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Abstract

Machine translation models struggle when
translating out-of-domain text, which makes do-
main adaptation a topic of critical importance.
However, most domain adaptation methods fo-
cus on fine-tuning or training the entire or part
of the model on every new domain, which can
be costly. On the other hand, semi-parametric
models have been shown to successfully per-
form domain adaptation by retrieving exam-
ples from an in-domain datastore (Khandelwal
et al., 2021). A drawback of these retrieval-
augmented models, however, is that they tend
to be substantially slower. In this paper, we
explore several approaches to speed up nearest
neighbor machine translation. We adapt the
methods recently proposed by He et al. (2021)
for language modeling, and introduce a simple
but effective caching strategy that avoids per-
forming retrieval when similar contexts have
been seen before. Translation quality and run-
times for several domains show the effective-
ness of the proposed solutions.1

1 Introduction

Modern neural machine translation models are
mostly parametric (Bahdanau et al., 2015; Vaswani
et al., 2017), meaning that, for each input, the out-
put depends only on a fixed number of model pa-
rameters, obtained using some training data, hope-
fully in the same domain. However, when running
machine translation systems in the wild, it is often
the case that the model is given input sentences
or documents from domains that were not part of
the training data, which frequently leads to subpar
translations. One solution is training or fine-tuning
the entire model or just part of it for each domain,
but this can be expensive and may lead to catas-
trophic forgetting (Saunders, 2021).

Recently, an approach that has achieved promis-
ing results is augmenting parametric models with

1The code is available at https://github.com/
deep-spin/efficient_kNN_MT.

a retrieval component, leading to semi-parametric
models (Gu et al., 2018; Zhang et al., 2018; Bapna
and Firat, 2019; Khandelwal et al., 2021; Meng
et al., 2021; Zheng et al., 2021; Jiang et al., 2021).
These models construct a datastore based on a set
of source / target sentences or word-level contexts
(translation memories) and retrieve similar exam-
ples from this datastore, using this information in
the generation process. This allows having only
one model that can be used for every domain. How-
ever, the model’s runtime increases with the size
of the domain’s datastore and searching for related
examples on large datastores can be computation-
ally very expensive: for example, when retrieving
64 neighbors from the datastore, the model may
become two orders of magnitude slower (Khandel-
wal et al., 2021). Due to this, some recent works
have proposed methods that aim to make this pro-
cess more efficient. Meng et al. (2021) proposed
constructing a different datastore for each source
sentence, by first searching for the neighbors of
the source tokens; and He et al. (2021) proposed
several techniques – datastore pruning, adaptive re-
trieval, dimension reduction – for nearest neighbor
language modeling.

In this paper, we adapt several methods proposed
by He et al. (2021) to machine translation, and we
further propose a new approach that increases the
model’s efficiency: the use of a retrieval distri-
butions cache. By caching the kNN probability
distributions, together with the corresponding de-
coder representations, for the previous steps of the
generation of the current translation(s), the model
can quickly retrieve the retrieval distribution when
the current representation is similar to a cached
one, instead of having to search for neighbors in
the datastore at every single step.

We perform a thorough analysis of the model’s
efficiency on a controlled setting, which shows that
the combination of our proposed techniques results
in a model, the efficient kNN-MT, which is approx-
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imately twice as fast as the vanilla kNN-MT. This
comes without harming translation performance,
which is, on average, more than 8 BLEU points and
5 COMET points better than the base MT model.

In sum, this paper presents the following contri-
butions:

• We adapt the methods proposed by He et al.
(2021) for efficient nearest neighbor language
modeling to machine translation.

• We propose a caching strategy to store the
retrieval probability distributions, improving
the translation speed.

• We compare the efficiency and translation
quality of the different methods, which show
the benefits of the proposed and adapted tech-
niques.

