CNN lies on
the left-most side among all of the target systems.
To paraphrase, when keeping the number of train-
able parameters the same, TablERT-CNN performs
better than its competitors. This tendency is ap-
parent when the number of trainable parameters
is small, which indicates that TablERT-CNN can
be a prospective option when the computational
resources are limited.

To conclude, TablERT-CNN can be a promising
architecture when parameter updates within the
encoder are infeasible or when the encoder is not
well-contextualized. Under these situations, a 2D-
CNN plays an important role in encoding the local
dependencies, thus improving the NER and RE
predictions.

6 Conclusion

We presented TablERT-CNN, a novel method for
jointly extracting entities and relations with 2D-
CNNs. The method casts NER and RE as table-
labeling problems, representing each table cell as
a pixel and each table as a 2D image. By apply-
ing 2D-CNNs, the method predicts the label of
each table cell to extract entities and relations. Ex-
periments conducted on CoNLL04, ACE05, and
ADE demonstrated that TablERT-CNN performed
on par with current state-of-art systems when the
pretrained encoders were aligned.

To explore why TablERT-CNN did not outper-
form existing systems by a significant margin, we
conducted experiments to compare their perfor-
mance with and without parameter updates of the
BERT encoder during the fine-tuning. We ob-
served that TablERT-CNN performed reasonably
well even without updating the encoder parame-
ters, whereas its competitors suffered a decrease
in performance. These results indicate that the
BERT encoder can capture task-specific dependen-
cies among tokens and labels within its architecture,
based on parameter updates during fine-tuning.

In the future, we plan to model the dependencies
among table cells using other neural architectures.
Prospective directions include 2D-transformers that
compute the attention across element pairs in a 2D
array, or Routing Transformers that utilize local
attentions.
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A Hyper-parameters

The values of the hyperparameters used during the
experiments are listed in Table 5. CNN configura-
tions were determined by conducting grid searches
on the development split of each dataset, whereas
the training configurations were adopted directly
from Ma et al. (2022). We applied a scheduler that
linearly increases the learning rate from 0 to the
maximum value during the warm-up period and
gradually decreases it afterward.

B Effect of Parameter Updates with
BERT (cont.)

Figures 4(a) and 4(b) correspond to Tables 3 and 4,
respectively. As we can see, TablERT-CNN exhib-
ited a relatively high performance, even when the
BERT parameters were frozen. In addition, when
the BERT parameters were frozen, the performance
of all target systems decreased while incorporating
the hidden states of the top (10–12) encoder layers.

CoNLL04 ACE05 ADE
CNN Config.
kernel size Fh × Fw 3× 3 5× 5 3× 3
# layers L 2 2 3

hidden dim d(l) 512 512 512|256
Training Config.
batch size 8 8 16
Learning rate (BERT) 5e-5 5e-5 5e-5
Learning rate (others) 1e-3 1e-3 1e-3
dropout 0.3 0.3 0.3
warm-up period 0.2 0.2 0.2
# epochs 30 30 30

Table 5: Hyperparameters of our proposed method
(TablERT-CNN).
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(a) NER micro-F1 scores.
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Figure 4: Micro-F1 scores of all target systems while
varying the encoder layer whose outputs were fed
into the prediction model (CoNLL04 development set).
Here, “updated” and “frozen” indicate the status of each
parameter within BERT during the fine-tuning process.
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