2 Background

When performing machine translation, the model
is given a source sentence or document, x =
[x1, . . . , xL], on one language, and the goal is to
output a translation of the sentence in the desired
language, y = [y1, . . . , yN ]. This is usually done
using a parametric sequence-to-sequence model
(Bahdanau et al., 2015; Vaswani et al., 2017), in
which the encoder receives the source sentence as
input and outputs a set of hidden states. Then,
at each step t, the decoder attends to these hid-
den states and outputs a probability distribution
pNMT(yt|y<t,x) over the vocabulary. Finally,
these probability distributions are used to predict
the output tokens, typically with beam search.

2.1 Nearest Neighbor Machine Translation

Khandelwal et al. (2021) introduced a nearest
neighbor machine translation model, kNN-MT,
which is a semi-parametric model. This means
that besides having a parametric component that
outputs a probability distribution over the vocabu-
lary, pNMT(yt|y<t,x), the model also has a nearest
neighbor retrieval mechanism, which allows direct
access to a datastore of examples.

More specifically, we build a datastore D which
consists of a key-value memory, where each en-
try key is the decoder’s output representation,
f(x,y<t), and the value is the target token yt:

D={(f(x,y<t) , yt) ∀yt∈ y | (x,y)∈(X ,Y)},
(1)

where (X ,Y) corresponds to a set of parallel
source and target sequences. Then, at inference
time, the model searches the datastore to retrieve
the set of k nearest neighbors N . Using their dis-
tances d(·) to the current decoder’s output repre-
sentation, we can compute the retrieval distribution
pkNN(yt|y<t,x) as:

pkNN(yt|y<t,x) = (2)∑
(kj ,vj)∈N 1yt=vj exp (−d (kj ,f(x,y<t)) /T )∑

(kj ,vj)∈N exp (−d (kj ,f(x,y<t)) /T )
,

where T is the softmax temperature, kj denotes
the key of the jth neighbor and vj its value. Fi-
nally, pNMT(yt|y<t,x) and pkNN(yt|y<t,x) are
combined to obtain the final distribution, which
is used to generate the translation through beam
search, by performing interpolation:

p(yt|y<t,x) =(1− λ) pNMT(yt|y<t,x) (3)

+ λ pkNN(yt|y<t,x),

where λ is a hyper-parameter that controls the
weights given to the two distributions.

3 Efficient kNN-MT

In this section, we describe the approaches intro-
duced by He et al. (2021) to speed-up the infer-
ence time for nearest neighbor language modeling,
such as pruning the datastore (§3.1) and reducing
the representations dimension (§3.2), which we
adapt to machine translation. We further describe
a novel method that allows the model to have ac-
cess to examples without having to search them in
the datastore at every step, by maintaining a cache
of the past retrieval distributions, for the current
translation(s) (§3.3).

3.1 Datastore Pruning
The goal of datastore pruning is to reduce the size
of the datastore, so that the model is able to search
for the nearest neighbors faster, without severely
compromising the translation performance. To do
so, we follow He et al. (2021), and use greedy
merging. In greedy merging, we aim to merge
datastore entries that share the same value (target
token) while their keys are close to each other in
vector space. To do this, we first need to find the
k nearest neighbors of every entry of the datastore,
where k is a hyper-parameter. Then, if in the set
of neighbors, retrieved for a given entry, there is
an entry which has not been merged before and
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has the same value, we merge the two entries, by
simply removing the neighboring one.

3.2 Dimension Reduction

The decoder’s output representations, f(x,y<t)
are, usually, high-dimensional (1024, in our case).
This leads to a high computational cost when com-
puting vector distances, which are needed for re-
trieving neighbors from the datastore. To alleviate
this, we follow He et al. (2021), and use principal
component analysis (PCA), an efficient dimension
reduction method, to reduce the dimension of the
decoder’s output representation to a pre-defined
dimension, d, and generate a compressed datastore.

3.3 Cache

The model does not need to search the datastore
at every step of the translation generation in order
to do it correctly. Here, we aim to predict when it
needs to retrieve neighbors from the datastore, so
that, by only searching the datastore in the neces-
sary steps, we can increase the generation speed.

Adaptive retrieval. To do so, first we follow He
et al. (2021), and use a simple MLP to predict
the value of the interpolation coefficient λ at each
step. Then, we define a threshold, α, so that the
model only performs retrieval when λ > α. How-
ever, we observed that this leads to results (§A.3)
similar to randomly selecting when to search the
datastore. We posit that this occurs because it is
difficult to predict when the model should perform
retrieval, for domain adaptation (He et al., 2021),
and because in machine translation error propa-
gation occurs more prominently than in language
modeling.

Cache. Because it is common to have similar
contexts along the generation process, when us-
ing beam search, the model can be often retrieving
similar neighbors at different steps, which is not
efficient. To avoid repeating searches on the data-
store for similar context vectors, f(x,y<t), we
propose keeping a cache of the previous retrieval
distributions, of the current translation(s). More
specifically, at each step of the generation of y,
we add the decoder’s representation vector along
with the retrieval distribution pkNN(yt|y<t,x), cor-
responding to all beams, B, to the cache C:

C={(f(x,y<t), pkNN(yt|y<t,x))∀yt∈ y |y∈B}.
(4)

Then, at each step of the generation, we com-
pute the Euclidean distance between the current
decoder’s representation and the keys on the cache.
If all distances are bigger than a threshold τ , the
model searches the datastore to find the nearest
neighbors. Otherwise, the model retrieves, from
the cache, the retrieval distribution that corresponds
to the closest key.

4 Experiments

Dataset and metrics. We perform experiments
on the Medical, Law, IT, and Koran domain data
of the multi-domains dataset (Koehn and Knowles,
2017) re-splitted by Aharoni and Goldberg (2020).
To build the datastores we use the in-domain train-
ing sets which have from 17,982 to 467,309 sen-
tences. The validation and test sets have 2,000
sentences.

To evaluate the models we use BLEU (Papineni
et al., 2002; Post, 2018) and COMET (Rei et al.,
2020).

Settings. We use the WMT’19 German-English
news translation task winner (Ng et al., 2019) (with
269 M parameters), available on the Fairseq library
(Ott et al., 2019), as the base MT model.

As baselines, we consider the base MT model,
the vanilla kNN-MT model (Khandelwal et al.,
2021), and the Fast kNN-MT model (Meng et al.,
2021). For all models, which perform retrieval,
we select the hyper-parameters, for each method
and each domain, by performing grid search on
k ∈ {8, 16, 32, 64} and λ ∈ {0.5, 0.6, 0.7, 0.8}.
The selected values are stated in Table 9 of App. B.

For the vanilla kNN-MT model and the efficient
kNN-MT we follow Khandelwal et al. (2021) and
use the Euclidean distance to perform retrieval and
the proposed softmax temperature. For the Fast
kNN-MT, we use the cosine distance and the soft-
max temperature proposed by Meng et al. (2021).
For the efficient kNN-MT we selected parameters
that ensure a good speed/quality trade-off: k = 2
for datastore pruning, d = 256 for PCA, and τ = 6
as the cache threshold. Results for each methods
using different parameters are reported in App. A.

4.1 Results
The translation scores are reported on Table 1. We
can clearly see that both Fast kNN-MT and the
efficient kNN-MT (combining the different meth-
ods) do not hurt the translation performance sub-
stantially, still leading to, on average, 8 BLEU
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BLEU COMET
Medical Law IT Koran Average Medical Law IT Koran Average

Baselines
Base MT 40.01 45.64 37.91 16.35 34.98 .4702 .5770 .3942 -.0097 .3579
kNN-MT 54.47 61.23 45.96 21.02 45.67 .5760 .6781 .5163 .0480 .4546
Fast kNN-MT 52.90 55.71 44.73 21.29 43.66 .5293 .5944 .5445 -.0455 .4057

Efficient kNN-MT
cache 53.30 59.12 45.39 20.67 44.62 .5625 .6403 .5085 .0346 .4365
PCA + cache 53.58 58.57 46.29 20.67 44.78 .5457 .6379 .5311 -.0021 .4282
PCA + pruning 53.23 60.38 45.16 20.52 44.82 .5658 .6639 .4981 .0298 .4394
PCA + cache + pruning 51.90 57.82 44.44 20.11 43.57 .5513 .6260 .4909 -.0052 .4158

Table 1: BLEU and COMET scores on the multi-domains test set, for a batch size of 8.
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Figure 1: Plots of the generation speed (tokens/s) for the different models on the medical, law, IT, and Koran
domains, for different batch sizes (1,8,16). The generation speed (y-axis) is in log scale. When using the Fast
kNN-MT model, the maximum batch size that we are able to use is 2, due to out of memory errors.

points and 5 COMET points more than the base
MT model.

4.2 Generation speed

Computational infrastructure. All experiments
were performed on a server with 3 RTX 2080 Ti
(11 GB), 12 AMD Ryzen 2920X CPUs (24 cores),
and 128 Gb of RAM. For the generation speed
measurements, we ran each model on a single GPU
while no other process was running on the server, to
have a controlled environment. To search the data-
store, we used the FAISS library (Johnson et al.,
2019). When using the vanilla kNN-MT and ef-
ficient kNN-MT, the nearest neighbor search is
performed on the CPUs, since not all datastores fit
into memory, while when using the Fast kNN-MT
this is done on the GPU.

Analysis. As can be seen on the plots of Fig-
ure 1, for a batch size of 1 Fast kNN-MT leads
to a generation speed higher than our proposed
method and vanilla kNN-MT. However, because of
its high memory requirements, we are not able to
run Fast kNN-MT for batch sizes larger than 2, on
the computational infrastructure stated above. On
the contrary, when using the proposed methods (ef-
ficient kNN-MT) we are able to run the model with
higher batch sizes, achieving superior generation

speeds to Fast kNN-MT and vanilla kNN-MT, and
reducing the gap to the base MT model.
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Figure 2: Plot of the generation speed (tokens/s), aver-
aged across domains, for different combinations of the
proposed methods.

Ablation. We plot the generation speed for dif-
ferent combinations of the proposed methods (av-
eraged across domains), for several batch sizes, on
Figure 2. On this plot, we can clearly see that every
method contributes to the speed-up achieved by
the model that combines all approaches. Moreover,
we can observe that the method which leads to the
largest speed-up is the use of a cache of retrieval
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distributions, by saving, on average 57% of the
retrieval searches.

5 Conclusion

In this paper we propose the efficient kNN-MT, in
which we combine several methods to improve the
kNN-MT generation speed. First, we adapted to
machine translation methods that improve retrieval
efficiency in language modeling (He et al., 2021).
Then we proposed a new method which consists
on keeping in cache the previous retrieval distribu-
tions so that the model does not need to search for
neighbors in the datastore at every step. Through
experiments on domain adaptation, we show that
the combination of the proposed methods leads to a
considerable speed-up (up to 2x) without harming
the translation performance substantially.
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A Additional results

In this section we report the BLEU scores as well
as additional statistics for the different methods,
when varying their hyper-parameters.

A.1 Datastore pruning
We report on Table 2 the BLEU scores for datastore
pruning, when varying the number of neighbors
used for greedy merging, k. The resulting datastore
sizes are presented on Table 3.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

k = 1 53.60 60.23 45.03 20.81 44.92
k = 2 52.95 59.40 44.76 20.12 44.31
k = 5 51.63 57.55 44.07 19.29 43.14

Table 2: BLEU scores on the multi-domains test set
when performing datastore pruning with several values
of k, for a batch size of 8.

Medical Law IT Koran

kNN-MT 6,903,141 19,061,382 3,602,862 524,374

k = 1 4,780,514 13,130,326 2,641,709 400,385
k = 2 4,039,432 11,103,775 2,303,808 353,007
k = 5 3,084,106 8,486,551 1,852,191 290,192

Table 3: Sizes of the in-domain datastores when per-
forming datastore pruning with several values of k, for
a batch size of 8.

A.2 Dimension reduction
We report on Table 4 the BLEU scores for dimen-
sion reduction, when varying the output dimension
d.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

d = 512 55.06 62.04 46.98 21.24 46.33
d = 256 54.52 61.84 46.68 21.57 46.15
d = 128 53.94 61.17 45.46 21.35 45.48

Table 4: BLEU scores on the multi-domains test set
when performing PCA with different dimension, d, val-
ues, for a batch size of 8.

A.3 Adaptive retrieval
We report on Table 5 the BLEU scores for adap-
tive retrieval, when varying the threshold α. The
percentage of times the model performs retrieval is
stated on Table 6.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

α = 0.25 45.52 49.91 37.97 16.36 37.44
α = 0.5 52.84 59.36 38.58 18.08 42.22
α = 0.75 53.90 60.87 43.05 19.91 44.43

Table 5: BLEU scores on the multi-domains test set
when performing adaptive retrieval for different values
of the threshold α, for a batch size of 8.

Medical Law IT Koran

kNN-MT 100% 100% 100% 100%

α = 0.25 78% 73% 38% 4%
α = 0.5 96% 96% 60% 61%
α = 0.75 98% 99% 92% 91%

Table 6: Percentage of times the model searches for
neighbors on the datastore when performing adaptive
retrieval for different values of the threshold α, for a
batch size of 8.

A.4 Cache
We report on Table 7 the BLEU scores for a model
using a cache of the retrieval distributions, when
varying the threshold τ . The percentage of times
the model performs retrieval is stated on Table 8.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

τ = 2 54.47 61.23 45.93 20.98 45.65
τ = 4 54.17 61.10 46.07 21.00 45.58
τ = 6 53.30 59.12 45.39 20.67 44.62
τ = 8 30.06 23.01 25.53 16.08 23.67

Table 7: BLEU scores on the multi-domains test set
when using a retrieval distributions’ cache for different
values of the threshold τ , for a batch size of 8.

Medical Law IT Koran

kNN-MT 100% 100% 100% 100%

τ = 2 59% 51% 67% 64%
τ = 4 50% 42% 57% 53%
τ = 6 43% 35% 49% 45%
τ = 8 26% 16% 29% 31%

Table 8: Percentage of times the model searches for
neighbors on the datastore when using a retrieval dis-
tributions’ cache for different values of the threshold τ ,
for a batch size of 8.

B Hyper-parameters

On Table 9 we report the values for the hyper-
parameters: number of neighbors to be retrieved
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Medical Law IT Koran
k λ T k λ T k λ T k λ T

kNN-MT 8 0.7 10 8 0.8 10 8 0.7 10 8 0.6 100
Fast kNN-MT 16 0.7 .015 32 0.6 .015 8 0.6 .02 16 0.6 .05

cache 8 0.7 10 8 0.8 10 8 0.7 10 8 0.6 100
PCA + cache 8 0.8 10 8 0.8 10 8 0.7 10 8 0.7 100
PCA + pruning 8 0.7 10 8 0.8 10 8 0.7 10 8 0.7 100
PCA + cache + pruning 8 0.7 10 8 0.8 10 8 0.7 10 8 0.7 100

Table 9: Values of the hyper-parameters: number of neighbors to be retrieved k, interpolation coefficient λ, and
retrieval softmax temperature T .

k ∈ {8, 16, 32, 64}, the interpolation coefficient
λ ∈ {0.5, 0.6, 0.7, 0.8}, and retrieval softmax tem-
perature T . For decoding we use beam search with
a beam size of 5.
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